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Chapter 1

Characterization of Time-of-Flight Data

Abstract This chapter introduces the principles and difficulties of time-of-flight

depth measurement. The depth-images that are produced by time-of-flight cam-

eras suffer from characteristic problems, which are divided into the following two

classes. Firstly there are systematic errors, such as noise and ambiguity, which are

directly related to the sensor. Secondly, there are non-systematic errors, such as

scattering and motion blur, which are more strongly related to the scene-content.

It is shown that these errors are often quite different from those observed in ordi-

nary color images. The case of motion blur, which is particularly problematic, is

examined in detail. A practical methodology for investigating the performance of

depth-cameras is presented. Time-of-flight devices are compared to structured-light

systems, and the problems posed by specular and translucent materials are investi-

gated.

1.1 Introduction

Time-of-Flight (ToF) cameras produce a depth image, each pixel of which encodes

the distance to the corresponding point in the scene. These cameras can be used

to estimate 3D structure directly, without the help of traditional computer-vision

algorithms. There are many practical applications for this new sensing modality, in-

cluding robot navigation [119, 98, 82], 3D reconstruction [57] and human-machine

interaction [32, 107]. ToF cameras work by measuring the phase-delay of reflected

infrared (IR) light. This is not the only way to estimate depth; for example, an IR

structured-light pattern can be projected onto the scene, in order to facilitate vi-

sual triangulation [106]. Devices of this type, such as the Kinect [39], share many

applications with ToF cameras [88, 105, 90, 28, 97].

The unique sensing architecture of the ToF camera means that a raw depth image

contains both systematic and non-systematic bias that has to be resolved for robust

depth imaging [37]. Specifically, there are problems of low depth precision and low

spatial resolution, as well as errors caused by radiometric, geometric and illumina-

1



2 1 Characterization of Time-of-Flight Data

tion variations. For example, measurement accuracy is limited by the power of the

emitted IR signal, which is usually rather low compared to daylight, such that the

latter contaminates the reflected signal. The amplitude of the reflected IR also varies

according to the material and color of the object surface.

Another critical problem with ToF depth images is motion blur, caused by either

camera or object motion. The motion blur of ToF data shows unique characteristics,

compared to that of conventional color cameras. Both the depth accuracy and the

frame rate are limited by the required integration time of the depth camera. Longer

integration time usually allows higher accuracy of depth measurement. For static

objects, we may therefore want to decrease the frame rate in order to obtain higher

measurement accuracies from longer integration times. On the other hand, capturing

a moving object at fixed frame rate imposes a limit on the integration time.

In this chapter, we discuss depth-image noise and error sources, and perform a

comparative analysis of ToF and structured-light systems. Firstly, the ToF depth-

measurement principle will be reviewed.

1.2 Principles of Depth Measurement

Figure 1.1 illustrates the principle of ToF depth sensing. An IR wave indicated in red

is directed to the target object, and the sensor detects the reflected IR component.

By measuring the phase difference between the radiated and reflected IR waves, we

can calculate the distance to the object. The phase difference is calculated from the

relation between four different electric charge values as shown in fig. 1.2. The four

Fig. 1.1 The principle of ToF depth camera [37, 71, 67]: The phase delay between emitted and

reflected IR signals are measured to calculate the distance from each sensor pixel to target objects.

phase control signals have 90 degree phase delays from each other. They determine

the collection of electrons from the accepted IR. The four resulting electric charge



1.3 Depth Image Enhancement 3

values are used to estimate the phase-difference td as

td = arctan

(

Q3−Q4

Q1−Q2

)

(1.1)

where Q1 to Q4 represent the amount of electric charge for the control signals C1 to

C4 respectively [37, 71, 67]. The corresponding distance d can then be calculated,

using c the speed of light and f the signal frequency:

d =
c

2 f

td

2π
. (1.2)

Here the quantity c/(2 f ) is the maximum distance that can be measured without

ambiguity, as will be explained in chapter 2.

Fig. 1.2 Depth can be calculated by measuring the phase delay between radiated and reflected IR

signals. The quantities Q1 to Q4 represent the amount of electric charge for control signals C1 to

C4 respectively.

1.3 Depth Image Enhancement

This section describes the characteristic sources of error in ToF imaging. Some

methods for reducing these errors are discussed. The case of motion blur, which

is particularly problematic, is considered in detail.



4 1 Characterization of Time-of-Flight Data

1.3.1 Systematic Depth Error

From the principle and architecture of ToF sensing, depth cameras suffer from sev-

eral systematic errors such as IR demodulation error, integration time error, ampli-

tude ambiguity and temperature error [37]. As shown in fig. 1.3 (a), longer integra-

tion increases signal to noise ratio, which, however, is also related to the frame rate.

Figure 1.3 (b) shows that the amplitude of the reflected IR signal varies according to

the color of the target object as well as the distance from the camera. The ambiguity

of IR amplitude introduces noise into the depth calculation.

(a) Integration Time Error: Longer integration time shows higher depth accuracy (right) than

shorter integration time (left).

(b) IR Amplitude Error: 3D points of the same depth (chessboard on the left) show different IR

amplitudes (chessboard on the right) according to the color of the target object.

Fig. 1.3 Systematic noise and error: These errors come from the ToF principle of depth measure-

ment.
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1.3.2 Non-Systematic Depth Error

Light scattering [86] gives rise to artifacts in the depth image, due to the low sensi-

tivity of the device. As shown in fig. 1.4 (a), close objects (causing IR saturation) in

the lower-right part of the depth image introduce depth distortion in other regions,

as indicated by dashed circles. Multipath error [41] occurs when a depth calcula-

tion in a sensor pixel is an superposition of multiple reflected IR signals. This effect

becomes serious around the concave corner region as shown in fig. 1.4 (b). Object

boundary ambiguity [95] becomes serious when we want to reconstruct a 3D scene

based on the depth image. Depth pixels near boundaries fall in between foreground

and background, giving rise to 3D structure distortion.

1.3.3 Motion Blur

Motion blur, caused by camera or target object motions, is a critical error source for

on-line 3D capturing and reconstruction with ToF cameras. Because the 3D depth

measurement is used to reconstruct the 3D geometry of scene, blurred regions in

a depth image lead to serious distortions in the subsequent 3D reconstruction. In

this section, we study the theory of ToF depth sensors and analyze how motion blur

occurs, and what it looks like. Due the its unique sensing architecture, motion blur

in the ToF depth camera is quite different from that of color cameras, which means

that existing deblurring methods are inapplicable.

The motion blur observed in a depth image has a different appearance from that

in a color image. Color motion blur shows smooth color transitions between fore-

ground and background regions [109, 115, 121]. On the other hand, depth motion

blur tends to present overshoot or undershoot in depth-transition regions. This is

due to the different sensing architecture in ToF cameras, as opposed to conventional

color cameras. The ToF depth camera emits an IR signal of a specific frequency, and

measures the phase difference between the emitted and reflected IR signals to obtain

the depth from the camera to objects. While calculating the depth value from the IR

measurements, we need to perform a non-linear transformation. Due to this archi-

tectural difference, the smooth error in phase measurement can cause uneven error

terms, such as overshoot or undershoot. As a result, such an architectural differ-

ence between depth and color cameras makes the previous color image deblurring

algorithms inapplicable to depth images.

Special cases of this problem have been studied elsewhere. Hussmann et al. [61]

introduce a motion blur detection technique on a conveyor belt, in the presence of

a single directional motion. Lottner et al. [79] propose an internal sensor control-

signal based blur detection method that is not appropriate in general settings. Lind-

ner et al. [76] model the ToF motion blur in the depth image, to compensate for

the artifact. However, they introduce a simple blur case without considering the ToF

principle of depth sensing. Lee et al. [73, 74] examine the principle of ToF depth

blur artifacts, and propose systematic blur-detection and deblurring methods.
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(a) Light Scattering: IR saturation in the lower-right part of the depth image causes depth

distortion in other parts, as indicated by dashed circles.

(b) Multipath Error: The region inside the concave corner is affected, and shows distorted depth

measurements.

(c) Object Boundary Ambiguity: Several depth points on an object boundary are located in

between foreground and background, resulting in 3D structure distortion.

Fig. 1.4 Non-systematic noise and error: Based on the depth-sensing principle, scene-structure

may cause characteristic errors.

Based on the depth sensing principle, we will investigate how motion blur oc-

curs, and what are its characteristics. Let’s assume that any motion from camera
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or object occurs during the integration time, which changes the phase difference of

the reflected IR as indicated by the gray color in fig. 1.2. In order to collect enough

electric charge Q1 to Q4 to calculate depth (1.1), we have to maintain a sufficient

integration time. According to the architecture type, integration time can vary, but

the integration time is the major portion of the processing time. Suppose that n cy-

cles are used for the depth calculation. In general, we repeat the calculation n times

during the integration time to increase the signal-to-noise ratio, and so

td = arctan

(

nQ3−nQ4

nQ1−nQ2

)

(1.3)

where Q1 to Q4 represent the amount of electric charge for the control signals C1 to

C4 respectively (cf. eqn. 1.1 and fig. 1.2). The depth calculation formulation 1.3 ex-

Fig. 1.5 ToF depth motion-blur due to movement of the target object.

pects that the reflected IR during the integration time comes from a single 3D point

of the scene. However, if there is any camera or object motion during the integration

time, the calculated depth will be corrupted. Figure 1.5 shows an example of this

situation. The red dot represents a sensor pixel of the same location. Due the the

motion of the chair, the red dot sees both foreground and background sequentially

within its integration time, causing a false depth calculation as shown in the third

image in fig. 1.5. The spatial collection of these false-depth points looks like blur

around moving object boundaries, where significant depth changes are present.

Figure 1.6 illustrates what occurs at motion blur pixels in the ‘2-tab’ architecture,

where only two electric charge values are available. In other words, only Q1−Q2

and Q3−Q4 values are stored, instead of all separate Q values. Figure 1.6 (a) is the

case where no motion blur occurs. In the plot of Q1−Q2 versus Q3−Q4 in the third

column, all possible regular depth values are indicated by blue points, making a

diamond shape. If there is a point deviating from it, as an example shown in fig. 1.6

(b), it means that their is a problem in between the charge values Q1 to Q4. As we

already explained in fig. 1.2, this happens when there exist multiple reflected signals

with different phase values. Let’s assume that a new reflected signal, of a different

phase value, comes in from the mth cycle out of a total of n cycles during the first

half or second half of the integration time. A new depth is then obtained as

td(m) = arctan

(

nQ̂3−nQ̂4

(mQ1 +(n−m)Q̂1)− (mQ2 +(n−m)Q̂2)

)

(1.4)
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(a)

(b)

Fig. 1.6 ToF depth sensing and temporal integration.

td(m) = arctan

(

(mQ3 +(n−m)Q̂3)− (mQ4 +(n−m)Q̂4)

nQ̂1−nQ̂2

)

(1.5)

in the first or second-half of the integration time, respectively. Using the depth cal-

culation formulation (eq 1.1), we simulate all possible blur models. Figure 1.7 illus-

trates several examples of depth images taken by ToF cameras, having depth value

transitions in motion blur regions. Actual depth values along the blue and red cuts in

each image are presented in the following plots. The motion blurs of depth images in

the middle show unusual peaks (blue cut) which cannot be observed in conventional

color motion blur. Figure 1.8 shows how motion blur appears in 2-tap case. In the

second phase where control signals C3 and C4 collect electric charges, the reflected

IR signal is a mixture of background and foreground. Unlike color motion blurs,

depth motion blurs often show overshoot or undershoot in their transition between

foreground and background regions. This means that motion blurs result in higher

or lower calculated depth than all near foreground and background depth values, as

demonstrated in fig. 1.9.

In order to verify this characteristic situation, we further investigate the depth

calculation formulation in equation 1.5. Firstly we re-express equation 1.4 as

td(m) = arctan

(

nQ̂3−nQ̂4

m(Q1− Q̂1−Q2 + Q̂2)+n(Q̂1− Q̂2)

)

(1.6)
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Fig. 1.7 Sample depth value transitions from depth motion blur images captured by an SR4000

ToF camera.

Fig. 1.8 Depth motion blur in 2-tap case.

The first derivative of the equation 1.6 is zero, meaning local maxima or local min-

ima, under the following conditions:

t ′d(m) =
1

1+
(

nQ̂3−nQ̂4

m(Q1−Q̂1−Q2+Q̂2)+n(Q̂1−Q̂2)

)2
(1.7)

=
(m(Q1− Q̂1−Q2 + Q̂2)+n(Q̂1− Q̂2))

2

(nQ̂3−nQ̂4)2 +(m(Q1− Q̂1−Q2 + Q̂2)+n(Q̂1− Q̂2))2
= 0
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Fig. 1.9 ToF depth motion blur simulation results.

m = n
Q̂2− Q̂1

Q1− Q̂1−Q2 + Q̂2

= n
1−2Q̂1

2Q1−2Q̂1

(1.8)

Fig. 1.10 Half of the all motion blur cases make local peaks.

Figure 1.10 shows that statistically half of all cases have overshoots or under-

shoots. In a similar manner, the motion blur model of 1-tap (eqn. 1.9) and 4-tap

(eqn. 1.10) cases can be derived. Because a single memory is assigned for recording

the electric charge value of four control signals, the 1-tap case has four different

formulations upon each phase transition:

td(m) = arctan

(

nQ̂3−nQ̂4

(mQ1 +(n−m)Q̂1)−nQ̂2

)

td(m) = arctan

(

nQ̂3−nQ̂4

nQ1− (mQ2 +(n−m)Q̂2

)

td(m) = arctan

(

(mQ3 +(n−m)Q̂3)−nQ̂4

nQ̂1−nQ̂2

)

td(m) = arctan

(

nQ3− (mQ4 +(n−m)Q̂4

nQ̂1−nQ̂2

)

(1.9)

On the other hand, the 4-tap case only requires a single formulation, which is:
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td(m) = arctan

(

(mQ3 +(n−m)Q̂3)− (mQ4 +(n−m)Q̂4)

(mQ1 +(n−m)Q̂1)− (mQ2 +(n−m)Q̂2)

)

(1.10)

Now, by investigating the relation between control signals, any corrupted depth eas-

ily can be identified. From the relation between Q1 and Q4, we find the following

relation:

Q1 +Q2 = Q3 +Q4 = K. (1.11)

Let’s call this the Plus Rule, where K is the total amount of charged electrons. An-

other relation is the following formulation, called the Minus Rule:

|Q1−Q2|+ |Q3−Q4|= K. (1.12)

In fact, neither formulation exclusively represents motion blur. Any other event that

can break the relation between the control signals, and can be detected by one of

the rules, is an error which must be detected and corrected. We conclude that ToF

motion blur can be detected by one or more of these rules.

(a) Depth images with motion blur

(b) Intensity images with detected motion blur regions (indicated by white color)

Fig. 1.11 Depth image motion blur detection results by the proposed method.

Figure 1.11 (a) shows depth image samples with motion blur artifacts due to var-

ious object motions such as rigid body, multiple body and deforming body motions

respectively. Motion blur occurs not just around object boundaries; inside an object,
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any depth differences that are observed within the integration time will also cause

motion blur. Figure 1.11 (b) shows detected motion blur regions indicated by white

color on respective depth and intensity images, by the method proposed in [73].

This is very straightforward but effective and fast method, which is fit for hardware

implementation without any additional frame memory or processing time.

1.4 Evaluation of Time-of-Flight and Structured-Light Data

The enhancement of ToF and structured light (e.g. Kinect [106]) data is an important

topic, owing to the physical limitations of these devices (as described in sec. 1.3).

The characterization of depth-noise, in relation to the particular sensing architecture,

is a major issue. This can be addressed using bilateral [118] or non-local [60] filters,

or in wavelet-space [34], using prior knowledge of the spatial noise distribution.

Temporal filtering [81] and video-based [28] methods have also been proposed.

The upsampling of low resolution depth images is another critical issue. One

approach is to apply color super-resolution methods on ToF depth images directly

[102]. Alternatively, a high resolution color image can be used as a reference for

depth super-resolution [117, 3]. The denoising and upsampling problems can also

be addressed together [15], and in conjunction with high-resolution monocular [90]

or binocular [27] color images.

It is also important to consider the motion artifacts [79] and multipath [41] prob-

lems which are characteristic of ToF sensors. The related problem of ToF depth-

confidence has been addressed using random-forest methods [95]. Other issues with

ToF sensors include internal and external calibration [42, 77, 52], as well as range

ambiguity [18]. In the case of Kinect, a unified framework of dense depth data ex-

traction and 3D reconstruction has been proposed [88].

Despite the increasing interest in active depth-sensors, there are many unresolved

issues regarding the data produced by these devices, as outlined above. Furthermore,

the lack of any standardized data sets, with ground truth, makes it difficult to make

quantitative comparisons between different algorithms.

The Middlebury stereo [99], multiview [103] and Stanford 3D scan [21] data set

have been used for the evaluation of depth image denoising, upsampling and 3D

reconstruction methods. However, these data sets do not provide real depth images

taken by either ToF or structured-light depth sensors, and consist of illumination

controlled diffuse material objects. While previous depth accuracy enhancement

methods demonstrate their experimental results on their own data set, our under-

standing of the performance and limitations of existing algorithms will remain par-

tial without any quantitative evaluation against a standard data set. This situation

hinders the wider adoption and evolution of depth-sensor systems.

In this section, we propose a performance evaluation framework for both ToF

and structured-light depth images, based on carefully collected depth-maps and their

ground truth images. First, we build a standard depth data set; calibrated depth im-

ages captured by a ToF depth camera and a structured light system. Ground truth
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depth is acquired from a commercial 3D scanner. The data set spans a wide range

of objects, organized according to geometric complexity (from smooth to rough), as

well as radiometric complexity (diffuse, specular, translucent and subsurface scat-

tering). We analyze systematic and non-systematic error sources, including the ac-

curacy and sensitivity with respect to material properties. We also compare the char-

acteristics and performance of the two different types of depth sensors, based on ex-

tensive experiments and evaluations. Finally, to justify the usefulness of the data set,

we use it to evaluate simple denoising, super-resolution and inpainting algorithms.

1.4.1 Depth Sensors

As described in section 1.2, the ToF depth sensor emits IR waves to target objects,

and measures the phase delay of reflected IR waves at each sensor pixel, to calculate

the distance travelled. According to the color, reflectivity and geometric structure of

the target object, the reflected IR light shows amplitude and phase variations, caus-

ing depth errors. Moreover, the amount of IR is limited by the power consumption

of the device, and therefore the reflected IR suffers from low signal-to-noise ratio

(SNR). To increase the SNR, ToF sensors bind multiple sensor pixels to calculate a

single depth pixel value, which decreases the effective image size. Structured light

depth sensors project an IR pattern onto target objects, which provides a unique

illumination code for each surface point observed at by a calibrated IR imaging sen-

sor. Once the correspondence between IR projector and IR sensor is identified by

stereo matching methods, the 3D position of each surface point can be calculated by

triangulation.

In both sensor types, reflected IR is not a reliable cue for all surface materials.

For example, specular materials cause mirror reflection, while translucent materials

cause IR refraction. Global illumination also interferes with the IR sensing mecha-

nism, because multiple reflections cannot be handled by either sensor type.

1.4.2 Standard Depth Data Set

A range of commercial ToF depth cameras have been launched in the market, such

as PMD, PrimeSense, Fotonic, ZCam, SwissRanger, 3D MLI, and others. Kinect

is the first widely successful commercial product to adopt the IR structured light

principle. Among many possibilities, we specifically investigate two depth cameras:

a ToF type SR4000 from MESA Imaging [80], and a structured light type Microsoft

Kinect [105]. We select these two cameras to represent each sensor since they are

the most popular depth cameras in the research community, accessible in the market

and reliable in performance.
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Heterogeneous Camera Set

We collect the depth maps of various real objects using the SR4000 and Kinect

sensors. To obtain the ground truth depth information, we use a commercial 3D

scanning device. As shown in fig. 1.12, we place the camera set approximately 1.2

meters away from the object of interest. The wall behind the object is located about

1.5 meters away from the camera set. The specification of each device is as follows.

Fig. 1.12 Heterogeneous camera setup for depth sensing.

Mesa SR4000. This is a ToF type depth sensor producing a depth map and ampli-

tude image at the resolution of 176× 144 with 16 bit floating-point precision. The

amplitude image contains the reflected IR light corresponding to the depth map. In

addition to the depth map, it provides {x,y,z} coordinates, which correspond to each

pixel in the depth map. The operating range of the SR4000 is 0.8 meters to 10.0 me-

ters, depending on the modulation frequency. The field of view (FOV) of this device

is 43×34 degrees.

Kinect. This is a structured IR light type depth sensor, composed of an IR emitter,

IR sensor and color sensor, providing the IR amplitude image, the depth map and

the color image at the resolution of 640× 480 (maximum resolution for amplitude

and depth image) or 1600×1200 (maximum resolution for RGB image). The oper-

ating range is between 0.8 meters to 3.5 meters, the spatial resolution is 3mm at 2

meters distance, and the depth resolution is 10mm at 2 meters distance. The FOV is

57×43 degrees.

FlexScan3D. We use a structured light 3D scanning system for obtaining ground

truth depth. It consists of an LCD projector and two color cameras. The LCD pro-

jector illuminates coded pattern at 1024× 768 resolution, and each color camera

records the illuminated object at 2560×1920 resolution.
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Capturing Procedure for Test Images

(a) GTD (b) ToFD (c) SLD

(d) Object (e) ToFI (f) SLC

Fig. 1.13 Sample raw image set of depth and ground truth.

The important property of the data set is that the measured depth data is aligned

with ground truth information, and with that of the other sensor. Each depth sensor

has to be fully calibrated internally and externally. We employ a conventional cam-

era calibration method [123] for both depth sensors and the 3D scanner. Intrinsic

calibration parameters for the ToF sensors are known. Given the calibration param-

eters, we can transform ground truth depth maps onto each depth sensor space. Once

the system is calibrated, we proceed to capture the objects of interest. For each ob-

ject, we record depth (ToFD) and intensity (ToFI) images from the SR4000, plus

depth (SLD) and color (SLC) from the Kinect. Depth captured by the FlexScan3D

is used as ground truth (GTD), as explained in more detail below.

Data Set

We select objects that show radiometric variations (diffuse, specular and translu-

cent), as well as geometric variations (smooth or rough). The total 36-item test set

is divided into three sub categories: diffuse material objects (class A), specular ma-

terial objects (class B) and translucent objects with subsurface scattering (class C),

as in fig. 1.15. Each class demonstrates geometric variation from smooth to rough

surfaces (a smaller label-number means a smoother surface).

From diffuse, through specular to translucent materials, the radiometric repre-

sentation becomes more complex, requiring a high dimensional model to predict
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the appearance. In fact, the radiometric complexity also increases the level of chal-

lenges in recovering its depth map. This is because the complex illumination inter-

feres with the sensing mechanism of most depth devices. Hence we categorize the

radiometric complexity by three classes, representing the level of challenges posed

by material variation. From smooth to rough surfaces, the geometric complexity is

increased, especially due to mesostructure scale variation.

Ground Truth

We use a 3D scanner for ground truth depth acquisition. The principle of this sys-

tem is similar to [100]; using illumination patterns and solving correspondences and

triangulating between matching points to compute the 3D position of each surface

point. Simple gray illumination patterns are used, which gives robust performance

in practice. However, the patterns cannot be seen clearly enough to provide corre-

spondences for non-Lambertian objects [16]. Recent approaches [50] suggest new

high-frequency patterns, and present improvement in recovering depth in the pres-

ence of global illumination. Among all surfaces, the performance of structured-light

scanning systems is best for Lambertian materials.

Original objects After matt spray

Fig. 1.14 We apply white matt spray on top of non-Lambertian objects for ground truth depth

acquisition.

The data set includes non-Lambertian materials presenting various illumination

effects; specular, translucent and subsurface scattering. To employ the 3D scanner

system for ground truth depth acquisition of the data set, we apply white matt spray

on top of each object surface, so that we can give each object a Lambertian surface

while we take ground truth depth 1.14. To make it clear that the spray particles do

not change the surface geometry, we have compared the depth maps captured by

the 3D scanner before and after the spray on a Lambertian object. We observe that

the thickness of spray particles is below the level of the depth sensing precision,

meaning that the spray particles do not affect on the accuracy of the depth map in

practice. Using this methodology, we are able to obtain ground truth depth for non-

Lambertian objects. To ensure the level of ground truth depth, we capture the depth

map of a white board. Then, we apply RANSAC to fit a plane to the depth map

and measure the variation of scan data from the plane. We observe that the variation

is less than 200 micrometers, which is negligible compared to depth sensor errors.
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Finally, we adopt the depth map from the 3D scanner as the ground truth depth, for

quantitative evaluation and analysis.

Fig. 1.15 Test images categorized by their radiometric and geometric characteristics: Class A

diffuse material objects (13 images), class B specular material objects (11 images) and class C

translucent objects with subsurface scattering (12 images).



18 1 Characterization of Time-of-Flight Data

1.4.3 Experiments and Analysis

In this section, we investigate the depth accuracy, the sensitivity to various different

materials, and the characteristics of the two types of sensors.

Fig. 1.16 ToF depth accuracy in RMSE (Root mean square) for class A. The RMSE values and

their corresponding difference maps are illustrated. 128 in difference map represents zero differ-

ence while 129 represents the ground truth is 1 mm larger than the measurement. Likewise, 127

indicates that the ground truth is 1 mm smaller than the measurement.
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Fig. 1.17 ToF depth accuracy in RMSE (Root mean square) for class B. The RMSE values and

their corresponding difference maps are illustrated.

Depth Accuracy and Sensitivity

Given the calibration parameters, we project the ground truth depth map onto each

sensor space, in order to achieve viewpoint alignment (fig. 1.12). Due to the resolu-

tion difference, multiple pixels of the ground truth depth fall into each sensor pixel.

We perform a bilinear interpolation to find corresponding ground truth depth for
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Fig. 1.18 ToF depth accuracy in RMSE (Root mean square) for class C. The RMSE values and

their corresponding difference maps are illustrated.

each sensor pixel. Due to the difference of field of view and occluded regions, not

all sensor pixels get corresponding ground truth depth. We exclude these pixels and

occlusion boundaries from the evaluation.

According to previous work [104, 68] and manufacturer reports on the accuracy

of depth sensors, the root mean square error (RMSE) of depth measurements is

approximately 5–20mm at the distance of 1.5 meters. These figures cannot be gen-

eralized for all materials, illumination effects, complex geometry, and other factors.

The use of more general objects and environmental conditions invariably results in

higher RMSE of depth measurement than reported numbers. When we tested with

a white wall, which is similar to the calibration object used in previous work [104],

we obtain approximately 10.15mm at the distance of 1.5 meters. This is comparable

to the previous empirical study and reported numbers.

Because only foreground objects are controlled, the white background is segmented-

out for the evaluation. The foreground segmentation is straightforward because the
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background depth is clearly separated from that of foreground. In figs. 1.16, 1.17 and

1.18, we plot depth errors (RMSE) and show difference maps (8 bit) between the

ground truth and depth measurement. In the difference maps, gray indicates zero

difference, whereas a darker (or brighter) value indicates that the ground truth is

smaller (or larger) than the estimated depth. The range of difference map, [0, 255],
spans [−128mm, 128mm] in RMSE.

Overall Class A Class B Class C

ToF 83.10 29.68 93.91 131.07

(76.25) (10.95) (87.41) (73.65)

Kinect 170.153 13.67 235.30 279.96

(282.25) (9.25) (346.44) (312.97)

* Root Mean Square Error (Standard Deviation) in (mm)

Table 1.1 Depth accuracy upon material properties. Class A: Diffuse, Class B: Specular, Class C:

Translucent. See fig. 1.15 for illustration.

Several interesting observations can be made from the experiments. First, we

observe that the accuracy of depth values varies substantially according to the ma-

terial property. As shown in fig. 1.16, the average RMSE of class A is 26.80mm

with 12.81mm of standard deviation, which is significantly smaller than the overall

RMSE. This is expected, because class A has relatively simple properties, which

are well-approximated by the Lambertian model. From fig. 1.17 for class B, we are

unable to obtain the depth measurements on specular highlights. These highlights

either prevent the IR reflection back to the sensor, or cause the reflected IR to satu-

rate the sensor. As a result, the measured depth map shows holes, introducing a large

amount of errors. The RMSE for class B is 110.79 mm with 89.07 mm of standard

deviation. Class C is the most challenging subset, since it presents the subsurface

scattering and translucency. As expected, upon the increase in the level of translu-

cency, the measurement error is dramatically elevated as illustrated in fig. 1.18.

One thing to note is that the error associated with translucent materials differs

from that associated with specular materials. We still observe some depth values

for translucent materials, whereas the specular materials show holes in the depth

map. The measurement on translucent materials is incorrect, often producing larger

depth than the ground truth. Such a drift appears because the depth measurements

on translucent materials are the result of both translucent foreground surface and the

background behind. As a result, the corresponding measurement points lie some-

where between the foreground and the background surfaces.

Finally, the RMSE for class C is 148.51mm with 72.19mm of standard deviation.

These experimental results are summarized in Table 1.1. Interestingly, the accuracy

is not so much dependent on the geometric complexity of the object. Focusing on

class A, although A-11, A-12 and A-13 possess complicated and uneven surface

geometry, the actual accuracy is relatively good. Instead, we find that the error in-

creases as the surface normal deviates from the optical axis of the sensor. In fact,

a similar problem has been addressed by [69], in that the orientation is the source
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of systematic error in sensor measurement. In addition, surfaces where the global

illumination occurs due to multipath IR transport (such as the concave surfaces on

A-5, A-6, A-10 of Class A) exhibit erroneous measurements.

Due to its popular application in games and human computer interaction, many

researchers have tested and reported the result of Kinect applications. One of com-

mon observation is that the Kinect presents some systematic error with respect to

distance. However, there has been no in-depth study on how the Kinect works on

various surface materials. We measure the depth accuracy of Kinect using the data

set, and illustrate the results in figs. 1.16, 1.17 and 1.18.

Overall RMSE is 191.69mm, with 262.19mm of standard deviation. Although

the overall performance is worse than that of ToF sensor, it provides quite accu-

rate results for class A. From the experiments, it is clear that material properties

are strongly correlated with depth accuracy. The RMSE for class A is 13.67mm

with 9.25mm of standard deviation. This is much smaller than the overall RMSE,

212.56mm. However, the error dramatically increases in class B (303.58mm with

249.26mm of deviation). This is because the depth values for specular materials

causes holes in the depth map, similar to the behavior of the ToF sensor.

From the experiments on class C, we observe that the depth accuracy drops sig-

nificantly upon increasing the level of translucency, especially starting at the object

C-8. In the graph shown in fig. 1.18, one can observe that the RMSE is reduced with

a completely transparent object (C-12, a pure water). It is because caustic effects

appear along the object, sending back unexpected IR signals to the sensor. Since the

sensor receives the reflected IR, RMSE improves in this case. However this does

not always stand for a qualitative improvement. The overall RMSE for class C is

279.96mm with 312.97mm of standard deviation. For comparison, see table 1.1.

ToF vs Kinect Depth

In previous sections, we have demonstrated the performance of ToF and structured

light sensors. We now characterize the error patterns of each sensor, based on the

experimental results. For both sensors, we observe two major errors; data drift and

data loss. It is hard to state which kind of error is most serious, but it is clear that both

must be addressed. In general, the ToF sensor tends to show data drift, whereas the

structured light sensor suffers from data loss. In particular, the ToF sensor produces

a large offset in depth values along boundary pixels and transparent pixels, which

correspond to data drift. Under the same conditions, the structured light sensor tends

to produce holes, in which the depth cannot be estimated. For both sensors, specular

highlights lead to data loss.
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1.4.4 Enhancement

In this section we apply simple denoising, superresolution and inpainting algorithms

on the data set, and report their performance. For denoising and superresolution, we

test only on class A, because class B and C often suffer from significant data drift

or data loss, which neither denoising nor superresolution alone can address.

By excluding class B and C, it is possible to precisely evaluate the quality gain

due to each algorithm. On the other hand, we adopt the image inpainting algorithm

on class B, because in this case the typical errors are holes, regardless of sensor type.

Although the characteristics of depth images differ from those of color images, we

apply color inpainting algorithms on depth images, to compensate for the data loss

in class B. We then report the accuracy gain, after filling in the depth holes. Note

that the aim of this study is not to claim any state-of-the art technique, but to provide

baseline test results on the data set.

We choose a bilateral filter for denoising the depth measurements. The bilateral

filter size is set to 3× 3 (for ToF, 174× 144 resolution) or 10× 10 (for Kinect,

640×480 resolution). The standard deviation of the filter is set to 2 in both cases. We

compute the RMSE after denoising and obtain 27.78mm using ToF, and 13.30mm

using Kinect as demonstrated in tables 1.2 and 1.3. On average, the bilateral filter

provides an improvement in depth accuracy; 1.98mm gain for ToF and 0.37mm for

Kinect. Figure 1.19 shows the noise-removed results, with input depth.

.

ToF Kinect

Fig. 1.19 Results before and after bilateral filtering (top) and bilinear interpolation (bottom).

We perform bilinear interpolation for superresolution, increasing the resolution

twice per dimension (upsampling by a factor of four). We compute the RMSE before

and after the superresolution process from the identical ground truth depth map.

The depth accuracy is decreased after superresolution by 2.25mm (ToF) or 1.35mm
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.

ToF Kinect

Fig. 1.20 Before and after inpainting

(Kinect). The loss of depth accuracy is expected, because the recovery of surface

details from a single low resolution image is an ill-posed problem. The quantitative

evaluation results for denoising and superresolution are summarized in tables 1.2

and 1.3.

For inpainting, we employ an exemplar-based algorithm [19]. Criminisi et al. de-

sign a fill-order to retain the linear structure of scene, and so their method is well-

suited for depth images. For hole filling, we set the patch size to 3×3 for ToF and

to 9×9 for Kinect, in order to account for the difference in resolution. Finally, we

compute the RMSE after inpainting, which is 75.71mm for ToF and 125.73mm

for Kinect. The overall accuracy has been improved by 22.30mm for ToF and

109.57mm for Kinect. The improvement for Kinect is more significant than ToF,

because the data loss appears more frequently in Kinect than ToF. After the inpaint-

ing process, we obtain a reasonable quality improvement for class B.

Original Bilateral Bilinear

RMSE Filtering Interpolation

ToF 29.68 27.78 31.93

(10.95) (10.37) (23.34)

Kinect 13.67 13.30 15.02

(9.25) (9.05) (12.61)

* Root Mean Square Error (Standard Deviation) in mm

Table 1.2 Depth accuracy before/after bilateral filtering and superresolution for class A. See

fig. 1.19 for illustration.

Based on the experimental study, we confirm that both depth sensors provide

relatively accurate depth measurements for diffuse materials (class A). For specular
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Original Example-based

RMSE Inpainting

ToF 93.91 71.62

(87.41) (71.80)

Kinect 235.30 125.73

(346.44) (208.66)

* Root Mean Square Error (Standard Deviation) in mm

Table 1.3 Depth accuracy before/after inpainting for class B. See fig. 1.20 for illustration.

materials (class B), both sensors exhibit data loss appearing as holes in the measured

depth. Such a data loss causes a large amount of error in the depth images. For

translucent materials (class C), the ToF sensor shows non-linear data drift towards

the background. On the other hand, the Kinect sensor shows data loss on translucent

materials. Upon the increase of translucency, the performance of both sensors is

degraded accordingly.

1.5 Conclusions

This chapter has reported both quantitative and qualitative experimental results for

the evaluation of each sensor type. Moreover, we provide a well-structured standard

data set of depth images from real world objects, with accompanying ground-truth

depth. The data-set spans a wide variety of radiometric and geometric complexity,

which is well-suited to the evaluation of depth processing algorithms. The analy-

sis has revealed important problems in depth acquisition and processing, especially

measurement errors due to material properties. The data-set will provide a standard

framework for the evaluation of other denoising, super-resolution, interpolation and

related depth-processing algorithms.
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Fig. 1.21 Sample depth images and difference maps from the test image set.



Chapter 2

Disambiguation of Time-of-Flight Data

Abstract The maximum range of a time-of-flight camera is limited by the period-

icity of the measured signal. Beyond a certain range, which is determined by the

signal frequency, the measurements are confounded by phase-wrapping. This effect

is demonstrated in real examples. Several phase-unwrapping methods, which can be

used to extend the range of time-of-flight cameras, are discussed. Simple methods

can be based on the measured amplitude of the reflected signal, which is itself re-

lated to the depth of objects in the scene. More sophisticated unwrapping methods

are based on zero-curl constraints, which enforce spatial consistency on the phase

measurements. Alternatively, if more than one depth-camera is used, then the data

can be unwrapped by enforcing consistency between different views of the same

scene point. The relative merits and shortcomings of these methods are evaluated,

and the prospects for hardware-based approaches, involving frequency-modulation

are discussed.

2.1 Introduction

Time-of-Flight cameras emit modulated infrared light and detect its reflection from

the illuminated scene points. According to the ToF principle described in chapter 1,

the detected signal is gated and integrated using internal reference signals, to form

the tangent of the phase φ of the detected signal. Since the tangent of φ is a periodic

function with a period of 2π , the value φ +2nπ gives exactly the same tangent value

for any non-negative integer n.

Commercially available ToF cameras compute φ on the assumption that φ is

within the range of [0,2π). For this reason, each modulation frequency f has its

maximum range dmax corresponding to 2π , encoded without ambiguity:

dmax =
c

2 f
, (2.1)

27
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where c is the speed of light. For any scene points farther than dmax, the measured

distance d is much shorter than its actual distance d + ndmax. This phenomenon is

called phase wrapping, and estimating the unknown number of wrappings n is called

phase unwrapping.

For example, the Mesa SR4000 [80] camera records a 3D point Xp at each

pixel p, where the measured distance dp equals ‖Xp‖. In this case, the unwrapped

3D point Xp(np) with number of wrappings np can be written as

Xp(np) =
dp +npdmax

dp

Xp. (2.2)

Figure 2.1(a) shows a typical depth map acquired by the SR4000 [80], and fig. 2.1(b)

shows its unwrapped depth map. As shown in fig. 2.1(e), phase unwrapping is cru-

cial for recovering large-scale scene structure.

To increase the usable range of ToF cameras, it is also possible to extend the max-

imum range dmax by decreasing the modulation frequency f . In this case, the inte-

gration time should also be extended, to acquire a high quality depth map, since the

depth noise is inversely proportional to f . With extended integration time, moving

objects are more likely to result in motion artifacts. In addition, we do not know at

which modulation frequency phase wrapping does not occur, without exact knowl-

edge regarding the scale of the scene.

If we can accurately unwrap a depth map acquired at a high modulation fre-

quency, then the unwrapped depth map will suffer less from noise than a depth map

acquired at a lower modulation frequency, integrated for the same time. Also, if

a phase unwrapping method does not require exact knowledge on the scale of the

scene, then the method will be applicable in more large-scale environments.

There exist a number of phase unwrapping methods [35, 93, 65, 18, 30, 29, 83,

17] that have been developed for ToF cameras. According to the number of input

depth maps, the methods are categorized into two groups: those using a single depth

map [93, 65, 18, 30, 83] and those using multiple depth maps [35, 92, 29, 17]. The

following subsections introduce their principles, advantages and limitations.

2.2 Phase Unwrapping From a Single Depth Map

ToF cameras such as the SR4000 [80] provide an amplitude image along with its

corresponding depth map. The amplitude image is encoded with the strength of

the detected signal, which is inversely proportional to the squared distance. To ob-

tain corrected amplitude A′ [89], which is proportional to the reflectivity of a scene

surface with respect to the infrared light, we can multiply amplitude A and its cor-

responding squared distance d2:

A′ = Ad2. (2.3)
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(a) (b) (c)

(d) (e)

Fig. 2.1 Structure recovery through phase unwrapping. (a) Wrapped ToF depth map. (b) Un-

wrapped depth map corresponding to (a). Only the distance values are displayed in (a) and (b),

to aid visibility. The intensity is proportional to the distance. (c) Amplitude image associated with

(a). (d) and (e) display the 3D points corresponding to (a) and (b), respectively. (d) The wrapped

points are displayed in red. (e) Their unwrapped points are displayed in blue. The remaining points

are textured using the original amplitude image (c).

Figure 2.2 shows an example of amplitude correction. It can be observed from

fig. 2.2(c) that the corrected amplitude is low in the wrapped region. Based on the

assumption that the reflectivity is constant over the scene, the corrected amplitude

values can play an important role in detecting wrapped regions [93, 18, 83].

Poppinga and Birk [93] use the following inequality for testing if the depth of

pixel p has been wrapped:

A′p ≤ Aref
p T, (2.4)

where T is a manually chosen threshold, and Aref
p is the reference amplitude of

pixel p when viewing a white wall at one meter, approximated by
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(a) (b) (c)

Fig. 2.2 Amplitude correction example. (a) Amplitude image. (b) ToF depth map. (c) Corrected

amplitude image. The intensity in (b) is proportional to the distance. The lower-left part of (b) has

been wrapped. Images courtesy of Choi et al. [18].

Aref
p = B−

(

(xp− cx)
2 +(yp− cy)

2
)

, (2.5)

where B is a constant. The image coordinates of p are (xp,yp), and (cx,cy) is ap-

proximately the image center, which is usually better illuminated than the periphery.

Aref
p compensates this effect by decreasing Aref

p T if pixel p is in the periphery.

After the detection of wrapped pixels, it is possible to directly obtain an un-

wrapped depth map by setting the number of wrappings of the wrapped pixels to 1

on the assumption that the maximum number of wrappings is 1.

The assumption on the constant reflectivity tends to be broken when the scene

is composed of different objects with varying reflectivity. This assumption cannot

be fully relaxed without detailed knowledge of scene reflectivity, which is hard to

obtain in practice. To robustly handle varying reflectivity, it is possible to adaptively

set the threshold for each image and to enforce spatial smoothness on the detection

results.

Choi et al. [18] model the distribution of corrected amplitude values in an image

using a mixture of Gaussians with two components, and apply expectation maxi-

mization [6] to learning the model:

p(A′p) = αH p(A′p|µH ,σ2
H)+αL p(A′p|µL,σ2

L), (2.6)

where p(A′p|µ,σ2) denotes a Gaussian distribution with mean µ and variance σ2,

and α is the coefficient for each distribution. The components p(A′p|µH ,σ2
H) and

p(A′p|µL,σ2
L) describe the distributions of high and low corrected amplitude values,

respectively. Similarly, the subscripts H and L denote labels high and low, respec-

tively. Using the learned distribution, it is possible to write a probabilistic version of

eq. (2.4) as

P(H|A′p) < 0.5, (2.7)

where P(H|A′p) = αH p(A′p|µH ,σ2
H)/p(A′p).

To enforce spatial smoothness on the detection results, Choi et al. [18] use a

segmentation method [96] based on Markov random fields (MRFs). The method

finds the binary labels n ∈ {H,L} or {0,1} that minimize the following energy:
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E = ∑
p

Dp(np)+ ∑
(p,q)

V (np,nq), (2.8)

where Dp(np) is a data cost that is defined as 1−P(np|A′p), and V (np,nq) is a dis-

continuity cost that penalizes a pair of adjacent pixels p and q if their labels np and

nq are different. V (np,nq) is defined in a manner of increasing the penalty if a pair

of adjacent pixels have similar corrected amplitude values:

V (np,nq) = λ exp
(

−β (A′p−A′q)
2
)

δ (np 6= nq), (2.9)

where λ and β are constants, which are either manually chosen or adaptively deter-

mined. δ (x) is a function that evaluates to 1 if its argument is true and evaluates to

zero otherwise.

(a) (b) (c)

Fig. 2.3 Detection of wrapped regions. (a) Result obtained by expectation maximization. (b) Re-

sult obtained by MRF optimization. The pixels with labels L and H are colored in black and white,

respectively. The red pixels are those with extremely high or low amplitude values, which are not

processed during the classification. (c) Unwrapped depth map corresponding to fig. 2.2(b). The

intensity is proportional to the distance. Images courtesy of Choi et al. [18].

Figure 2.3 shows the classification results obtained by Choi et al. [18] Because

of varying reflectivity of the scene, the result in fig. 2.3(a) exhibits misclassified

pixels in the lower-left part. The misclassification is reduced by applying the MRF

optimization as shown in fig. 2.3(b). Figure 2.3(c) shows the unwrapped depth map

obtained by Choi et al. [18], corresponding to fig. 2.2(b).

McClure et al. [83] also use a segmentation-based approach, in which the depth

map is segmented into regions by applying the watershed transform [84]. In their

method, wrapped regions are detected by checking the average corrected amplitude

of each region.

On the other hand, depth values tend to be highly discontinuous across the wrap-

ping boundaries, where there are transitions in the number of wrappings. For ex-

ample, the depth maps in fig. 2.1(a) and fig. 2.2(b) show such discontinuities. On

the assumption that the illuminated surface is smooth, the depth difference between

adjacent pixels should be small. If the difference between measured distances is

greater than 0.5dmax for any adjacent pixels, say dp−dq > 0.5dmax, we can set the

number of relative wrappings, or, briefly, the shift nq−np to 1 so that the unwrapped



32 2 Disambiguation of Time-of-Flight Data

difference will satisfy−0.5dmax ≤ dp−dq−(nq−np)dmax < 0, minimizing the dis-

continuity.

Figure 2.4 shows a one-dimensional phase unwrapping example. In fig. 2.4(a),

the phase difference between pixels p and q is greater than 0.5 (or π). The shifts that

minimize the difference between adjacent pixels are 1 (or, nq− np = 1) for p and

q, and 0 for the other pairs of adjacent pixels. On the assumption that np equals 0,

we can integrate the shifts from left to right to obtain the unwrapped phase image in

fig. 2.4(b).

(a) (b)

Fig. 2.4 One-dimensional phase unwrapping example. (a) Measured phase image. (b) Unwrapped

phase image where the phase difference between p and q is now less than 0.5. In (a) and (b), all the

phase values have been divided by 2π . For example, the displayed value 0.1 corresponds to 0.2π .

(a) (b)

(c) (d)

Fig. 2.5 Two-dimensional phase unwrapping example. (a) Measured phase image. (b–d) Sequen-

tially unwrapped phase images where the phase difference across the red dotted line has been min-

imized. From (a) to (d), all the phase values have been divided by 2π . For example, the displayed

value 0.1 corresponds to 0.2π .
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Figure 2.5 shows a two-dimensional phase unwrapping example. From fig. 2.5(a)

to (d), the phase values are unwrapped in a manner of minimizing the phase differ-

ence across the red dotted line. In this two-dimensional case, the phase differences

greater than 0.5 never vanish, and the red dotted line cycles around the image center

infinitely. This is because of the local phase error that causes the violation of the

zero-curl constraint [46, 40].

(a) (b)

Fig. 2.6 Zero-curl constraint: a(x,y)+b(x+1,y) = b(x,y)+a(x,y+1). (a) The number of relative

wrappings between (x+1,y+1) and (x,y) should be consistent regardless of its integrating paths.

For example, two different paths (red and blue) are shown. (b) shows an example in which the

constraint is not satisfied. The four pixels correspond to the four pixels in the middle of fig. 2.5(a).

Figure 2.6 illustrates the zero-curl constraint. Given four neighboring pixel lo-

cations (x,y), (x + 1,y), (x,y + 1), and (x + 1,y + 1), let a(x,y) and b(x,y) denote

the shifts n(x+1,y)−n(x,y) and n(x,y+1)−n(x,y), respectively, where n(x,y) de-

notes the number of wrappings at (x,y). Then, the shift n(x +1,y+1)−n(x,y) can

be calculated in two different ways: either a(x,y)+b(x+1,y) or b(x,y)+a(x,y+1)
following one of the two different paths shown in fig. 2.6(a). For any phase un-

wrapping results to be consistent, the two values should be the same, satisfying the

following equality:

a(x,y)+b(x+1,y) = b(x,y)+a(x,y+1). (2.10)

Because of noise or discontinuities in the scene, the zero-curl constraint may not

be satisfied locally, and the local error is propagated to the entire image during

the integration. There exist classical phase unwrapping methods [46, 40] applied

in magnetic resonance imaging [75] and interferometric synthetic aperture radar

(SAR) [63], which rely on detecting [46] or fixing [40] broken zero-curl constraints.

Indeed, these classical methods [46, 40] have been applied to phase unwrapping for

ToF cameras [65, 30].
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2.2.1 Deterministic Methods

Goldstein et al. [46] assume that the shift is either 1 or -1 between adjacent pixels

if their phase difference is greater than π , and assume that it is 0 otherwise. They

detect cycles of four neighboring pixels, referred to as plus and minus residues,

which do not satisfy the zero-curl constraint.

If any integration path encloses an unequal number of plus and minus residue, the

integrated phase values on the path suffer from global errors. In contrast, if any in-

tegration path encloses an equal number of plus and minus residues, the global error

is balanced out. To prevent global errors from being generated, Goldstein et al. [46]

connect nearby plus and minus residues with cuts, which interdict the integration

paths, such that no net residues can be encircled.

After constructing the cuts, the integration starts from a pixel p, and each neigh-

boring pixel q is unwrapped relatively to p in a greedy and sequential manner if q

has not been unwrapped and if p and q are on the same side of the cuts.

2.2.2 Probabilistic Methods

Frey et al. [40] propose a very loopy belief propagation method for estimating the

shift that satisfies the zero-curl constraints. Let the set of shifts, and a measured

phase image, be denoted by

S =
{

a(x,y), b(x,y) : x = 1, . . . ,N−1; y = 1, . . . ,M−1
}

and

Φ =
{

φ(x,y) : 0≤ φ(x,y) < 1, x = 1, . . . ,N; y = 1, . . . ,M
}

,

respectively, where the phase values have been divided by 2π . The estimation is

then recast as finding the solution that maximizes the following joint distribution:

p(S,Φ) ∝
N−1

∏
x=1

M−1

∏
y=1

δ (a(x,y)+b(x+1,y)−a(x,y+1)−b(x,y))

×
N−1

∏
x=1

M

∏
y=1

e−(φ(x+1,y)−φ(x,y)+a(x,y))2/2σ2 ×
N

∏
x=1

M−1

∏
y=1

e−(φ(x,y+1)−φ(x,y)+b(x,y))2/2σ2

where δ (x) evaluates to 1 if x = 0 and to 0 otherwise. The variance σ2 is estimated

directly from the wrapped phase image [40].

Frey et al. [40] construct a graphical model describing the factorization of

p(S,Φ), as shown in fig. 2.7. In the graph, each shift node (white disc) is located

between two pixels, and corresponds to either an x-directional shift (a’s) or a y-

directional shift (b’s). Each constraint node (black disc) corresponds to a zero-curl

constraint, and is connected to its four neighboring shift nodes. Every node passes
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Fig. 2.7 Graphical model that describes the zero-curl constraints (black discs) between neighbor-

ing shift variables (white discs). 3-element probability vectors (µ’s) on the shifts between adjacent

nodes (-1, 0, or 1) are propagated across the network. The x marks denote pixels [40].

a message to its neighboring node, and each message is a 3-vector denoted by µ ,

whose elements correspond to the allowed values of shifts, -1, 0, and 1. Each el-

ement of µ can be considered as a probability distribution over the three possible

values [40].

(a) (b) (c)

Fig. 2.8 (a) Constraint-to-shift vectors are computed from incoming shift-to-constraint vectors. (b)

Shift-to-constraint vectors are computed from incoming constraint-to-shift vectors. (c) Estimates

of the marginal probabilities of the shifts given the data are computed by combining incoming

constraint-to-shift vectors [40].

Figure 2.8(a) illustrates the computation of a message µ4 from a constraint node

to one of its neighboring shift nodes. The constraint node receives messages µ1, µ2,

and µ3 from the rest of its neighboring shift nodes, and filters out the joint message

elements that do not satisfy the zero-curl constraint:

µ4i =
1

∑
j=−1

1

∑
k=−1

1

∑
l=−1

δ (k + l− i− j)µ1 jµ2kµ3l , (2.11)
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where µ4i denotes the element of µ4, corresponding to shift value i ∈ {−1,0,1}.
Figure 2.8(b) illustrates the computation of a message µ2 from a shift node to

one of its neighboring constraint node. Among the elements of the message µ1

from the other neighboring constraint node, the element, which is consistent with

the measured shift φ(x,y)−φ(x+1,y), is amplified:

µ2i = µ1i exp
(

−
(

φ(x+1,y)−φ(x,y)+ i
)2/

2σ2
)

. (2.12)

After the messages converge (or, after a fixed number of iterations), an estimate of

the marginal probability of a shift is computed by using the messages passed into its

corresponding shift node, as illustrated in fig. 2.8(c):

P̂
(

a(x,y) = i|Φ
)

=
µ1iµ2i

∑
j

µ1 jµ2 j

. (2.13)

Given the estimates of the marginal probabilities, the most probable value of each

shift node is selected. If some zero-curl constraints remain violated, a robust inte-

gration technique, such as least-squares integration [44] should be used [40].

2.2.3 Discussion

The aforementioned phase unwrapping methods using a single depth map [93, 65,

18, 30, 83] have an advantage that the acquisition time is not extended, keeping the

motion artifacts at a minimum. The methods, however, rely on strong assumptions

that are fragile in real world situations. For example, the reflectivity of the scene

surface may vary in a wide range. In this case, it is hard to detect wrapped regions

based on the corrected amplitude values. In addition, the scene may be discontinu-

ous if it contains multiple objects that occlude one another. In this case, the wrapping

boundaries tend to coincide with object boundaries, and it is often hard to observe

large depth discontinuities across the boundaries, which play an important role in

determining the number of relative wrappings.

The assumptions can be relaxed by using multiple depth maps at a possible exten-

sion of acquisition time. The next subsection introduces phase unwrapping methods

using multiple depth maps.

2.3 Phase Unwrapping From Multiple Depth Maps

Suppose that a pair of depth maps M1 and M2 of a static scene are given, which have

been taken at different modulation frequencies f1 and f2 from the same viewpoint.

In this case, pixel p in M1 corresponds to pixel p in M2, since the corresponding

region of the scene is projected onto the same location of M1 and M2. Thus the
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unwrapped distances at those corresponding pixels should be consistent within the

noise level.

Without prior knowledge, the noise in the unwrapped distance can be assumed

to follow a zero-mean distribution. Under this assumption, the maximum likelihood

estimates of the numbers of wrappings at the corresponding pixels should minimize

the difference between their unwrapped distances. Let mp and np be the numbers of

wrappings at pixel p in M1 and M2, respectively. Then we can choose mp and np

that minimize g(mp,np) such that

g(mp,np) =
∣

∣dp( f1)+mpdmax( f1)−dp( f2)−npdmax( f2)
∣

∣, (2.14)

where dp( f1) and dp( f2) denote the measured distances at pixel p in M1 and M2

respectively, and dmax( f ) denotes the maximum range of f .

The depth consistency constraint has been mentioned by Göktürk et al. [45] and

used by Falie and Buzuloiu [35] for phase unwrapping of ToF cameras. The illu-

minating power of ToF cameras is, however, limited due to the eye-safety problem,

and the reflectivity of the scene may be very low. In this situation, the amount of

noise may be too large for accurate numbers of wrappings to minimize g(mp,np).
For robust estimation against noise, Droeschel et al. [29] incorporate the depth con-

sistency constraint into their earlier work [30] for a single depth map, using an

auxiliary depth map of a different modulation frequency.

If we acquire a pair of depth maps of a dynamic scene sequentially and indepen-

dently, the pixels at the same location may not correspond to each other. To deal

with such dynamic situations, several approaches [92, 17] acquire a pair of depth

maps simultaneously. These can be divided into single-camera and multi-camera

methods, as described below.

2.3.1 Single-Camera Methods

For obtaining a pair of depth maps sequentially, four samples of integrated electric

charge are required per each integration period, resulting in eight samples within a

pair of two different integration periods. Payne et al. [92] propose a special hardware

system that enables simultaneous acquisition of a pair of depth maps at different fre-

quencies by dividing the integration period into two, switching between frequencies

f1 and f2, as shown in fig. 2.9.

Payne et al. [92] also show that it is possible to obtain a pair of depth maps with

only five or six samples within a combined integration period, using their system.

By using fewer samples, the total readout time is reduced and the integration period

for each sample can be extended, resulting in an improved signal-to-noise ratio.
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Fig. 2.9 Frequency modu-

lation within an integration

period. The first half is modu-

lated at f1, and the other half

is modulated at f2.

2.3.2 Multi-Camera Methods

Choi and Lee [17] use a pair of commercially available ToF cameras to simulta-

neously acquire a pair of depth maps from different viewpoints. The two cameras

C1 and C2 are fixed to each other, and the mapping of a 3D point X from C1 to

its corresponding point X′ from C2 is given by (R,T), where R is a 3× 3 rotation

matrix, and T is a 3× 1 translation vector. In [17], the extrinsic parameters R and

T are assumed to have been estimated. Figure 2.10(a) shows the stereo ToF camera

system.

(a) (b) 31MHz (c) 29MHz

(d) (e) (f)

Fig. 2.10 (a) Stereo ToF camera system. (b, c) Depth maps acquired by the system. (d) Amplitude

image corresponding to (b). (e, f) Unwrapped depth maps, corresponding to (b) and (c), respec-

tively. The intensity in (b, c, e, f) is proportional to the depth. The maximum intensity (255) in (b,

c) and (e, f) correspond to 5.2m and 15.6m, respectively. Images courtesy of Choi and Lee [17].
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Denoting by M1 and M2 a pair of depth maps acquired by the system, a pixel p

in M1 and its corresponding pixel q in M2 should satisfy:

X′q(nq) = RXp(mp)+T, (2.15)

where Xp(mp) and X′q(nq) denote the unwrapped 3D points of p and q with their

numbers of wrappings mp and nq, respectively.

Based on the relation in Eq. (2.15), Choi and Lee [17] generalize the depth con-

sistency constraint in Eq. (2.14) for a single camera to those for the stereo camera

system:

Dp(mp) = min
nq⋆∈{0,...,N}

(

∥

∥X′q⋆(nq⋆)−RXp(mp)−T
∥

∥

)

,

Dq(nq) = min
mp⋆∈{0,...,N}

(

∥

∥Xp⋆(mp⋆)−RT (X′q(nq)−T)
∥

∥

)

,
(2.16)

where pixels q⋆ and p⋆ are the projections of RXp(mp) + T and RT (X′q(nq)−T)
onto M2 and M1, respectively. The integer N is the maximum number of wrappings,

determined by approximate knowledge on the scale of the scene.

To robustly handle with noise and occlusion, Choi and Lee [17] minimize the

following MRF energy functions E1 and E2, instead of independently minimizing

Dp(mp) and Dq(mq) at each pixel:

E1 = ∑
p∈M1

D̂p(mp)+ ∑
(p,u)

V (mp,mu),

E2 = ∑
q∈M2

D̂q(nq)+ ∑
(q,v)

V (nq,nv),
(2.17)

where D̂p(mp) and D̂q(nq) are the data cost of assigning mp and nq to pixels p and q,

respectively. Functions V (mp,mu) and V (nq,nv) determine the discontinuity cost of

assigning (mp,mu) and (nq,nv) to pairs of adjacent pixels (p,u) and (q,v), respectively.

The data costs D̂p(mp) and D̂q(nq) are defined by truncating Dp(mp) and Dq(nq)
to prevent their values from becoming too large, due to noise and occlusion:

D̂p(mp) = τε

(

Dp(mp)
)

, D̂q(nq) = τε

(

Dq(nq)
)

, (2.18)

τε(x) =

{

x, if x < ε,
ε, otherwise,

(2.19)

where ε is a threshold proportional to the extrinsic calibration error of the system.

The function V (mp,mu) is defined in a manner that preserves depth continuity

between adjacent pixels. Choi and Lee [17] assume a pair of measured 3D points

Xp and Xu to have been projected from close surface points if they are close to each

other and have similar corrected amplitude values. The proximity is preserved by

penalizing the pair of pixels if they have different numbers of wrappings:
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V (mp,mu) =











λ
rpu

exp
(

−∆X2
pu

2σ2
X

)

exp
(

−∆A′2pu

2σ2
A′

)

if

{

mp 6= mu and

∆Xpu < 0.5dmax( f1)

0 otherwise.

where λ is a constant, ∆X2
pu = ‖Xp−Xu‖2, and ∆A′2pu = ‖A′p−A′u‖2. The variances

σ2
X and σ2

A′ are adaptively determined. The positive scalar rpu is the image coordi-

nate distance between p and u for attenuation of the effect of less adjacent pixels.

The function V (nq,nv) is defined by analogy with V (mp,mu).
Choi and Lee [17] minimize the MRF energies via the α-expansion algorithm

[8], obtaining a pair of unwrapped depth maps. To enforce further consistency be-

tween the unwrapped depth maps, they iteratively update the MRF energy corre-

sponding to a depth map, using the unwrapped depth of the other map, and perform

the minimization until the consistency no longer increases. Figure 2.10(e) and (f)

show examples of unwrapped depth maps, as obtained by the iterative optimizations.

An alternative method for improving the depth accuracy using two ToF cameras is

described in [11].

Methods # Depth Maps Cues Approach Maximum Range

Poppinga and Birk [93] 1 CAa Thresholding 2dmax

Choi et al. [18] 1 CA, DDb Segmentation, MRF (Nd +1)dmax

McClure et al. [83] 1 CA Segmentation, Thresholding 2dmax

Jutzi [65] 1 DD Branch cuts, Integration ∞

Droeschel et al. [30] 1 DD MRF, Integration ∞

Droeschel et al. [29] 2 (Multi-Freq.) DD, DCc MRF, Integration ∞

Payne et al. [92] 2 (Multi-Freq.) DC Hardware c
2| f1− f2|

Choi and Lee [17] 2 (Stereo) DC Stereo ToF, MRF (N +1)dmax

a Corrected amplitude. b Depth discontinuity. c Depth consistency. d The maximum number of

wrappings determined by the user.

Table 2.1 Summary of phase unwrapping methods

2.3.3 Discussion

Table 2.3.2 summarizes the phase unwrapping methods [93, 18, 83, 65, 30, 29, 92,

17] for ToF cameras. The last column of the table shows the extended maximum

range, which can be theoretically achieved by the methods. The methods [65, 30, 29]

based on the classical phase unwrapping methods [40, 46] deliver the widest max-

imum range. In [18, 17], the maximum number of wrappings can be determined

by the user. It follows that the maximum range of the methods can also become

sufficiently wide, by setting N to a large value. In practice, however, the limited

illuminating power of commercially available ToF cameras prevents distant objects
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from being precisely measured. This means that the phase values may be invalid,

even if they can be unwrapped. In addition, the working environment may be phys-

ically confined. For the latter reason, Droeschel et al. [30, 29] limit the maximum

range to 2dmax.

2.4 Conclusions

Although the hardware system in [92] has not yet been established in commercially

available ToF cameras, we believe that future ToF cameras will use such a frequency

modulation technique for accurate and precise depth measurement. In addition, the

phase unwrapping methods in [29, 17] are ready to be applied to a pair of depth maps

acquired by such future ToF cameras, for robust estimation of the unwrapped depth

values. We believe that a suitable combination of hardware and software systems

will extend the maximum ToF range, up to a limit imposed by the illuminating

power of the device.





Chapter 3

Calibration of Time-of-Flight Cameras

Abstract This chapter describes the metric calibration of a time-of-flight camera

including the internal parameters, and lens-distortion. Once the camera has been

calibrated, the 2D depth-image can be transformed into a range-map, which en-

codes the distance to the scene along each optical ray. It is convenient to use estab-

lished calibration methods, which are based on images of a chequerboard pattern.

The low-resolution of the amplitude image, however, makes it difficult to detect the

board reliably. Heuristic detection methods, based on connected image-components,

perform very poorly on this data. An alternative, geometrically-principled method

is introduced here, based on the Hough transform. The Hough method is compared

to the standard OpenCV board-detection routine, by application to several hundred

time-of-flight images. It is shown that the new method detects significantly more

calibration boards, over a greater variety of poses, without any significant loss of

accuracy.

3.1 Introduction

Time-of-flight cameras can, in principle, be modelled and calibrated as pinhole de-

vices. For example, if a known chequerboard pattern is detected in a sufficient vari-

ety of poses, then the internal and external camera parameters can be estimated by

standard routines [124, 55]. This chapter will briefly review the underlying calibra-

tion model, before addressing the problem of chequerboard detection in detail. The

latter is the chief obstacle to the use of existing calibration software, owing to the

low resolution of the ToF images.

43
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3.2 Camera Model

If the scene-coordinates of a point are (X ,Y,Z)⊤, then the pinhole-projection can be

expressed as (xp,yp,1)⊤ ≃ R(X ,Y,Z)⊤+ T where the rotation matrix R and trans-

lation T account for the pose of the camera. The observed pixel-coordinates of the

point are then modelled as





x

y

1



=





f sx f sθ x0

0 f sy y0

0 0 1









xd

yd

1



 (3.1)

where (xd ,yd)
⊤ results from lens-distortion of (xp,yp)

⊤. The parameter f is the

focal-length, (sx,sy) are the pixel-scales, and sθ is the skew-factor [55], which is

assumed to be zero here. The lens distortion may be modelled by a radial part d1

and tangential part d2, so that

(

xd

yd

)

= d1(r)

(

xp

yp

)

+d2

(

xp,yp

)

where r =
√

x2
p + y2

p (3.2)

is the radial coordinate. The actual distortion functions are polynomials of the form

d1(r) = 1+a1r2 +a2r4 and d2(x,y) =

(

2xy r2 +2x2

r2 +2y2 2xy

)(

a3

a4

)

. (3.3)

The coefficients (a1,a2,a3,a4) must be estimated along with the other internal pa-

rameters ( f ,sx,sy) and (x0,y0) in 3.1. The standard estimation procedure is based on

the projection of a known chequerboard pattern, which is viewed in many different

positions and orientations. The external parameters (R,T), as well as the internal

parameters can then be estimated as described by Zhang [124, 9], for example.

3.3 Board Detection

It is possible to find the chequerboard vertices, in ordinary images, by first detecting

image-corners [53], and subsequently imposing global constraints on their arrange-

ment [72, 114, 9]. This approach, however, is not reliable for low resolution images

(e.g. in the range 100–500px2) because the local image-structure is disrupted by

sampling artefacts, as shown in fig. 3.1. Furthermore, these artefacts become worse

as the board is viewed in distant and slanted positions, which are essential for high

quality calibration [23]. This is a serious obstacle for the application of existing cal-

ibration methods to new types of camera. For example, the amplitude signal from a

typical time-of-flight camera [80] resembles an ordinary greyscale image, but is of

very low spatial resolution (e.g. 176×144), as well as being noisy. It is, nonetheless,
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necessary to calibrate these devices, in order to combine them with ordinary colour

cameras, for 3-D modelling and rendering [33, 101, 125, 51, 70, 71, 52].

The method described here is based on the Hough transform [62], and effectively

fits a global model to the lines in the chequerboard pattern. This process is much

less sensitive to the resolution of the data, for two reasons. Firstly, information is

integrated across the source image, because each vertex is obtained from the inter-

section of two fitted lines. Secondly, the structure of a straight edge is inherently

simpler than that of a corner feature. However, for this approach to be viable, it

is assumed that any lens distortion has been pre-calibrated, so that the images of

the pattern contain straight lines. This is not a serious restriction, for two reasons.

Firstly, it is relatively easy to find enough boards (by any heuristic method) to get

adequate estimates of the internal and lens parameters. Indeed, this can be done

from a single image, in principle [47]. The harder problems of reconstruction and

relative orientation can then be addressed after adding the newly detected boards,

ending with a bundle-adjustment that also refines the initial internal parameters.

Secondly, the ToF devices used here have fixed lenses, which are sealed inside the

camera body. This means that the internal parameters from previous calibrations can

be re-used.

Another Hough-method for chequerboard detection has been presented by de la

Escalera and Armingol [24]. Their algorithm involves a polar Hough transform of

all high-gradient points in the image. This results in an array that contains a peak

for each line in the pattern. It is not, however, straightforward to extract these peaks,

because their location depends strongly on the unknown orientation of the image-

lines. Hence all local maxima are detected by morphological operations, and a sec-

ond Hough transform is applied to the resulting data in [24]. The true peaks will

form two collinear sets in the first transform (cf. sec. 3.3.5), and so the final task is

to detect two peaks in the second Hough transform [110].

The method described in this chapter is quite different. It makes use of the gra-

dient orientation as well as magnitude at each point, in order to establish an axis-

aligned coordinate system for each image of the pattern. Separate Hough transforms

are then performed in the x and y directions of the local coordinate system. By

construction, the slope-coordinate of any line is close to zero in the corresponding

Cartesian Hough transform. This means that, on average, the peaks occur along a

fixed axis of each transform, and can be detected by a simple sweep-line procedure.

Furthermore, the known ℓ×m structure of the grid makes it easy to identify the opti-

mal sweep-line in each transform. Finally, the two optimal sweep-lines map directly

back to pencils of ℓ and m lines in the original image, owing to the Cartesian nature

of the transform. The principle of the method is shown in fig. 3.1.

It should be noted that the method presented here was designed specifically for

use with ToF cameras. For this reason, the range, as well as intensity data is used

to help segment the image in sec. 3.3.2. However, this step could easily be replaced

with an appropriate background subtraction procedure [9], in which case the new

method could be applied to ordinary RGB images. Camera calibration is typically

performed under controlled illumination conditions, and so there would be no need

for a dynamic background model.
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3.3.1 Overview

The new method is described in section 3.3; preprocessing and segmentation are

explained in sections 3.3.2 and 3.3.3 respectively, while sec. 3.3.4 describes the

geometric representation of the data. The necessary Hough transforms are defined

in sec. 3.3.5, and analyzed in sec. 3.3.6.

Matrices and vectors will be written in bold, e.g. M, v, and the Euclidean length

of v will be written |v|. Equality up to an overall nonzero-scaling will be written

v≃ u. Image-points and lines will be represented in homogeneous coordinates [55],

with p ≃ (x,y,1)⊤ and l ≃ (α,β ,γ), such that lp = 0 if l passes through p. The

intersection-point of two lines can be obtained from the cross-product (l×m)⊤. An

assignment from variable a to variable b will be written b← a. It will be convenient,

for consistency with the pseudo-code listings, to use the notation (m : n) for the

sequence of integers from m to n inclusive. The ‘null’ symbol ∅ will be used to

denote undefined or unused variables.

The method described here refers to a chequerboard of (ℓ+1)×(m+1) squares,

with ℓ < m. It follows that the internal vertices of the pattern are imaged as the ℓm

intersection-points

vi j = li×m j where li ∈L for i = 1 : ℓ and m j ∈M for j = 1 : m. (3.4)

The sets L and M are pencils, meaning that li all intersect at a point p, while m j

all intersect at a point q. Note that p and q are the vanishing points of the grid-lines,

which may be at infinity in the images.

It is assumed that the imaging device, such as a ToF camera, provides a range

map Di j, containing distances from the optical centre, as well as a luminance-like

amplitude map Ai j. The images D and A are both of size I× J. All images must be

undistorted, as described in the section 3.3.

3.3.2 Preprocessing

The amplitude image A is roughly segmented, by discarding all pixels that corre-

spond to very near or far points. This gives a new image B, which typically contains

the board, plus the person holding it:

Bi j← Ai j if d0 < Di j < d1, Bi j←∅ otherwise. (3.5)

The near-limit d0 is determined by the closest position for which the board remains

fully inside the field-of-view of the camera. The far-limit d1 is typically set to a

value just closer than the far wall of the scene. These parameters need only be set

approximately, provided that the interval d1−d0 covers the possible positions of the

calibration board.
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Fig. 3.1 Left: Example chequers from a ToF amplitude image. Note the variable appearance of the

four junctions at this resolution, e.g. ‘×’ at lower-left vs. ‘+’ at top-right. Middle: A perspective

image of a calibration grid is represented by line-pencils L and M , which intersect at the ℓ×m =
20 internal vertices of this board. Strong image-gradients are detected along the dashed lines.

Right: The Hough transform H of the image-points associated with L . Each high-gradient point

maps to a line, such that there is a pencil in H for each set of edge-points. The line L ⋆, which

passes through the ℓ = 4 Hough-vertices, is the Hough representation of the image-pencil L .

It is useful to perform a morphological erosion operation at this stage, in order to

partially remove the perimeter of the board. In particular, if the physical edge of the

board is not white, then it will give rise to irrelevant image-gradients. The erosion

radius need only be set approximately, assuming that there is a reasonable amount of

white-space around the chessboard pattern. The gradient of the remaining amplitude

image is now computed, using the simple kernel ∆ = (−1/2, 0, 1/2). The horizontal

and vertical components are

ξi j← (∆ ⋆B)i j

= ρ cosθ
and

ηi j← (∆⊤⋆B)i j

= ρ sinθ
(3.6)

where ⋆ indicates convolution. No pre-smoothing of the image is performed, owing

to the low spatial resolution of the data.

3.3.3 Gradient Clustering

The objective of this section is to assign each gradient vector (ξi j,ηi j) to one of

three classes, with labels κi j ∈ {λ , µ , ∅}. If κi j = λ then pixel (i, j) is on one of the

lines in L , and (ξi j,ηi j) is perpendicular to that line. If κi j = µ , then the analogous

relations hold with respect to M . If κi j = ∅ then pixel (i, j) does not lie on any of

the lines.

The gradient distribution, after the initial segmentation, will contain two elon-

gated clusters through the origin, which will be approximately orthogonal. Each

cluster corresponds to a gradient orientation (mod π), while each end of a clus-

ter corresponds to a gradient polarity (black/white vs. white/black). The distribu-
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Fig. 3.2 Left: the cruciform distribution of image gradients, due to black/white and white/black

transitions at each orientation, would be difficult to segment in terms of horizontal and vertical

components (ξ ,η). Right: the same distribution is easily segmented, by eigen-analysis, in the

double-angle representation (3.7). The red and green labels are applied to the corresponding points

in the original distribution, on the left.

tion is best analyzed after a double-angle mapping [49], which will be expressed

as (ξ ,η) 7→ (σ ,τ). This mapping results in a single elongated cluster, each end

of which corresponds to a gradient orientation (mod π), as shown in fig. 3.2.

The double-angle coordinates are obtained by applying the trigonometric identi-

ties cos(2θ) = cos2 θ − sin2 θ and sin(2θ) = 2sinθ cosθ to the gradients (3.6), so

that

σi j←
1

ρi j

(

ξ 2
i j−η2

i j

)

and τi j←
2

ρi j

ξi j ηi j where ρi j =
√

ξ 2
i j +η2

i j (3.7)

for all points at which the magnitude ρi j is above machine precision. Let the first

unit-eigenvector of the (σ ,τ) covariance matrix be
(

cos(2φ), sin(2φ)
)

, which is

written in this way so that the angle φ can be interpreted in the original image. The

cluster-membership is now defined by the projection

πi j =
(

σi j, τi j

)

·
(

cos(2φ), sin(2φ)
)

(3.8)

of the data onto this axis. The gradient-vectors (ξi j,ηi j) that project to either end of

the axis are labelled as follows:

κi j←











λ if πi j ≥ ρmin

µ if πi j ≤−ρmin

∅ otherwise.

(3.9)

Strong gradients that are not aligned with either axis of the board are assigned to ∅,

as are all weak gradients. It should be noted that the respective identity of classes λ
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and µ has not yet been determined; the correspondence {λ ,µ}⇔{L ,M } between

labels and pencils will be resolved in section 3.3.6.

3.3.4 Local Coordinates

A coordinate system will now be constructed for each image of the board. The very

low amplitudes Bi j ≈ 0 of the black squares tend to be characteristic of the board

(i.e. Bi j≫ 0 for both the white squares and for the rest of B). Hence a good estimate

of the centre can be obtained by normalizing the amplitude image to the range [0,1]
and then computing a centroid using weights (1−Bi j). The centroid, together with

the angle φ from (3.8) defines the Euclidean transformation (x,y,1)⊤ = E( j, i,1)⊤

into local coordinates, centred on and aligned with the board.

Let (xκ ,yκ ,1)⊤ be the coordinates of point (i, j), after transformation by E, with

the label κ inherited from κi j, and let L ′ and M ′ correspond to L and M in the

new coordinate system. Now, by construction, any labelled point is hypothesized to

be part of L ′ or M ′, such that that l′(xλ ,yλ ,1)⊤ = 0 or m′(xµ ,yµ ,1)⊤ = 0, where

l′ and m′ are the local coordinates of the relevant lines l and m, respectively. These

lines can be expressed as

l′ ≃ (−1, βλ , αλ ) and m′ ≃ (βµ ,−1, αµ) (3.10)

with inhomogeneous forms xλ = αλ + βλ yλ and yµ = αµ + βµ xµ , such that the

slopes |βκ | ≪ 1 are bounded. In other words, the board is axis-aligned in local

coordinates, and the perspective-induced deviation of any line is less than 45◦.

3.3.5 Hough Transform

The Hough transform, in the form used here, maps points from the image to lines

in the transform. In particular, points along a line are mapped to lines through a

point. This duality between collinearity and concurrency suggests that a pencil of n

image-lines will be mapped to a line of n transform points, as in fig. 3.1.

The transform is implemented as a 2-D histogram H(u,v), with horizontal and

vertical coordinates u ∈ [0,u1] and v ∈ [0,v1]. The point (u0,v0) = 1
2
(u1,v1) is the

centre of the transform array. Two transforms, Hλ and Hµ , will be performed, for

points labelled λ and µ , respectively. The Hough variables are related to the image

coordinates in the following way:

uκ(x,y,v) =







u(x,y,v) if κ = λ

u(y,x,v) if κ = µ
where u(x,y,v) = u0 +x−y(v−v0). (3.11)
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Here u(x,y,v) is the u-coordinate of a line (parameterized by v), which is the Hough-

transform of an image-point (x,y). The Hough intersection point (u⋆
κ ,v⋆

κ) is found

by taking two points (x,y) and (x′,y′), and solving uλ (x,y,v) = uλ (x′,y′,v), with

xλ and x′λ substituted according to (3.10). The same coordinates are obtained by

solving uµ(x,y,v) = uµ(x′,y′,v), and so the result can be expressed as

u⋆
κ = u0 +ακ and v⋆

κ = v0 +βκ (3.12)

with labels κ ∈ {λ ,µ} as usual. A peak at (u⋆
κ ,v⋆

κ) evidently maps to a line of inter-

cept u⋆
κ −u0 and slope v⋆

κ − v0. Note that if the perspective distortion in the images is

small, then βκ ≈ 0, and all intersection points lie along the horizontal midline (u,v0)
of the corresponding transform. The Hough intersection point (u⋆

κ ,v⋆
κ) can be used

to construct an image-line l′ or m′, by combining (3.12) with (3.10), resulting in

l′←
(

−1, v⋆
λ − v0, u⋆

λ −u0

)

and m′←
(

v⋆
µ − v0, −1, u⋆

µ −u0

)

. (3.13)

The transformation of these line-vectors, back to the original image coordinates, is

given by the inverse-transpose of the matrix E, described in sec. 3.3.4.

The two Hough transforms are computed by the procedure in fig. 3.3. Let Hκ

refer to Hλ or Hµ , according to the label κ of the i j-th point (x,y). For each accepted

point, the corresponding line (3.11) intersects the top and bottom of the (u,v) array

at points (s,0) and (t,v1) respectively. The resulting segment, of length w1, is evenly

sampled, and Hκ is incremented at each of the constituent points. The procedure

in fig. 3.3 makes use of the following functions. Firstly, interpα(p,q), with α ∈
[0,1], returns the affine combination (1−α)p + αq. Secondly, the ‘accumulation’

H ⊕ (u,v) is equal to H(u,v)← H(u,v)+ 1 if u and v are integers. In the general

case, however, the four pixels closest to (u,v) are updated by the corresponding

bilinear-interpolation weights (which sum to one).

for (i, j) in (0 : i1)× (0 : j1)

if κi j 6= ∅

(x,y,κ)← (xi j, yi j, κi j)

s← uκ (x, y, 0)

t← uκ (x, y, v1)

w1←
∣

∣(t,v1)− (s,0)
∣

∣

for w in
(

0 : floor(w1)
)

Hκ ← Hκ ⊕ interp
w/w1

(

(s,0), (t,v1)
)

end
endif

end

Fig. 3.3 Hough transform. Each gradient pixel (x,y) labelled κ ∈ {λ ,µ} maps to a line uκ (x,y,v)
in transform Hκ . The operators H⊕p and interpα (p,q) perform accumulation and linear interpo-

lation, respectively. See section 3.3.5 for details.
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3.3.6 Hough Analysis

The local coordinates defined in sec. 3.3.4 ensure that the two Hough transforms Hλ

and Hµ have the same characteristic structure. Hence the subscripts λ and µ will be

suppressed for the moment. Recall that each Hough cluster corresponds to a line in

the image space, and that a collinear set of Hough clusters corresponds to a pencil

of lines in the image space, as in fig 3.1. It follows that all lines in a pencil can be

detected simultaneously, by sweeping the Hough space H with a line that cuts a 1-D

slice through the histogram.

Recall from section 3.3.5 that the Hough peaks are most likely to lie along a

horizontal axis (corresponding to a fronto-parallel pose of the board). Hence a suit-

able parameterization of the sweep-line is to vary one endpoint (0,s) along the left

edge, while varying the other endpoint (u1, t) along the right edge, as in fig. 3.4.

This scheme has the desirable property of sampling more densely around the mid-

line (u,v0). It is also useful to note that the sweep-line parameters s and t can be

used to represent the apex of the corresponding pencil. The local coordinates p′ and

q′ are p′ ≃
(

l′s× l′t
)⊤

and q′ ≃
(

m′s×m′t
)⊤

where l′s and l′t are obtained from (3.10)

by setting (u⋆
λ ,v⋆

λ ) to (0,s) and (u1, t) respectively, and similarly for m′s and m′t .
The procedure shown in fig. 3.4 is used to analyze the Hough transform. The

sweep-line with parameters s and t has the form of a 1-D histogram hst
κ (w). The

integer index w∈ (0 : w1) is equal to the Euclidean distance |(u,v)−(0,s)| along the

sweep-line. The procedure shown in fig. 3.4 makes further use of the interpolation

operator that was defined in section 3.3.5. Each sweep-line hst
κ (w), constructed by

the above process, will contain a number of isolated clusters: count(hst
κ )≥ 1. The

clusters are simply defined as runs of non-zero values in hst
κ (w). The existence of

separating zeros is, in practice, highly reliable when the sweep-line is close to the

true solution. This is simply because the Hough data was thresholded in (3.9), and

strong gradients are not found inside the chessboard squares. The representation of

the clusters, and subsequent evaluation of each sweep-line, will now be described.

The label κ and endpoint parameters s and t will be suppressed, in the following

analysis of a single sweep-line, for clarity. Hence let w∈ (ac : bc) be the interval that

contains the c-th cluster in h(w). The score and location of this cluster are defined

as the mean value and centroid, respectively:

score
c

(h) =
∑

bc
w=ac

h(w)

1+bc−ac

and wc = ac +
∑

bc
w=ac

h(w)w

∑
bc
w=ac

h(w)
(3.14)

More sophisticated definitions are possible, based on quadratic interpolation around

each peak. However, the mean and centroid give similar results in practice. A total

score must now be assigned to the sweep-line, based on the scores of the constituent

clusters. If n peaks are sought, then the total score is the sum of the highest n cluster-

scores. But if there are fewer than n clusters in h(w), then this cannot be a solution,

and the score is zero:
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for (s, t) in (0 : v1)× (0 : v1)

w1 =
∣

∣(u1, t)− (0,s)
∣

∣

for w in
(

0 : floor(w1)
)

(u,v)← interp
w/w1

(

(0,s), (u1, t)
)

hst
λ (w)← Hλ (u,v)

hst
µ (w)← Hµ (u,v)

end

end

Fig. 3.4 A line hst
κ (w), with end-points (0,s) and (u1, t), is swept through each Hough transform

Hκ . A total of v1×v1 1-D histograms hst
κ (w) are computed in this way. See section 3.3.6 for details.

Σ n(h) =







∑
n
i=1 score

c(i)
(h) if n≤ count(h)

0 otherwise
(3.15)

where c(i) is the index of the i-th highest-scoring cluster. The optimal clusters are

those in the sweep-line that maximizes (3.15). Now, restoring the full notation, the

score of the optimal sweep-line in the transform Hκ is

Σ n
κ ←max

s, t
score

n

(

hst
κ

)

. (3.16)

One problem remains: it is not known in advance whether there should be ℓ peaks

in Hλ and m in Hµ , or vice versa. Hence all four combinations, Σ ℓ
λ , Σ m

µ , Σ ℓ
µ , Σ m

λ are

computed. The ambiguity between pencils (L ,M ) and labels (λ ,µ) can then be

resolved, by picking the solution with the highest total score:

(

L ,M
)

⇔
{

(λ ,µ) if Σ ℓ
λ +Σ m

µ > Σ ℓ
µ +Σ m

λ

(µ,λ ) otherwise.
(3.17)

Here, for example,
(

L ,M
)

⇔ (λ ,µ) means that there is a pencil of ℓ lines in Hλ

and a pencil of m lines in Hµ . The procedure in (3.17) is based on the fact that the

complete solution must consist of ℓ+ m clusters. Suppose, for example, that there

are ℓ good clusters in Hλ , and m good clusters in Hµ . Of course there are also ℓ good

clusters in Hµ , because ℓ < m by definition. However, if only ℓ clusters are taken

from Hµ , then an additional m− ℓ weak or non-existent clusters must be found in

Hλ , and so the total score Σ ℓ
µ +Σ m

λ would not be maximal.

It is straightforward, for each centroid wc in the optimal sweep-line hst
κ , to com-

pute the 2-D Hough coordinates
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(

u⋆
κ , v⋆

κ

)

← interp
wc/w1

(

(0,s), (u1, t)
)

(3.18)

where w1 is the length of the sweep-line, as in fig. 3.4. Each of the resulting ℓm

points are mapped to image-lines, according to (3.13). The vertices vi j are then be

computed from (3.4). The order of intersections along each line is preserved by the

Hough transform, and so the i j indexing is automatically consistent.

The final decision-function is based on the observation that cross-ratios of dis-

tances between consecutive vertices should be near unity (because the images are

projectively related to a regular grid). In practice it suffices to consider simple ra-

tios, taken along the first and last edge of each pencil. If all ratios are below a given

threshold, then the estimate is accepted. This threshold was fixed once and for all,

such that no false-positive detections (which are unacceptable for calibration pur-

poses) were made, across all data-sets.

3.3.7 Example Results

The method was tested on five multi-camera data-sets, and compared to the stan-

dard OpenCV detector. Both the OpenCV and Hough detections were refined by

the OpenCV subpixel routine, which adjusts the given point to minimize the dis-

crepancy with the image-gradient around the chequerboard corner [9, 23]. Table 3.1

shows the number of true-positive detections by each method, as well as the num-

ber of detections common to both methods. The geometric error is the discrepancy

from the ‘ideal’ board, after fitting the latter by the optimal (DLT+LM) homogra-

phy [55]. This is by far the most useful measure, as it is directly related to the role

of the detected vertices in subsequent calibration algorithms (and also has a simple

interpretation in pixel-units). The photometric error is the gradient residual, as de-

scribed in sec. 3.3.6. This measure is worth considering, because it is the criterion

minimized by the subpixel optimization, but it is less interesting than the geometric

error.

The Hough method detects 35% more boards than the OpenCV method, on av-

erage. There is also a slight reduction in average geometric error, even though the

additional boards were more problematic to detect. The results should not be sur-

prising, because the new method uses a very strong model of the global board-

geometry (in fairness, it also benefits from the depth-thresholding in 3.3.2). There

were zero false-positive detections (100% precision), as explained in sec. 3.3.6. The

number of true-negatives is not useful here, because it depends largely on the con-

figuration of the cameras (i.e. how many images show the back of the board). The

false-negatives do not provide a very useful measure either, because they depend

on an arbitrary judgement about which of the very foreshortened boards ‘ought’ to

have been detected (i.e. whether an edge-on board is ‘in’ the image or not). Some

example detections are shown in figs. 3.5–3.7, including some difficult cases.
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Number detected Geometric error Photometric error

Set / Camera OCV HT Both OCV HT OCV HT

1 / 1 19 34 13 0.2263 0.1506 0.0610 0.0782

1 / 2 22 34 14 0.1819 0.1448 0.0294 0.0360

1 / 3 46 33 20 0.1016 0.0968 0.0578 0.0695

1 / 4 26 42 20 0.2044 0.1593 0.0583 0.0705

2 / 1 15 27 09 0.0681 0.0800 0.0422 0.0372

2 / 2 26 21 16 0.0939 0.0979 0.0579 0.0523

2 / 3 25 37 20 0.0874 0.0882 0.0271 0.0254

3 / 1 14 26 11 0.1003 0.0983 0.0525 0.0956

3 / 2 10 38 10 0.0832 0.1011 0.0952 0.1057

3 / 3 25 41 21 0.1345 0.1366 0.0569 0.0454

3 / 4 18 23 10 0.1071 0.1053 0.0532 0.0656

4 / 1 16 21 14 0.0841 0.0874 0.0458 0.0526

4 / 2 45 53 29 0.0748 0.0750 0.0729 0.0743

4 / 3 26 42 15 0.0954 0.0988 0.0528 0.0918

5 / 1 25 37 18 0.0903 0.0876 0.0391 0.0567

5 / 2 20 20 08 0.2125 0.1666 0.0472 0.0759

5 / 3 39 36 24 0.0699 0.0771 0.0713 0.0785

5 / 4 34 35 19 0.1057 0.1015 0.0519 0.0528

6 / 1 29 36 20 0.1130 0.1203 0.0421 0.0472

6 / 2 35 60 26 0.0798 0.0803 0.0785 0.1067

Mean: 25.75 34.8 16.85 0.1157 0.1077 0.0547 0.0659

Table 3.1 Results over six multi-ToF camera-setups. Total detections for the OpenCV (515) vs.

Hough Transform (696) method are shown, as well as the accuracy of the estimates. Geometric

error is in pixels. The chief conclusion is that the HT method detects 35% more boards, and slightly

reduces the average geometric error.

Fig. 3.5 Example detections in 176×144 ToF amplitude images. The yellow dot (one-pixel radius)

is the estimated centroid of the board, and the attached thick translucent lines are the estimated

axes. The board on the right, which is relatively distant and slanted, was not detected by OpenCV.

3.4 Conclusions

A new method for the automatic detection of calibration grids in time-of-flight

images has been described. The method is based on careful reasoning about the
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Fig. 3.6 Example detections (cf. fig. 3.5) showing significant perspective effects.

Fig. 3.7 Example detections (cf. fig. 3.5) showing significant scale changes. The board on the

right, which is in an image that shows background clutter and lens distortion, was not detected by

OpenCV.

global geometric structure of the board, before and after perspective projection. The

method detects many more boards than existing heuristic approaches, which results

in a larger and more complete data-set for subsequent calibration algorithms. Future

work will investigate the possibility of making a global refinement of the pencils, in

the geometric parameterization, by minimizing a photometric cost-function.





Chapter 4

Alignment of Time-of-Flight and

Stereoscopic Data

Abstract An approximately Euclidean representation of the visible scene can be

obtained directly from a time-of-flight camera. An uncalibrated binocular system,

in contrast, gives only a projective reconstruction of the scene. This chapter ana-

lyzes the geometric mapping between the two representations, without requiring an

intermediate calibration of the binocular system. The mapping can be found by ei-

ther of two new methods, one of which requires point-correspondences between the

range and colour cameras, and one of which does not. It is shown that these meth-

ods can be used to reproject the range data into the binocular images, which makes

it possible to associate high-resolution colour and texture with each point in the

Euclidean representation. The extension of these methods to multiple time-of-flight

system is demonstrated, and the associated problems are examined. An evaluation

metric, which distinguishes calibration error from combined calibration and depth

error, is developed. This metric is used to evaluate a system that is based on three

time-of-flight cameras.

4.1 Introduction

It was shown in the preceding chapter that time-of-flight cameras can be geometri-

cally calibrated by standard methods. This means that each pixel records an estimate

of the scene-distance (range) along the corresponding ray, according to the princi-

ples described in chapter 1. The 3-D structure of a scene can also be reconstructed

from two or more ordinary images, via the parallax between corresponding im-

age points. There are many advantages to be gained by combining the range and

parallax data. Most obviously, each point in a parallax-based reconstruction can be

mapped back into the original images, from which colour and texture can be ob-

tained. Parallax-based reconstructions are, however, difficult to obtain, owing to the

difficulty of putting the image points into correspondence. Indeed, it may be impos-

sible to find any correspondences in untextured regions. Furthermore, if a Euclidean

reconstruction is required, then the cameras must be calibrated. The accuracy of the

57
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resulting reconstruction will also tend to decrease with the distance of the scene

from the cameras [111].

The range data, on the other hand, are often very noisy (and, for very scattering

surfaces, incomplete), as described in chapter 1. The spatial resolution of current

ToF sensors is relatively low, the depth-range is limited, and the luminance signal

may be unusable for rendering. It should also be recalled that time-of-flight cameras

of the type used here [80] cannot be used in outdoor lighting conditions. These con-

siderations lead to the idea of a mixed colour and time-of-flight system [78]. Such

a system could, in principle, be used to make high-resolution Euclidean reconstruc-

tions, with full photometric information [71]. The task of camera calibration would

be simplified by the ToF camera, while the visual quality of the reconstruction would

be ensured by the colour cameras.

Fig. 4.1 The central panel shows a range image, colour-coded according to depth (the blue region

is beyond the far-limit of the device). The left and right cameras were aligned to the ToF system,

using the methods described here. Each 3-D range-pixel is reprojected into the high-resolution

left and right images (untinted regions were occluded, or otherwise missing, from the range im-

ages). Note the large difference between the binocular views, which would be problematic for

dense stereo-matching algorithms. It can also be seen that the ToF information is noisy, and of low

resolution.

In order to make full use of a mixed range/parallax system, it is necessary to find

the exact geometric relationship between the different devices. In particular, the re-

projection of the ToF data, into the colour images, must be obtained. This chapter

is concerned with the estimation of these geometric relationships. Specifically, the

aim is to align the range and parallax reconstructions, by a suitable 3-D transfor-

mation. The alignment problem has been addressed previously, by fully calibrating

the binocular system, and then aligning the two reconstructions by a rigid transfor-

mation [58, 122, 125, 33]. This approach can be extended in two ways. Firstly, it

is possible to optimize over an explicit parameterization of the camera matrices, as

in the work of Beder et al. [5] and Koch et al. [70]. The relative position and ori-

entation of all cameras can be estimated by this method. Secondly, it is possible to

minimize an intensity cost between the images and the luminance signal of the ToF

camera. This method estimates the photometric, as well as geometric, relationships

between the different cameras [59, 101, 116]. A complete calibration method, which

incorporates all of these considerations, is described by Lindner et al. [78].
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The approaches described above, while capable of producing good results, have

some limitations. Firstly, there may be residual distortions in the range data, that

make a rigid alignment impossible [69]. Secondly, these approaches require the

binocular system to be fully calibrated, and re-calibrated after any movement of the

cameras. This requires, for best results, many views of a known calibration object.

Typical view-synthesis applications, in contrast, require only a weak calibration of

the cameras. One way to remove the calibration requirement is to perform an es-

sentially 2-D registration of the different images [3, 7]. This, however, can only

provide an instantaneous solution, because changes in the scene-structure produce

corresponding changes in the image-to-image mapping.

An alternative approach is proposed here. It is hypothesized that the ToF recon-

struction is approximately Euclidean. This means that an uncalibrated binocular

reconstruction can be mapped directly into the Euclidean frame, by a suitable 3-D

projective transformation. This is a great advantage for many applications, because

automatic uncalibrated reconstruction is relatively easy. Furthermore, although the

projective model is much more general than the rigid model, it preserves many im-

portant relationships between the images and the scene (e.g. epipolar geometry and

incidence of points on planes). Finally, if required, the projective alignment can be

upgraded to a fully calibrated solution, as in the methods described above.

Fig. 4.2 A single ToF+2RGB system, as used in this chapter, with the ToF camera in the centre of

the rail.

It is emphasized that the goal of this work is not to achieve the best possible pho-

togrammetric reconstruction of the scene. Rather, the goal is to develop a practical

way to associate colour and texture information to each range point, as in fig. 4.1.

This output is intended for use in view-synthesis applications.

This chapter is organized as follows. Section 4.2.1 briefly reviews some standard

material on projective reconstruction, while section 4.2.2 describes the representa-

tion of range data in the present work. The chief contributions of the subsequent
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sections are as follows: Section 4.2.3 describes a point-based method that maps an

ordinary projective reconstruction of the scene onto the corresponding range repre-

sentation. This does not require the colour cameras to be calibrated (although it may

be necessary to correct for lens distortion). Any planar object can be used to find the

alignment, provided that image-features can be matched across all views (including

that of the ToF camera). Section 4.2.4 describes a dual plane-based method, which

performs the same projective alignment, but that does not require any point-matches

between the views. Any planar object can be used, provided that it has a simple

polygonal boundary that can be segmented in the colour and range data. This is a

great advantage, owing to the very low resolution of the luminance data provided by

the ToF camera (176×144 here). This makes it difficult to automatically extract and

match point-descriptors from these images, as described in chapter 3. Furthermore,

there are ToF devices that do not provide a luminance signal at all. Section 4.2.5

addresses the problem of multi-system alignment. Finally, section 4.3 describes the

accuracy than can be achieved with a three ToF+2RGB system, including a new error-

metric for ToF data in section 4.3.2. Conclusions and future directions are discussed

in section 4.4.

4.2 Methods

This section describes the theory of projective alignment, using the following nota-

tion. Bold type will be used for vectors and matrices. In particular, points P, Q and

planes U,V in the 3-D scene will be represented by column-vectors of homogeneous

coordinates, e.g.

P =

(

P△

P4

)

and U =

(

U△

U4

)

(4.1)

where P△ = (P1, P2, P3)
⊤ and U△ = (U1, U2, U3)

⊤. The homogeneous coordinates

are defined up to a nonzero scaling; for example, P ≃ (P△/P4,1)⊤. In particular, if

P4 = 1, then P△ contains the ordinary space coordinates of the point P. Furthermore,

if |U△| = 1, then U4 is the signed perpendicular distance of the plane U from the

origin, and U△ is the unit normal. The point P is on the plane U if U⊤P = 0. The

cross product u×v is often expressed as (u)×v, where (u)× is a 3×3 antisymmetric

matrix. The column-vector of N zeros is written 0N .

Projective cameras are represented by 3× 4 matrices. For example, the range

projection is

q≃ CQ where C =
(

A3×3 |b3×1

)

. (4.2)

The left and right colour cameras Cℓ and Cr are similarly defined, e.g. pℓ ≃ CℓP.

Table 4.1 summarizes the geometric objects that will be aligned.

Points and planes in the two systems are related by the unknown 4× 4 space-

homography H, so that

Q≃HP and V ≃H−⊤U. (4.3)
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Observed Reconstructed

Points Points Planes

Binocular Cℓ,Cr pℓ, pr P U

Range C (q,ρ) Q V

Table 4.1 Summary of notations in the left, right and range systems.

This model encompasses all rigid, similarity and affine transformations in 3-D. It

preserves collinearity and flatness, and is linear in homogeneous coordinates. Note

that, in the reprojection process, H can be interpreted as a modification of the camera

matrices, e.g. pℓ ≃
(

CℓH
−1
)

Q, where H−1Q≃ P.

4.2.1 Projective Reconstruction

A projective reconstruction of the scene can be obtained from matched points pℓk

and prk, together with the fundamental matrix F, where p⊤rkFpℓk = 0. The funda-

mental matrix can be estimated automatically, using the well-established RANSAC

method. The camera matrices can then be determined, up to a four-parameter pro-

jective ambiguity [55]. In particular, from F and the epipole er, the cameras can be

defined as

Cℓ ≃
(

I |03) and Cr ≃
(

(er)×F+ erg
⊤ ∣
∣γer

)

. (4.4)

where γ 6= 0 and g = (g1, g2, g3)
⊤ can be used to bring the cameras into a plausi-

ble form. This makes it easier to visualize the projective reconstruction and, more

importantly, can improve the numerical conditioning of subsequent procedures.

4.2.2 Range Fitting

The ToF camera C provides the distance ρ of each scene-point from the camera-

centre, as well as its image-coordinates q = (x,y,1). The back-projection of this

point into the scene is

Q△ = A−1
(

(ρ/α)q−b
)

where α =
∣

∣A−1 q
∣

∣. (4.5)

Hence the point (Q△,1)⊤ is at distance ρ from the optical centre −A−1b, in the

direction A−1q. The scalar α serves to normalize the direction-vector. This is the

standard pinhole model, as used in [4].

The range data are noisy and incomplete, owing to illumination and scattering

effects. This means that, given a sparse set of features in the intensity image (of

the ToF device), it is not advisable to use the back-projected point (4.5) directly. A

better approach is to segment the image of the plane in each ToF camera (using the
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the range and/or intensity data). It is then possible to back-project all of the enclosed

points, and to robustly fit a plane V j to the enclosed points Qi j, so that V⊤j Qi j ≈ 0 if

point i lies on plane j. Now, the back-projection Qπ of each sparse feature point q

can be obtained by intersecting the corresponding ray with the plane V, so that the

new range estimate ρπ is

ρπ =
V⊤

△
A−1b−V4

(1/α)V⊤
△

A−1q
(4.6)

where |V4| is the distance of the plane to the camera centre, and V△ is the unit-normal

of the range plane. The new point Qπ is obtained by substituting ρπ into (4.5).

The choice of plane-fitting method is affected by two issues. Firstly, there may

be very severe outliers in the data, due to the photometric and geometric errors

described in chapter 1. Secondly, the noise-model should be based on the pinhole

model, which means that perturbations occur radially along visual directions, which

are not (in general) perpendicular to the observed plane [56, 112]. Several plane-

fitting methods, both iterative [66] and non-iterative [91] have been proposed for

the pinhole model. The outlier problem, however, is often more significant. Hence,

in practice, a RANSAC-based method is often the most effective.

4.2.3 Point-Based Alignment

It is straightforward to show that the transformation H in (4.3) could be estimated

from five binocular points Pk, together with the corresponding range points Qk. This

would provide 5× 3 equations, which determine the 4× 4 entries of H, subject to

an overall projective scaling. It is better, however, to use the ‘Direct Linear Trans-

formation’ method [55], which fits H to all of the data. This method is based on the

fact that if

P′ = HP (4.7)

is a perfect match for Q, then µQ = λP′, and the scalars λ and µ can be eliminated

between pairs of the four implied equations [20]. This results in
(

4
2

)

= 6 interdepen-

dent constraints per point. It is convenient to write these homogeneous equations

as
(

Q4P′
△
−P′4Q△

Q△×P′
△

)

= 06. (4.8)

Note that if P′ and Q are normalized so that P′4 = 1 and Q4 = 1, then the magnitude

of the top half of (4.8) is simply the distance between the points. Following Förstner

[38], the left-hand side of (4.8) can be expressed as
(

Q
)

∧P′ where

(

Q
)

∧ =

(

Q4I3 −Q△

(

Q△

)

× 03

)

(4.9)



4.2 Methods 63

is a 6×4 matrix, and
(

Q△

)

×P△ = Q△×P△, as usual. The equations (4.8) can now

be written in terms of (4.7) and (4.9) as

(

Q
)

∧HP = 06. (4.10)

This system of equations is linear in the unknown entries of H, the columns of which

can be stacked into the 16×1 vector h. The Kronecker product identity vec(XYZ) =
(Z⊤⊗X)vec(Y) can now be applied, to give

(

P⊤⊗
(

Q
)

∧

)

h = 06 where h = vec
(

H
)

. (4.11)

If M points are observed on each of N planes, then there are k = 1, . . . ,MN ob-

served pairs of points, Pk from the projective reconstruction and Qk from the range

back-projection. The MN corresponding 6×16 matrices
(

P⊤k ⊗ (Qk)∧
)

are stacked

together, to give the complete system







P⊤1 ⊗
(

Q1

)

∧
...

P⊤MN ⊗
(

QMN

)

∧






h = 06MN (4.12)

subject to the constraint |h| = 1, which excludes the trivial solution h = 016. It is

straightforward to obtain an estimate of h from the SVD of the the 6MN× 16 ma-

trix on the left of (4.12). This solution, which minimizes an algebraic error [55], is

the singular vector corresponding to the smallest singular value of the matrix. In the

minimal case, M = 1,N = 5, the matrix would be 30×16. Note that the point coor-

dinates should be transformed, to ensure that (4.12) is numerically well-conditioned

[55]. In this case the transformation ensures that ∑k Pk△ = 03 and 1
MN ∑k |Pk△|=

√
3,

where Pk4 = 1. The analogous transformation is applied to the range points Qk.

The DLT method, in practice, gives a good approximation HDLT of the homog-

raphy (4.3). This can be used as a starting-point for the iterative minimization of a

more appropriate error measure. In particular, consider the reprojection error in the

left image,

Eℓ(Cℓ) =
MN

∑
k=1

D
(

CℓQk, pℓk

)2
(4.13)

where D(p,q) = |p△/p3− q△/q3|. A 12-parameter optimization of (4.13), starting

with Cℓ← CℓH
−1
DLT, can be performed by the Levenberg-Marquardt algorithm [94].

The result will be the camera matrix C⋆
ℓ that best reprojects the range data into the

left image (C⋆
r is similarly obtained). The solution, provided that the calibration

points adequately covered the scene volume, will remain valid for subsequent depth

and range data.

Alternatively, it is possible to minimize the joint reprojection error, defined as the

sum of left and right contributions,

E
(

H−1
)

= Eℓ

(

CℓH
−1
)

+Er

(

CrH
−1
)

(4.14)
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over the (inverse) homography H−1. The 16 parameters are again minimized by the

Levenberg-Marquardt algorithm, starting from the DLT solution H−1
DLT.

The difference between the separate (4.13) and joint (4.14) minimizations is that

the latter preserves the original epipolar geometry, whereas the former does not.

Recall that Cℓ Cr, H and F are all defined up to scale, and that F satisfies an addi-

tional rank-two constraint [55]. Hence the underlying parameters can be counted as

(12−1)+(12−1) = 22 in the separate minimizations, and as (16−1) = 15 in the

joint minimization. The fixed epipolar geometry accounts for the (9− 2) missing

parameters in the joint minimization. If F is known to be very accurate (or must be

preserved) then the joint minimization (4.14) should be performed. This will also

preserve the original binocular triangulation, provided that a projective-invariant

method was used [54]. However, if minimal reprojection error is the objective, then

the cameras should be treated separately. This will lead to a new fundamental ma-

trix F⋆ = (e⋆
r )×C⋆

r (C
⋆
ℓ )

+, where (C⋆
ℓ )

+ is the generalized inverse. The right epipole

is obtained from e⋆
r = C⋆

r d⋆
ℓ , where d⋆

ℓ represents the nullspace C⋆
ℓd⋆

ℓ = 03.

4.2.4 Plane-Based Alignment

The DLT algorithm of section 4.2.3 can also be used to recover H from matched

planes, rather than matched points. Equation (4.10) becomes

(

V)∧H−⊤U = 06 (4.15)

where U and V represent the estimated coordinates of the same plane in the parallax

and range reconstructions, respectively. The estimation procedure is identical to that

in section 4.2.3, but with vec(H−⊤) as the vector of unknowns.

This method, in practice, produces very poor results. The chief reason that

obliquely-viewed planes are foreshortened, and therefore hard to detect/estimate,

in the low-resolution ToF images. It follows that the calibration data-set is biased

towards fronto-parallel planes.1 This bias allows the registration to slip sideways,

perpendicular to the primary direction of the ToF camera. The situation is greatly

improved by assuming that the boundaries of the planes can be detected. For exam-

ple, if the calibration object is rectangular, then the range-projection of the plane V

is bounded by four edges vi, where i = 1, . . .4. Note that these are detected as depth

edges, and so no luminance data are required. The edges, represented as lines vi,

back-project as the faces of a pyramid,

Vi = C⊤vi =

(

Vi△

0

)

, i = 1, . . .L (4.16)

1 The point-based algorithm is unaffected by this bias, because the scene is ultimately ‘filled’ with

points, regardless of the contributing planes.
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where L = 4 in the case of a quadrilateral projection. These planes are linearly de-

pendent, because they pass through the centre of projection; hence the fourth coordi-

nates are all zero if, as here, the ToF camera is at the origin. Next, if the correspond-

ing edges uℓi and uri can be detected in the binocular system, using both colour and

parallax information, then the planes Ui can easily be constructed. Each calibration

plane now contributes an additional 6L equations

(

Vi)∧H−⊤Ui = 06 (4.17)

to the DLT system (4.12). Although these equations are quite redundant (any two

planes span all possibilities), they lead to a much better DLT estimate. This is be-

cause they represent exactly those planes that are most likely to be missed in the

calibration data, owing to the difficulty of feature-detection over surfaces that are

extremely foreshortened in the image.

As in the point-based method, the plane coordinates should be suitably trans-

formed, in order to make the numerical system (4.12) well-conditioned. The trans-

formed coordinates satisfy the location constraint ∑k Uk△ = 03, as well as the scale

constraint ∑k |Uk△|2 = 3∑k U2
k4, where Uk△ = (Uk1,Uk2,Uk3)

⊤, as usual. A final

renormalization |Uk| = 1 is also performed. This procedure, which is also applied

to the Vk, is analogous to the treatment of line-coordinates in DLT methods [120].

The remaining problem is that the original reprojection error (4.13) cannot be

used to optimize the solution, because no luminance features q have been detected

in the range images (and so no 3-D points Q have been distinguished). This can be

solved by reprojecting the physical edges of the calibration planes, after reconstruct-

ing them as follows. Each edge-plane Vi intersects the range plane V in a space-line,

represented by the 4×4 Plücker matrix

Wi = VV⊤i −ViV
⊤. (4.18)

The line Wi reprojects to a 3×3 antisymmetric matrix [55]; for example

Wℓi ≃ CℓWiC
⊤
ℓ (4.19)

in the left image, and similarly in the right. Note that Wℓipℓ = 0 if the point pℓ is on

the reprojected line [55]. The line-reprojection error can therefore be written as

E×ℓ (Cℓ) =
L

∑
i=1

N

∑
j=1

D×
(

CℓWiC
⊤
ℓ , uℓi j

)2
. (4.20)

The function D×
(

M,n
)

compares image-lines, by computing the sine of the angle

between the two coordinate-vectors,

D×(M,n) =

√
2
∣

∣Mn
∣

∣

|M| |n| =
|m×n|
|m| |n| , (4.21)
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where M = (m)×, and |M| is the Frobenius norm. It is emphasized that the coor-

dinates must be normalized by a suitable transformations Gℓ and Gr, as in the case

of the DLT. For example, the line n should be fitted to points of the form Gp, and

then M should be transformed as G−⊤M, before computing (4.21). The reprojection

error (4.20) is numerically unreliable without this normalization.

The line-reprojection (4.21) can either be minimized separately for each camera,

or jointly as

E×
(

H−1
)

= E×ℓ
(

CℓH
−1
)

+E×r
(

CrH
−1
)

(4.22)

by analogy with (4.14). Finally, it should be noted that although (4.21) is defined

in the image, it is an algebraic error. However, because the errors in question are

small, this measure behaves predictably.

4.2.5 Multi-System Alignment

The point-based and plane-based procedures, described in section 4.2.3 and 4.2.4

respectively, can be used to calibrate a single ToF+2RGB system. Related methods

can be used for the joint calibration of several such systems, as will now be ex-

plained, using the point-based representation. In this section the notation Pi will be

used for the binocular coordinates (with respect to the left camera) of a point in the

i-th system, and likewise Qi for the ToF coordinates of a point in the same system.

Hence the i-th ToF, left and right RGB cameras have the form

Ci ≃
(

Ai |03), Cℓi ≃
(

Aℓi |03) and Cri ≃
(

Ari |bri) (4.23)

where Ai and Aℓi contain only intrinsic parameters, whereas Ari also encodes the

relative orientation of Cri with respect to Cℓi. Each system has a transformation

H−1
i that maps ToF points Qi into the corresponding RGB coordinate system of Cℓi.

Furthermore, let the 4×4 matrix Gi j be the transformation from system j, mapping

back to system i. This matrix, in the calibrated case, would be a rigid 3-D transfor-

mation. However, by analogy with the ToF-to-RGB matrices, each Gi j is generalized

here to a projective transformation, thereby allowing for spatial distortions in the

data. The left and right cameras that project a scene-point Pj in coordinate system j

to image-points pℓi and pri in system i are

Cℓi j = Cℓi Gi j and Cri j = Cri Gi j. (4.24)

Note that if a single global coordinate system is chosen to coincide with the k-th

RGB system, then a point Pk projects via Cℓik and Crik. These two cameras are re-

spectively equal to Cℓi and Cri in (4.23) only when i = k, such that Gi j = I in (4.24).

A typical three-system configuration is shown in fig. 4.3.

The transformation Gi j can only be estimated directly if there is a region of com-

mon visibility between systems i and j. If this is not the case (as when the systems

face each other, such that the front of the calibration board is not simultaneously
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Fig. 4.3 Example of a three ToF+2RGB setup, with ToF cameras labelled 1,2,3. Each ellipse rep-

resents a separate system, with system 2 chosen as the reference. The arrows (with camera-labels)

show some possible ToF-to-RGB projections. For example, a point P2 ≃ H−1
2 Q2 in the centre

projects directly to RGB view ℓ2 via Cℓ2, whereas the same point projects to ℓ3 via Cℓ32 = Cℓ3G32.

visible), then Gi j can be computed indirectly. For example, G02 = G01 G12 where

P2 = G−1
12 G−1

01 P0. Note that the stereo-reconstructed points P are used to estimate

these transformations, as they are more reliable than the ToF points Q.

4.3 Evaluation

The following sections will describe the accuracy of a nine-camera setup, cali-

brated by the methods described above. Section 4.3.1 will evaluate calibration error,

whereas section 4.3.2 will evaluate total error. The former is essentially a fixed func-

tion of the estimated camera matrices, for a given scene. The latter also includes the

range-noise from the ToF cameras, which varies from moment to moment. The im-

portance of this distinction will be discussed.

The setup consists of three rail-mounted ToF+2RGB systems, i = 1 . . .3, as in

fig. 4.3. The stereo baselines are 17cm on average, and the ToF cameras are sepa-

rated by 107cm on average. The RGB images are 1624× 1224, whereas the Mesa

Imaging SR4000 ToF images are 176×144, with a depth range of 500cm. The three

stereo systems are first calibrated by standard methods, returning a full Euclidean

decomposition of Cℓi and Cri, as well as the associated lens parameters. It was estab-

lished in [52] that projective alignment is generally superior to similarity alignment,

and so the transformations Gi j and H−1
j will be 4× 4 homographies. These trans-

formations were estimated by the DLT method, and refined by LM-minimization of

the joint geometric error, as in (4.14).
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4.3.1 Calibration Error

The calibration error is measured by first taking ToF points Qπ
j corresponding to

vertices on the reconstructed calibration plane π j in system j, as described in sec-

tion 4.2.2. These can then be projected into a pair of RGB images in system i, so that

the error Ecal
i j = 1

2

(

Ecal
ℓi j +Ecal

ri j

)

can be computed, where

Ecal
ℓi j =

1

|π|∑
Qπ

j

D
(

Cℓi j H−1
j Qπ

j , pℓi

)

(4.25)

and Ecal
ri j is similarly defined. The function D(·, ·) computes the image-distance be-

tween inhomogenized points, as in (4.13), and the denominator corresponds to the

number of vertices on the board, with |π|= 35 in the present experiments. The mea-

sure (4.25) can of course be averaged over all images in which the board is visible.

The calibration procedure has an accuracy of around one pixel, as shown in fig. 4.4.

0.0 0.5 1.0 1.5 2.0

1 → ℓ1, r1

pixel error

0.0 0.5 1.0 1.5 2.0

2 → ℓ2, r2

pixel error

0.0 0.5 1.0 1.5 2.0

3 → ℓ3, r3

pixel error

Fig. 4.4 Calibration error (4.25), measured by projecting the fitted ToF points Qπ to the left and

right RGB images (1624×1224) in three separate systems. Each histogram combines left-camera

and right-camera measurements from 15 views of the calibration board. Subpixel accuracy is ob-

tained.

4.3.2 Total Error

The calibration error, as reported in the preceding section, is the natural way to eval-

uate the estimated cameras and homographies. It is not, however, truly representa-

tive of the ‘live’ performance of the complete setup. This is because the calibration

error uses each estimated plane π j to replace all vertices Q j with the fitted versions
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Qπ
j . In general, however, no surface model is available, and so the raw points Q j

must be used as input for meshing and rendering processes.

The total error, which combines the calibration and range errors, can be measured

as follows. The i-th RGB views of plane π j must be related to the ToF image-points

q j by the 2-D transfer homographies Tℓi j and Tri j, where

pℓi ≃ Tℓi j q j and pri ≃ Tri j q j. (4.26)

These 3× 3 matrices can be estimated accurately, because the range-data itself is

not required. Furthermore, let Π j be the hull (i.e. bounding-polygon) of plane π j

as it appears in the ToF image. Any pixel q j in the hull (including the original cal-

ibration vertices) can now be re-projected to the i-th RGB views via the 3-D point

Q j, or transferred directly by Tℓi j and Tri j in (4.26). The total error is the average

difference between the reprojections and the transfers, E tot
i j = 1

2

(

E tot
ℓi j +E tot

ri j

)

, where

E tot
ℓi j =

1

|Π j| ∑
q j∈Π j

D
(

Cℓi j H−1
j Q j, Tℓi j q j

)

(4.27)

and E tot
ri j is similarly defined. The view-dependent denominator |Π j| ≫ |π| is the

number of pixels in the hull Π j. Hence E tot
i j is the total error, including range-noise,

of ToF plane π j as it appears in the i-th RGB cameras.

If the RGB cameras are not too far from the ToF camera, then the range errors

tend to be cancelled in the reprojection. This is evident in fig. 4.5, although it is

clear that the tail of each distribution is increased by the range error. However, if the

RGB cameras belong to another system, with a substantially different location, then

the range errors can be very large in the reprojection. This is clear from fig. 4.6,

which shows that a substantial proportion of the ToF points reproject to the other

systems with a total error in excess of ten pixels.

0.0 1.0 2.0 3.0

1 → ℓ1, r1

pixel error

0.0 1.0 2.0 3.0

2 → ℓ2, r2

pixel error

0.0 1.0 2.0 3.0

3 → ℓ3, r3

pixel error

Fig. 4.5 Total error (4.27), measured by projecting the raw ToF points Q to the left and right RGB

images (1624×1224) in three separate systems. These distributions have longer and heavier tails

than those of the corresponding calibration errors, shown in fig. 4.4.
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0 5 10 15 20

2 → ℓ1, r1

pixel error

0 5 10 15 20

2 → ℓ3, r3

pixel error

Fig. 4.6 Total error when reprojecting raw ToF points from system 2 to RGB cameras in systems

1 and 3 (left and right, respectively). The range errors are emphasized by the difference in view-

points between the two systems. Average error is now around five pixels in the 1624×1224 images,

and the noisiest ToF points reproject with tens of pixels of error.

It is possible to understand these results more fully by examining the distribution

of the total error across individual boards. Figure 4.7 shows the distribution for a

board reprojected to the same system (i.e. part of the data from fig. 4.5). There is a

relatively smooth gradient of error across the board, which is attributable to errors

in the fitting of plane π j, and in the estimation of the camera parameters. The pixels

can be divided into sets from the black and white squares, using the known board

geometry and detected vertices. It can be seen in fig. 4.7 (right) that the total error for

each set is comparable. However, when reprojecting to a different system, fig. 4.8

shows that the total error is correlated with the black and white squares on the board.

This is due to significant absorption of the infrared signal by the black squares.
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Fig. 4.7 Left: 3-D ToF pixels (|Π |= 3216), on a calibration board, reprojected to an RGB image in

the same ToF+2RGB system. Each pixel is colour-coded by the total error (4.27). Black crosses are

the detected vertices in the RGB image. Right: histograms of total error, split into pixels on black

or white squares.
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Fig. 4.8 Left: 3-D ToF pixels, as in fig. 4.7, reprojected to an RGB image in a different ToF+2RGB

system. Right: histograms of total error, split into pixels on black or white squares. The depth of the

black squares is much less reliable, which leads to inaccurate reprojection into the target system.

4.4 Conclusions

It has been shown that there is a projective relationship between the data provided by

a ToF camera, and an uncalibrated binocular reconstruction. Two practical methods

for computing the projective transformation have been introduced; one that requires

luminance point-correspondences between the ToF and colour cameras, and one

that does not. Either of these methods can be used to associate binocular colour and

texture with each 3-D point in the range reconstruction. It has been shown that the

point-based method can easily be extended to multiple-ToF systems, with calibrated

or uncalibrated RGB cameras.

The problem of ToF-noise, especially when reprojecting 3-D points to a very

different viewpoint, has been emphasized. This source of error can be reduced by

application of the de-noising methods described in chapter 1. Alternatively, having

aligned the ToF and RGB systems, it is possible to refine the 3-D representation by

image-matching, as explained in chapter 5.





Chapter 5

A Mixed Time-of-Flight and Stereoscopic

Camera System

Abstract Several methods that combine range and color data have been investigated

and successfully used in various applications. Most of these systems suffer from the

problems of noise in the range data and resolution mismatch between the range sen-

sor and the color cameras. High-resolution depth maps can be obtained using stereo

matching, but this often fails to construct accurate depth maps of weakly/repetitively

textured scenes. Range sensors provide coarse depth information regardless of pres-

ence/absence of texture. We propose a novel ToF-stereo fusion method based on an

efficient seed-growing algorithm which uses the ToF data projected onto the stereo

image pair as an initial set of correspondences. These initial “seeds” are then prop-

agated to nearby pixels using a matching score that combines an image similarity

criterion with rough depth priors computed from the low-resolution range data. The

overall result is a dense and accurate depth map at the resolution of the color cameras

at hand. We show that the proposed algorithm outperforms 2D image-based stereo

algorithms and that the results are of higher resolution than off-the-shelf RGB-D

sensors, e.g., Kinect.

5.1 Introduction

Advanced computer vision applications require both depth and color information.

Hence, a system composed of ToF and color cameras should be able to provide

accurate color and depth information for each pixel and at high resolution. Such

a mixed system can be very useful for a large variety of vision problems, e.g., for

building dense 3D maps of indoor environments.

The 3D structure of a scene can be reconstructed from two or more 2D views

via a parallax between corresponding image points. However, it is difficult to ob-

tain accurate pixel-to-pixel matches for scenes of objects without textured surfaces,

with repetitive patterns, or in the presence of occlusions. The main drawback is that

stereo matching algorithms frequently fail to reconstruct indoor scenes composed

73
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of untextured surfaces, e.g., walls, repetitive patterns and surface discontinuities,

which are typical in man-made environments.

Alternatively, active-light range sensors, such as time-of-flight (ToF) or structured-

light cameras (see chapter 1), can be used to directly measure the 3D structure of

a scene at video frame-rates. However, the spatial resolution of currently available

range sensors is lower than high-definition (HD) color cameras, the luminance sensi-

tivity is poorer and the depth range is limited. The range-sensor data are often noisy

and incomplete over extremely scattering parts of the scene, e.g., non-Lambertian

surfaces. Therefore it is not judicious to rely solely on range-sensor estimates for

obtaining 3D maps of complete scenes. Nevertheless, range cameras provide good

initial estimates independently of whether the scene is textured or not, which is not

the case with stereo matching algorithms. These considerations show that it is useful

to combine the active-range and the passive-parallax approaches, in a mixed system.

Such a system can overcome the limitations of both the active- and passive-range

(stereo) approaches, when considered separately, and provides accurate and fast 3D

reconstruction of a scene at high resolution, e.g., 1200×1600 pixels, as in fig. 5.1.

5.1.1 Related Work

The combination of a depth sensor with a color camera has been exploited in sev-

eral applications such as object recognition [48, 108, 2], person awareness, gesture

recognition [31], simultaneous localization and mapping (SLAM) [10, 64], robo-

tized plant-growth measurement [1], etc. These methods mainly deal with the prob-

lem of noise in depth measurement, as examined in chapter 1, as well as with the

low resolution of range data as compared to the color data. Also, most of these meth-

ods are limited to RGB-D, i.e., a single color image combined with a range sensor.

Interestingly enough, the recently commercialized Kinect [39] camera falls in the

RGB-D family of sensors. We believe that extending the RGB-D sensor model to

RGB-D-RGB sensors is extremely promising and advantageous because, unlike the

former type of sensor, the latter type can combine active depth measurement with

stereoscopic matching and hence better deal with the problems mentioned above.

Stereo matching has been one of the most studied paradigms in computer vi-

sion. There are several papers, e.g., [99, 103] that overview existing techniques and

that highlight recent progress in stereo matching and stereo reconstruction. While

a detailed description of existing techniques is beyond the scope of this section,

we note that algorithms based on greedy local search techniques are typically fast

but frequently fail to reconstruct the poorly textured regions or ambiguous surfaces.

Alternatively, global methods formulate the matching task as an optimization prob-

lem which leads the minimization of a Markov random field (MRF) energy function

of the image similarity likelihood and a prior on the surface smoothness. These

algorithms solve some of the aforementioned problems of local methods but are

very complex and computationally expensive since optimizing an MRF-based en-

ergy function is an NP-hard problem in the general case.
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(a) A ToF-stereo setup

(b) A high-resolution color image pair with the low-resolution ToF image shown in the upper-

left corner of the left image at the true scale.

(c) The proposed method delivers a high-

resolution depth map.

Fig. 5.1 (a) Two high-resolution color cameras (2.0MP at 30FPS) are combined with a single

low-resolution time-of-flight camera (0.03MP at 30FPS). (b) The 144×177 ToF image (upper left

corner) and two 1224×1624 color images are shown at the true scale. (c) The depth map obtained

with our method. The technology used by both these camera types allows simultaneous range and

photometric data acquisition with an extremely accurate temporal synchronization, which may not

be the case with other types of range cameras such as the current version of Kinect.
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A practical tradeoff between the local and the global methods in stereo is the

seed-growing class of algorithms [12, 13, 14]. The correspondences are grown from

a small set of initial correspondence seeds. Interestingly, they are not particularly

sensitive to bad input seeds. They are significantly faster than the global approaches,

but they have difficulties in presence of non textured surfaces; Moreover, in these

cases they yield depth maps which are relatively sparse. Denser maps can be ob-

tained by relaxing the matching threshold but this leads to erroneous growth, so

there is a natural tradeoff between the accuracy and density of the solution. Some

form of regularization is necessary in order to take full advantage of these methods.

Recently, external prior-based generative probabilistic models for stereo match-

ing were proposed [43, 87] for reducing the matching ambiguities. The priors used

were based on surface-triangulation obtained from an initially-matched distinctive

interest points in the two color images. Again, in the absence of textured regions,

such support points are only sparsely available, and are not reliable enough or are

not available at all in some image regions, hence the priors are erroneous. Conse-

quently, such prior-based methods produce artifacts where the priors win over the

data, and the solution is biased towards such incorrect priors. This clearly shows

the need for more accurate prior models. Wang et al. [113] integrate a regularization

term based on the depth values of initially matched ground control points in a global

energy minimization framework. The ground control points are gathered using an

accurate laser scanner. The use of a laser scanner is tedious because it is difficult to

operate and because it cannot provide depth measurements fast enough such that it

can be used in a practical computer vision application.

ToF cameras are based on an active sensor principle1 that allows 3D data acqui-

sition at video frame rates, e.g., 30FPS as well as accurate synchronization with any

number of color cameras2. A modulated infrared light is emitted from the camera’s

internal lighting source, is reflected by objects in the scene and eventually travels

back to the sensor, where the time of flight between sensor and object is measured

independently at each of the sensor’s pixel by calculating the precise phase delay

between the emitted and the detected waves. A complete depth map of the scene

can thus be obtained using this sensor at the cost of very low spatial resolution and

coarse depth accuracy (see chapter 1 for details).

The fusion of ToF data with stereo data has been recently studied. For exam-

ple, [22] obtained a higher quality depth map, by a probabilistic ad-hoc fusion of

ToF and stereo data. Work in [125] merges the depth probability distribution func-

tion obtained from ToF and stereo. However both these methods are meant for im-

provement over the initial data gathered with the ToF camera and the final depth-

map result is still limited to the resolution of the ToF sensor. The method proposed

in this chapter increases the resolution from 0.03MP to the full resolution of the

color cameras being used, e.g., 2MP.

The problem of depth map up-sampling has been also addressed in the recent

past. In [15] a noise-aware filter for adaptive multi-lateral up-sampling of ToF depth

1 All experiments described in this chapter use the Mesa SR4000 camera [80].
2 http://www.4dviews.com
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maps is presented. The work described in [48, 90] extends the model of [25], and

[48] demonstrates that the object detection accuracy can be significantly improved

by combining a state-of-art 2D object detector with 3D depth cues. The approach

deals with the problem of resolution mismatch between range and color data using

an MRF-based super-resolution technique in order to infer the depth at every pixel.

The proposed method is slow: It takes around 10 seconds to produce a 320× 240

depth image. All of these methods are limited to depth-map up-sampling using only

a single color image and do not exploit the added advantage offered by stereo match-

ing, which can highly enhance the depth map both qualitatively and quantitatively.

Recently, [36] proposed a method which combines ToF estimates with stereo in a

semi-global matching framework. However, at pixels where ToF disparity estimates

are available, the image similarity term is ignored. This make the method quite

susceptible to errors in regions where ToF estimates are not precise, especially in

textured regions where stereo itself is reliable.

5.1.2 Chapter Contributions

In this chapter we propose a novel method for incorporating range data within a

robust seed-growing algorithm for stereoscopic matching [12]. A calibrated system

composed of an active range sensor and a stereoscopic color-camera pair, as de-

scribed in chapter 4 and [52], allows the range data to be aligned and then projected

onto each one of the two images, thus providing an initial sparse set of point-to-

point correspondences (seeds) between the two images. This initial seed-set is used

in conjunction with the seed-growing algorithm proposed in [12]. The projected

ToF points are used as the vertices of a mesh-based surface representation which,

in turn, is used as a prior to regularize the image-based matching procedure. The

novel probabilistic fusion model proposed here (between the mesh-based surface

initialized from the sparse ToF data and the seed-growing stereo matching algorithm

itself) combines the merits of the two 3D sensing methods (active and passive) and

overcomes some of the limitations outlined above. Notice that the proposed fusion

model can be incorporated within virtually any stereo algorithm that is based on en-

ergy minimization and which requires some form initialization. It is, however, par-

ticularly efficient and accurate when used in combination with match-propagation

methods.

The remainder of this chapter is structured as follows: Section 5.2 describes

the proposed range-stereo fusion algorithm. The growing algorithm is summarized

in section 5.2.1. The processing of the ToF correspondence seeds is explained in

section 5.2.2, and the sensor fusion based similarity statistic is described in sec-

tion 5.2.3. Experimental results on a real dataset and evaluation of the method, are

presented in section 5.3. Finally, section 5.4 draws some conclusions.
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5.2 The Proposed ToF-Stereo Algorithm

As outlined above, the ToF camera provides a low-resolution depth map of a scene.

This map can be projected onto the left and right images associated with the stereo-

scopic pair, using the projection matrices estimated by the calibration method de-

scribed in chapter 4. Projecting a single 3D point (x,y,z) gathered by the ToF camera

onto the rectified images provides us with a pair of corresponding points (u,v) and

(u′,v′) with v′ = v in the respective images. Each element (u,u′,v) denotes a point in

the disparity space3. Hence, projecting all the points obtained with the ToF camera

gives us a sparse set of 2D point correspondences. This set is termed as the set of

initial support points or ToF seeds.

These initial support points are used in a variant of the seed-growing stereo al-

gorithm [12, 14] which further grows them into a denser and higher resolution dis-

parity map. The seed-growing stereo algorithms propagate the correspondences by

searching in the small neighborhoods of the seed correspondences. Notice that this

growing process limits the disparity space to be visited to only a small fraction,

which makes the algorithm extremely efficient from a computational point of view.

The limited neighborhood also gives a kind of implicit regularization, nevertheless

the solution can be arbitrarily complex, since multiple seeds are provided.

The integration of range data within the seed-growing algorithm requires two

major modifications: (1) The algorithm is using ToF seeds instead of the seeds ob-

tained by matching distinctive image features, such as interest points, between the

two images, and (2) the growing procedure is regularized using a similarity statistic

which takes into account the photometric consistency as well as the depth likelihood

based on disparity estimate by interpolating the rough triangulated ToF surface. This

can be viewed as a prior cast over the disparity space.

5.2.1 The Growing Procedure

The growing algorithm is sketched in pseudo-code as algorithm 1. The input is a pair

of rectified images (IL, IR), a set of refined ToF seeds S (see below), and a parameter

τ which directly controls a trade-off between matching accuracy and matching den-

sity. The output is a disparity map D which relates pixel correspondences between

the input images.

First, the algorithm computes the prior disparity map Dp by interpolating ToF

seeds. Map Dp is of the same size as the input images and the output disparity map,

Step 1. Then, a similarity statistic simil(s|IL, IR,Dp) of the correspondence, which

measures both the photometric consistency of the potential correspondence as well

as its consistency with the prior, is computed for all seeds s = (u,u′,v) ∈S , Step 2.

Recall that the seed s stands for a pixel-to-pixel correspondence (u,v)↔ (u′,v) be-

tween the left and the right images. For each seed, the algorithm searches other cor-

3 The disparity space is a space of all potential correspondences [99].



5.2 The Proposed ToF-Stereo Algorithm 79

Algorithm 1 Growing algorithm for ToF-stereo fusion

Require: Rectified images (IL, IR),

initial correspondence seeds S ,

image similarity threshold τ .

1: Compute the prior disparity map Dp by interpolating seeds S .

2: Compute simil(s|IL, IR,Dp) for every seed s ∈S .

3: Initialize an empty disparity map D of size IL (and Dp).

4: repeat

5: Draw seed s ∈S of the best simil(s|IL, IR,Dp) value.

6: for each of the four best neighbors i∈{1,2,3,4}
q∗i = (u,u′,v) = argmax

q∈Ni(s)

simil(q|IL, IR,Dp)

do

7: c := simil(q∗i |IL, IR,Dp)
8: if c≥ τ and pixels not matched yet then

9: Update the seed queue S := S ∪{q∗i }.
10: Update the output map D(u,v) = u−u′.
11: end if

12: end for

13: until S is empty

14: return disparity map D.

respondences in the surroundings of the seeds by maximizing the similarity statistic.

This is done in a 4-neighborhood {N1,N2,N3.N4} of the pixel correspondence,

such that in each respective direction (left, right, up, down) the algorithm searches

the disparity in a range of ±1 pixel from the disparity of the seed, Step 6. If the

similarity statistic of a candidate exceeds the threshold value τ , then a new corre-

spondence is found, Step 8. This new correspondence becomes itself a new seed,

and the output disparity map D is updated accordingly. The process repeats until

there are no more seeds to be grown.

The algorithm is robust to a fair percentage of wrong initial seeds. Indeed, since

the seeds compete to be matched based on a best-first strategy, the wrong seeds

typically have low score simil(s) associated with them and therefore when they are

evaluated in Step 5, it is likely that the involved pixels been already matched. For

more details on the growing algorithm, we refer the reader to [14, 12].

5.2.2 ToF Seeds and Their Refinement

The original version of the seed-growing stereo algorithm [14] uses an initial set of

seeds S obtained by detecting interest points in both images and matching them.

Here, we propose to use ToF seeds. As already outlined, these seeds are obtained

by projecting the low-resolution depth map associated with the ToF camera onto the

high-resolution images. Likewise the case of interest points, this yields a sparse set

of seeds, e.g., approximately 25,000 seeds in the case of the ToF camera used in

our experiments. Nevertheless, one of the main advantages of the ToF seeds over
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the interest points is that they are regularly distributed across the images regardless

of the presence/absence of texture. This is not the case with interest points whose

distribution strongly depends on texture as well as lighting conditions, etc. Regularly

distributed seeds will provide a better coverage of the observed scene, i.e., even in

the absence of textured areas.

Fig. 5.2 This figure shows an example of the projection of the ToF points onto the left and right

images. The projected points are color coded such that the color represents the disparity: cold

colors correspond to large disparity values. Notice that there are many wrong correspondences on

the computer monitor due to the screen reflectance and to artifacts along the occlusion boundaries.

Fig. 5.3 The effect of occlusions. A ToF point P that belongs to a background (BG) objects is only

observed in the left image (IL), while it is occluded by a foreground object (FG) and hence not

seen in the right image (IR). When the ToF point P is projected onto the left and right images, an

incorrect correspondence (PIL↔ P′IR) is established.

However, ToF seeds are not always reliable. Some of the depth values associated

with the ToF sensor are inaccurate. Moreover, whenever a ToF point is projected

onto the left and onto the right images, it does not always yield a valid stereo match.

There may be several sources of error which make the ToF seeds less reliable than

one would have expected, as in fig. 5.2 and fig. 5.3. In detail:

1. Imprecision due to the calibration process. The transformations allowing to

project the 3D ToF points onto the 2D images are obtained via a complex sen-

sor calibration process, i.e., chapter 4. This introduces localization errors in the

image planes of up to two pixels.

2. Outliers due to the physical/geometric properties of the scene. Range sensors are

based on active light and on the assumption that the light beams travel from the
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(a) Original set of seeds (b) Refined set of seeds

Fig. 5.4 An example of the effect of correcting the set of seeds on the basis that they should be

regularly distributed.

sensor and back to it. There are a number of situations where the beam is lost,

such as specular surfaces, absorbing surfaces (such as fabric), scattering surfaces

(such as hair), slanted surfaces, bright surfaces (computer monitors), faraway

surfaces (limited range), or when the beam travels in an unpredictable way, such

a multiple reflections.

3. The ToF camera and the 2D cameras observe the scene from slightly different

points of view. Therefore, it may occur that a 3D point that is present in the ToF

data is only seen into the left or right image, as in fig. 5.3, or is not seen at all.

Therefore, a fair percentage of the ToF seeds are outliers. Although the seed-

growing stereo matching algorithm is robust to the presence of outliers in the initial

set of seeds, as already explained in section 5.2.1, we implemented a straightfor-

ward refinement step in order to detect and eliminate incorrect seed data, prior to

applying alg. 1. Firstly, the seeds that lie in low-intensity (very dark) regions are dis-

carded since the ToF data are not reliable in these cases. Secondly, in order to handle

the background-to-foreground occlusion effect just outlined, we detect seeds which

are not uniformly distributed across image regions. Indeed, projected 3D points ly-

ing on smooth frontoparallel surfaces form a regular image pattern of seeds, while

projected 3D points that belong to a background surface and which project onto a

foreground image region do not form a regular pattern, e.g., occlusion boundaries

in fig. 5.4(a).

Non regular seed patterns are detected by counting the seed occupancy within

small 5×5 pixel windows around every seed point in both images. If there is more

than one seed point in a window, the seeds are classified as belonging to the back-

ground and hence they are discarded. A refined set of seeds is shown in fig. 5.4(b).

The refinement procedure typically filters 10-15% of all seed points.
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(a) Delaunay Triangulation on original

seeds

(b) Delaunay Triangulation on refined

seeds

(c) Prior obtained on original seeds (d) Prior obtained on refined seeds

Fig. 5.5 Triangulation and prior disparity map Dp. These are shown using both raw seeds (a), (c)

and refined seeds (b), (d). A positive impact of the refinement procedure is clearly visible.

5.2.3 Similarity Statistic Based on Sensor Fusion

The original seed-growing matching algorithm [14] uses Moravec’s normalized

cross correalation [85] (MNCC),

simil(s) = MNCC(wL,wR) =
2cov(wL,wR)

var(wL)+var(wR)+ ε
(5.1)

as the similarity statistic to measure the photometric consistency of a correspon-

dence s : (u,v)↔ (u′,v). We denote by wL and wR the feature vectors which collect

image intensities in small windows of size n× n pixels centered at (u,v) and (u′v)
in the left and right image respectively. The parameter ε prevents instability of the

statistic in cases of low intensity variance. This is set as the machine floating point

epsilon. The statistic has low response in textureless regions and therefore the grow-

ing algorithm does not propagate the correspondences across these regions. Since

the ToF sensor can provide seeds without the presence of any texture, we propose a

novel similarity statistic, simil(s|IL, IR,Dp). This similarity measure uses a different

score for photometric consistency as well as an initial high-resolution disparity map

Dp, both incorporated into the Bayesian model explained in detail below.
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The initial disparity map Dp is computed as follows. A 3D meshed surface is built

from a 2D triangulation applied to the ToF image. The disparity map Dp is obtained

via interpolation from this surface such that it has the same (high) resolution as of

the left and right images. Figure 5.5(a) and 5.5(b) show the meshed surface projected

onto the left high-resolution image and built from the ToF data, before and after the

seed refinement step, which makes the Dp map more precise.

Let us now consider the task of finding an optimal high-resolution disparity map.

For each correspondence (u,v)↔ (u′,v) and associated disparity d = u−u′ we seek

an optimal disparity d∗ such that:

d∗ = argmax
d

P(d|IL, IR,Dp). (5.2)

By applying the Bayes’ rule, neglecting constant terms, assuming that the distribu-

tion P(d) is uniform in a local neighborhood where it is sought (Step. 6), and con-

sidering conditional independence P(Il , Ir,D|d) = P(IL, IR|d)P(Dp|d), we obtain:

d∗ = argmax
d

P(IL, IR|d) P(Dp|d), (5.3)

where the first term is the color-image likelihood and the second term is the range-

sensor likelihood. We define the color-image and range-sensor likelihoods as:

P(IL, IR|d) ∝ EXPSSD(wL,wR)

= exp

(

− ∑
n×n
i=1 (wL(i)−wR(i))2

σ2
s ∑

n×n
i=1 (wL(i)2 +wR(i)2)

)

, (5.4)

and as:

P(Dp|d) ∝ exp

(

− (d−dp)
2

2σ2
p

)

(5.5)

respectively, where σs are σp two normalization parameters. Therefore, the new

similarity statistic becomes:

simil(s|IL, IR,Dp) = EPC(wL,wR,Dp)

= exp

(

− ∑
n×n
i=1 (wL(i)−wR(i))2

σ2
s ∑

n×n
i=1 (wL(i)2 +wR(i)2)

− (d−dp)
2

2σ2
p

)

. (5.6)

Notice that the proposed image likelihood has a high response for correspon-

dences associated with textureless regions. However, in such regions, all possible

matches have similar image likelihoods. The proposed range-sensor likelihood reg-

ularizes the solution and forces it towards the one closest to the prior disparity map

Dp. A tradeoff between these two terms can be obtained by tuning the parameters

σs and σp. We refer to this similarity statistic as the exponential prior correlation

(EPC) score.
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5.3 Experiments

Our experimental setup comprises one Mesa Imaging SR4000 ToF camera [80] and

a pair of high-resolution Point Grey4 color cameras, as shown in fig. 5.1. The two

color cameras are mounted on a rail with a baseline of about 49 cm and the ToF

camera is approximately midway between them. All three optical axes are approxi-

mately parallel. The resolution of the ToF image is of 144×176 pixels and the color

cameras have a resolution of 1224× 1624 pixels. Recall that fig. 5.1(b) highlights

the resolution differences between the ToF and color images. This camera system

was calibrated using the alignment method of chapter 4.

In all our experiments, we set the parameters of the method as follows: Windows

of 5× 5 pixels were used for matching (n = 5), the matching threshold in alg. 1 is

set to τ = 0.5, the balance between the photometric and range sensor likelihoods is

governed by two parameters in (5.6), which were set to σ2
s = 0.1 and to σ2

p = 0.001.

We show both qualitatively and quantitatively (using datasets with ground-truth)

the benefits of the range sensor and an impact of particular variants of the proposed

fusion model integrated in the growing algorithm. Namely, we compare results

of (i) the original stereo algorithm [14] with MNCC correlation and Harris seeds

(MNCC-Harris), (ii) the same algorithm with ToF seeds (MNCC-TOF), (iii) the al-

gorithm which uses EXPSSD similarity statistic instead with both Harris (EXPSSD-

Harris) and ToF seeds (EXPSSD-TOF), and (iv) the full sensor fusion model of the

regularized growth (EPC). Finally small gaps of unassigned disparity in the dispar-

ity maps were filled by a primitive procedure which assigns median disparity in

the 5×5 window around the gap (EPC - gaps filled). These small gaps usually oc-

cur in slanted surfaces, since alg. 1 in Step. 8 enforces one-to-one pixel matching.

Nevertheless this way, they can be filled easily, if needed.

5.3.1 Real-Data Experiments

We captured two real-world datasets using the camera setup described above, SET-1

in fig. 5.6 and SET-2 in 5.7. Notice that in both of these examples the scene surfaces

are weakly textured. Results shown as disparity maps are color-coded, such that

warmer colors are further away from the cameras and unmatched pixels are dark

blue.

In fig. 5.6(d), we can see that the original algorithm [14] has difficulties in weakly

textured regions which results in large unmatched regions due to the MNCC statis-

tic (5.1), and it produces several mismatches over repetitive structures on the back-

ground curtain, due to erroneous (mismatched) Harris seeds. In fig. 5.6(e), we can

see that after replacing the sparse and somehow erratic Harris seeds with uniformly

distributed (mostly correct) ToF seeds, the results have significantly been improved.

There are no more mismatches on the background, but unmatched regions are still

4 http://www.ptgrey.com/
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(a) Left image (b) ToF image (zoomed) (c) Right image

(d) MNCC-Harris (e) MNCC-TOF (f) EXPSSD-Harris

(g) EXPSSD-TOF (h) EPC (proposed) (i) EPC (gaps filled)

Fig. 5.6 SET-1: (a) left image, (b) ToF image and (c) right image. The ToF image has been zoomed

at the resolution of the color images for visualization purposes. Results obtained (d) using the seed

growing stereo algorithm [14] combining Harris seeds and MNCC statistic, (e) using ToF seeds and

MNCC statistic , (f) using Harris seeds and EXPSSD statistic, (g) using ToF seeds with EXPSSD

statistics. Results obtained with the proposed stereo-ToF fusion model using the EPC (exponential

prior correlation) similarity statistic (h), and EPC after filling small gaps (i).

large. In fig. 5.6(f), the EXPSSD statistic (5.4) was used instead of MNCC which

causes similar mismatches as in fig. 5.6(d), but unlike MNCC there are matches in

textureless regions, nevertheless mostly erratic. The reason is that unlike MNCC

statistic the EXPSSD statistic has high response in low textured regions. However,

since all disparity candidates have equal (high) response inside such regions, the

unregularized growth is random, and produces mismatches. The situation does not

improve much using the ToF seeds, as shown in fig. 5.6(g). Significantly better re-

sults are finally shown in fig. 5.6(h) which uses the proposed EPC fusion model EPC

from eqn. (5.6). The EPC statistic, unlike EXPSSD, has the additional regularizing

range sensor likelihood term which guides the growth in ambiguous regions and

attracts the solution towards the initial depth estimates of the ToF camera. Results

are further refined by filling small gaps, as shown in fig. 5.6(i). Similar observations
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(a) Left image (b) ToF image (zoomed) (c) Right image

(d) MNCC-Harris (e) MNCC-TOF (f) EXPSSD-Harris

(g) EXPSSD-TOF (h) EPC (proposed) (i) EPC (gaps filled)

Fig. 5.7 SET-2. Please refer to the caption of fig. 5.6 for explanations.

can be made in fig. 5.7. The proposed model clearly outperforms the other discussed

approaches.

5.3.2 Comparison Between ToF Map and Estimated Disparity Map

For the proper analysis of a stereo matching algorithm it is important to inspect the

reconstructed 3D surfaces. Indeed the visualization of the disparity/depth maps can

sometimes be misleading. Surface reconstruction reveals fine details in the quality

of the results. This is in order to qualitatively show the gain of the high-resolution

depth map produced by the proposed algorithm with respect to the low-resolution

depth map of the ToF sensor.

In order to provide a fair comparison, we show the reconstructed surfaces as-

sociated with the dense disparity maps Dp obtained after 2D triangulation of the

ToF data points, fig. 5.8(a), as well as the reconstructed surfaces associated with the
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(a) Dense surface reconstruction using the disparity map Dp corresponding to a 2D

triangulation of the ToF data points. Zoomed sofa chair (left) and zoomed T-shirt (right)

from SET-2 in fig. 5.7(b).

(b) Surface reconstruction using the proposed algorithm (EPC) shown on the same

zoomed areas as above, i.e., fig. 5.7(i).

Fig. 5.8 The reconstructed surfaces are shown as relighted 3D meshes for (a) the prior disparity

map Dp (2D triangulation on projected and refined ToF seeds), and (b) for the disparity map ob-

tained using the proposed algorithm. Notice the fine surface details which were recovered by the

proposed method.

disparity map obtained with the proposed method, fig. 5.8(b). Clearly, much more

of the surface details are recovered by the proposed method. Notice precise object

boundaries and fine details, like the cushion on the sofa chair and a collar of the

T-shirt, which appear in fig. 5.8(b). This qualitatively corroborates the precision of

the proposed method compared to the ToF data.

5.3.3 Ground-Truth Evaluation

To quantitatively demonstrate the validity of the proposed algorithm, we carried out

an experiment on datasets with associated ground-truth results. Similarly to [22] we

used the Middlebury dataset [99] and simulated the ToF camera by sampling the

ground-truth disparity map.
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The following results are based on the Middlebury-2006 dataset5. On purpose,

we selected three challenging scenes with weakly textured surfaces: Lampshade-1,

Monopoly, Plastic. The input images are of size 1330×1110 pixels. We took every

10th pixel in a regular grid to simulate the ToF camera. This gives us about 14k of

ToF points, which is roughly the same ratio to color images as for the real sensors.

We are aware that simulation ToF sensor this way is naive, since we do not simulate

any noise or artifacts, but we believe that for validating the proposed method this is

satisfactory.

Results are shown in fig. 5.9 and table 5.1. We show the left input image, re-

sults of the same algorithms as in the previous section with the real sensor, and the

ground-truth disparity map. For each disparity, we compute the percentage of cor-

rectly matched pixels in non-occluded regions. This error statistic is computed as

the number of pixels for which the estimated disparity differs from the ground-truth

disparity by less than one pixel, divided by number of all pixels in non-occluded

regions. Notice that unmatched pixels are considered as errors of the same kind as

mismatches. This is in order to allow a strict but fair comparison between algorithms

which deliver solutions of different densities. The quantitative evaluation confirms

the previous observations regarding the real-world setup. The proposed algorithm,

which uses the full sensor fusion model, significantly outperforms all other tested

variants.

For the sake of completeness we also report error statistics for the prior disparity

map Dp which is computed by interpolating ToF seeds, see step 1 of alg. 1. These

are 92.9%, 92.1%, 96.0% for Lampshade-1, Monopoly, Plastic scene respectively.

These results are already quite good, which means the interpolation we use to con-

struct the prior disparity map is appropriate. These scenes are mostly piecewise

planar, which the interpolation captures well. On the other hand, recall that in the

real case, not all the seeds are correct due to various artifacts of the range data.

Nevertheless in all three scenes, the proposed algorithm (EPC with gaps filled) was

able to further improve the precision up to 96.4%, 95.3%, 98.2% for the respective

scenes. This is again consistent with the experiments with the real ToF sensor, where

higher surface details were recovered, see fig. 5.8.

Left image MNCC-Harris MNCC-TOF EXPSSD-Harris EXPSSD-TOF EPC EPC (gaps filled)

Lampshade-1 61.5% 64.3% 44.9% 49.5% 88.8% 96.4%

Monopoly 51.2% 53.4% 29.4% 32.1% 85.2% 95.3%

Plastic 25.2% 28.2% 13.5% 20.6% 88.7% 98.2%

Table 5.1 The error statistics (percentage of correctly matched pixels) associated with the tested

algorithms and for three test image pairs from the Middlebury dataset.

5 http://vision.middlebury.edu/stereo/data/scenes2006/
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Lampshade 1 MNCC-Harris MNCC-TOF EXPSSD-Harris

EXPSSD-TOF EPC EPC (gaps filled) Ground-truth

Monopoly MNCC-Harris MNCC-TOF EXPSSD-Harris

EXPSSD-TOF EPC EPC (gaps filled) Ground-truth

Plastic MNCC-Harris MNCC-TOF EXPSSD-Harris

EXPSSD-TOF EPC EPC (gaps filled) Ground-truth

Fig. 5.9 Middlebury dataset. Left-right and top-bottom: the left images, results obtained with the

same algorithms as in fig. 5.6 and 5.7, and the ground-truth disparity maps. This evaluation shows

that the combination of the proposed seed-growing stereo algorithm with a prior disparity map,

obtained from a sparse and regularly distributed set of 3D points, yields excellent dense matching

results.
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5.3.4 Computational Costs

The original growing algorithm [14] has low computational complexity due to in-

trinsic search space reduction. Assuming the input stereo images are of size n× n

pixels, the algorithm has the complexity of O(n2), while any exhaustive algorithm

has the complexity at least O(n3) as noted in [13]. The factor n3 is the size of

the search space in which the correspondences are sought, i.e. the disparity space.

The growing algorithm does not compute similarity statistics of all possible corre-

spondences, but efficiently traces out components of high similarity score around

the seeds. This low complexity is beneficial especially for high resolution imagery,

which allows precise surface reconstruction.

The proposed algorithm with all presented modifications does not represent any

significant extra cost. Triangulation of ToF seeds and the prior disparity map com-

putation is not very costly, and nor is computation of the new EPC statistic (instead

of MNCC).

For our experiments, we use an “academic”, i.e., a combined Matlab/C imple-

mentation which takes approximately 5 seconds on two million pixel color images.

An efficient implementation of the seed-growing algorithm [14] which runs in real-

time on a standard CPU was recently proposed [26]. This indicates that a real-time

implementation of the proposed algorithm is feasible. Indeed, the modification of

the growing algorithm and integration with the ToF data does not bring any sig-

nificant extra computational costs. The algorithmic complexity remains the same,

since we have only slightly modified the similarity score used inside the growing

procedure. It is true that prior to the growing process, the ToF data must be triangu-

lated. Nevertheless, this can be done extremely efficiently using computer graphics

techniques and associated software libraries.

5.4 Conclusions

We have proposed a novel correspondence growing algorithm, performing fusion

of a range sensor and a pair of passive color cameras, to obtain an accurate and

dense 3D reconstruction of a given scene. The proposed algorithm is robust, and

performs well on both textured and textureless surfaces, as well as on ambiguous

repetitive patterns. The algorithm exploits the strengths of the ToF sensor and those

of stereo matching between color cameras, in order to compensate for their individ-

ual weaknesses. The algorithm has shown promising results on difficult real-world

data, as well as on challenging standard datasets which quantitatively corroborates

its favourable properties. Together with the strong potential for real-time perfor-

mance that has been discussed, the algorithm would be practically very useful in

many computer vision and robotic applications.
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