N
N

N

HAL

open science

Realizability of Choreographies using Process Algebra
Encodings
Gwen Salaiin, Tevfik Bultan, Nima Roohi

» To cite this version:

Gwen Salaiin, Tevfik Bultan, Nima Roohi. Realizability of Choreographies using Process Algebra
Encodings. IEEE Transactions on Services Computing, 2012, 5 (3), pp.290-304. hal-00726448

HAL Id: hal-00726448
https://hal.science/hal-00726448
Submitted on 31 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00726448
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Realizability of Choreographies using Process
Algebra Encodings

Gwen Salaiin, Tevfik Bultan, and Nima Roohi

Abstract— Service-oriented computing has emerged as a new be implemented by a set of peers that communicate via
software development paradigm that enables implementativof message passing. Given a choreography specification, itiwou
Web accessible software systems that are composed of dibuied be desirable if the local implementations, namgéers could
servicgs which intera.ct wiFh each.other via excharjging. meages. be automaticallv generated via ro'ectic; by proiectin
Modeling and analysis of interactions among services is a gcial y 9 o p)) 1&., Dy proj) 9)
problem in this domain. Interactions among a set of services the global choreography specification to each peer by iggori
that participate in a service composition can be describedrém the messages that are not sent or received by that peer.
a global point of view as achoreography Choreographies can However, generation of peers that precisely implement a
be specified using specification languages such as Web Seegc choreography specification is not always possibke, there

Choreography Description Language (WS-CDL) and visualizd .)
using graphical formalisms such as collaboration diagramsin &€ choreographies that are not implementable by a set of

this article, we present an encoding of collaboration diagams distributed peers (if no additional messages are allowHuik
into the LOTOS process algebra for choreography analysis. problem is known asealizability.

This encoding allows us to (i) check the temporal properties Recent results on choreography realizability problem [2],
of choreographies using a LOTOS verification tool set called [5]-[8] advocate techniques to check the realizability of a

the Construction and Analysis of Distributed Processes (CBP) h hv after the ch h ification has b
toolbox, (ii) check the realizability of choreographies fo both choreograpny after the choreograpny specitication has been

synchronous communication and bounded asynchronous com- Written, or define well-formedness rules to be applied while
munication, and (iii) automate the peer generation processRe- writing the choreography specification in order to ensuse it

alizability indicates whether peers can be generated from a given realizability. To the best of our knowledge, no solution has
choreography specification in such a way that the interactios of ooy proposed yet to generate peers realizing any choreogra

the generated peers exactly match the choreography specion. - g .
If a collaboration diagram is unrealizable, our approach exends phy without adding rules or constraints on the choreography

the peer generation process by adding extra communicatiorhat language or on the specifications written with it. In thiscet
guarantees that the peers behave according to the choreogray we focus on analyzing choreography specifications expdesse

specification. as collaboration diagrams. For this class of choreography
Index Terms— Service protocols, choreography, realizability, SpeCiﬁcationS, our new contributions with respect to earli

process algebra, asynchronous communication, verificatig tools. results are the following:

« our solution generates peers for any choreography spec-
ification by extending them with additional messages if
|. INTRODUCTION the choreography is unrealizable;

« our approach is supported by tools for (i) verification of
choreographies, (ii) realizability analysis, and (iii)gpe
generation in a completely automated way;

« we consider both synchronous and asynchronous com-
munication models, and present results on the effect of
the queue size on realizability.

As mentioned above, in this article, we use collabora-
pn diagrams as the choreography specification language.
e propose an encoding of collaboration diagrams into the
EQTOS process algebra (see Figufefdr an overview of our

Specification and analysis of interactions among disteithut
components play an important role in service oriented com-
puting. In order to facilitate integration of independgntl
developed componentsd., peers) that may reside in different
organizations, it is necessary to provide a global contizat
the peers participating in a composite service should @&dher
to. Such a contract is called eéhoreography and specifies .
interactions among a set of services from a global point
view. In addition to development of choreography specificat

languages such as the Web Services Choreography Desarip) ;
Language (WS-CDL), there have been efforts in formalizin proach). We chose LOTOS because it provides the neces-

semantics of choreography specifications based on vari d&gy Ieve] of EXPressiveness to descr.|be aII. the coI!atnmat_
formalisms such as conversation protocols [1], collabonat lagram interaction constraints, and is equipped with & ric

diagrams [2], process algebras [3], and Petri Nets [4]. 'éhe%ml set called the Construction an_d Analysis of Distriloute
formal models enable the use of formal verification antdrolcefssest S{CADP) tooll?ox t[9] Wh('jCh o_:ferst_ stat_ﬁ;of-l_tgz_r-gr
analysis techniques to address problems that arise in chgfe's 'or state space exploration and verrication. ' ne
ography analysis. One important problem in choreograp coding allows us to generate the Labelled TransitioneByst
A . e S) corresponding to the choreography specification dk we

I f tif h h ficat .
analysis 15 figuring out 1T a choreography speciiication Caas an LTS for each service peer. We can take advantage
G. Salaiin is with Grenoble INP, INRIA, France. of this encoding to verify choreography specifications gsin

T. Bultan is with University of California, Santa BarbaraSh.
N. Roohi is with Sharif University of Technology, Iran. INumbers on this figure will be used later on in this article.

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

CADRP. As far as realizability is concerned, we use equiveden [I. COLLABORATION DIAGRAMS
checking techniques to check realizability of collabarati
diagrams for both synchronous communication and boun
asynchronous communication. If the collaboration diagimm A collaboration diagram [2] (called communication diagram
not realizable, we generate peers using an alternativeiedn in UML 2) consists of a set of peers, a set of links between
which adds new messages in order to make them respect#8€rs, and a set of message send events associated with links
initial choreography. The steps of our approach are comlplet A message send event (which we will simply call an event) is
automated by several tools. For some steps of our approdctiple that consists of a set of predecessor events, a @niqu
we could have used Promela, the input language of the SHa®el, a message, and a recurrence type. Lateets @, 2,
model checker [10], as an alternative to LOTOS, since Pramd, -, Al, A2, A3, ..., B1, B2, B3, ...) consist of a prefix
supports both synchronous and asynchronous communicafi®®. €, A B) that organizes events into different threads and
whereas asynchronous communication is expressed in LOT@Sequence numbee.§, 1, 2, 3, ...) that gives the ordering

by explicitly encoding queues. However, SPIN does not préf the events in each thread. All messages in one thread
vide the behavioral equivalence checking functionaligtthe share the same prefix and execute based on the numerical

dé'd Syntax and Semantics

use in our approach. order defined by their sequence number. Events from differen
threads execute concurrently, and can be interleaved in any
change option—> add communications order that respects the dependency relation that is defiped b
(1) ' the sets of predecessor events and sequence numbers. An even
Collaboration q(ekgggggjq ploros |y ((Protocol) can only execute after 1) all the events in its predecesgor se
- have been executed, and 2) the events that are in the same
M \ thread and that have smaller sequence numbers have also been
" — po— N executed. We assume that the event ordering relation defined
properties s by the sequence numbers and the predecessor sets do not
\ / \ e cause any cyclic dependencies. A recurrence type is either
not ok—> modify Moder autvatonce) false “1” (default type) meaning that the associated event happen
@ — exactly once, “?” for a conditional event meaning that the
ltrue event may occur once or it may not occur at all, or “*” for an

iterative event meaning that the event may not occur at all or
it may occur one or more times.
Fig. 1. Overview of our approach Events are written using the following syntax: The list of
predecessor event labels followed by “/”, followed by theryv

A preliminary version of this work has been publishethbel, followed by “:", followed by the message, followed by
in [11], and is extended here in several aspects: In thise recurrence type. For example, Al: i nf o is an event
article (i) we give a formalization of the LOTOS encodingwith the predecessor s¢t}, event labelAl, message nf o
(i) we present a different encoding of the dependencyimlat and the default recurrence typiee(, recurrence type is 1).
among the message send events than the one used in [1T]he semantics of collaboration diagrams is formally defined
which unnecessarily restricted the possible behaviaisw@ in [2] based on the above rules. We summarize the formal
discuss how our new LOTOS encoding preserves the origimabdel below.
semantics of the choreography specifications expressed aBefinition 1 (Collaboration Diagram):Formally, we define
collaboration diagrams, (iv) we show that realizabilitguls a collaboration diagram as a tup{®, F, M) where: P is a
for queue size one can be generalized to unbounded quewses,of peersE is a set of events andll is a set of messages.
(v) we present a minimization technique for the number &for each message € M, send(m) € P denotes the sending
additional messages generated for making peers complipaer andrecv(m) € P denotes the receiving peer. Each event
to a given choreography specification, (vi) we apply ow € F is a tuplee = (B,l,m,r) where B C E is the set of
verification and analysis techniques to a larger set of e¥@snp predecessor events that should execute beforés an event
and (vii) we present an extended discussion comparing dabel, m is a message, andis a recurrence typd.€., one of
approach with the related work. 1, ?, or *). Given an everd, we usee.B, e.l, eem ande.r to

The rest of this article is organized as follows. Section refer to different components of the event tuple.
introduces collaboration diagrams and the problem of theirWe do not represent links in our formal model explicitly
realizability. Section Ill presents our encoding of cobladtion since they can be inferred from the set of events and messages
diagrams into LOTOS. Section IV shows how this encoding i, if there exists an event that sends a messagsom peer
extended to generate corresponding peers. Section V psesepnd(m) to recv(m), then there is a link betweesend(m)
our realizability test for both communication models. Se@nd recv(m).
tion VI proposes a solution to enforce the realizability eps. Given a collaboration diagram, an event sequence of that
Section VIl sketches the tools that support our approacth, arollaboration diagram is a sequence of events that respierts
discusses some experimental results. Section VIl conspapredecessor set and sequence number ordering and re@irrenc
our proposal to related work, and Section 1X ends the artichgpe of each event. Given an event sequence, the sequence
with some concluding remarks. of messages generated by that event sequence is called a

realizable

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

conversationThe conversation set for a collaboration diagramescribed as a Labeled Transition System (LTS). An LTS is
is the set of conversations generated by all the event segsera tuple (M, S, I, F,T) where: M is the set of messages,
of that collaboration diagram. We demonstrate these cdaceis a set of states] € S is the initial state,/" C S are final

on a running example below. states, and” C S x M x S is the transition relation. In the
. _ . _ peer transition systems, we annotate the messages with the
B. Running Example: Train Station Service direction information,i.e., the messagen is written asm!

Figure 2 presents a collaboration diagram for a train gtatién the transition system of the pegrif p = send(m) (send
service that we will use as a running example throughotréinsition), and it is written as? if p = recv(m) (receive
this article. This diagram contains four peefust oner, transition). Peers interact using binary communicatiosame
Trai nStation, Avai | abi li ty, and Booki ng. It in- message names with opposite directions. In this articleyilve
volves three threads: 1) The main thread with prefiand consider both synchronous and asynchronous communication
eventsl and 2; 2) The A thread with prefixA and events models. In the later case, each peer is equipped with a FIFO
Al, A2 and A3; and 3) TheB thread with prefixB and queue which stores the input messages received from the othe
eventsBl, B2 and B3. The collaboration diagram starts bypeers, and from which the current peer can consume messages.
sending of a request message from the fiext oner to the It is worth noting that taking interaction protocols (mes-
peerTrai nSt at i on (eventl). Next, theTrai nSt ati on sages and their application order) into account in the peer
checks ticket availability by exchanging messages with tmeodel, and therefore in choreography specification langsiag
peerAvai | abi | i t y which is a component that is responsiis essential. This allows one to avoid erroneous behaviours
ble for keeping track of the ticket availability (ever&&, A2, such as unexpected results or deadlock when executing a set
and A3). After the availability check, thér ai nSt ati on of services together. Imagine for instance a trip plannstesy
exchanges messages with the pBeoki ng to reserve tick- which is supposed to organize a trip for a client (bookindlig
ets (eventsBl and B2). If the booking is successful thetickets and hotel) given a set of constraints provided by the
Booki ng sends an invoice to th€ust oner (eventB3). client (dates, city, price limit, etc). One ordering regurent
TheTr ai nSt ati on sends the final result to tigust omer for such a system could be that the the system must start

(event2). by first interacting with the flight service, otherwise a Hote
might be booked even if no flight tickets could be found for
l:irequest R . .
:Customer — the provided dates. The role of the choreography speciicati
B2/ result and modeling is to make such ordering requirements explicit
LAL:info — However, as we describe below, specification of such global
Binvoice ?T Trainstation | ————— Avalabiliy | interaction requirements can be difficult and error prone.
A2:infoAvail
“’“:b“kl Agitinerary * D. Realizability of Collaboration Diagrams
:Booking

One of the main problems in choreography specification is
realizability. Two unrealizable collaboration diagranme are-
Fig. 2. Train station service collaboration diagram sented in Figure 3. The first one (left-hand side) is unrabliz

because it is impossible for the pgeto know when the peer

Let us focus on the thread. It contains three events.Asends ity equest message since there is no interaction be-
The first onel/ Al: i nf o, indicates that the messagef o tweenA andC. Hence, the peers cannot respect the execution
should be sent by the pedirai nStation to the peer order of messages as specified in the collaboration diagram.
Avai | abi | i ty only after the execution of the evehtl.e, The second diagram is realizable for synchronous commu-
1 is in the predecessor set of the eveiit, meaning that nication, and unrealizable for asynchronous communinatio
the eventAl is executable only after the event with latdel Indeed, in case of synchronous communication, the (Gzer
(namelyl: r equest) has been executed. Formally, the evenfan synchronize (rendez-vous) with the pAeonly after the
tuple for the eventl/ Al:infoise = ({1},Al,i nfo,1), request message is sent, so the message order is respected.
wheree.B = {1}, el = Al, em = info, ande.r = 1. This is not the case for asynchronous communication since
The third event of thread is A3: i ti nerary+. This event A cannot blockC from sending theupdat e message if
must be executed after the evel (due to the sequential asynchronous communication is used. Her@dyas to send
ordering of the events within a thread), and can be execut®@ updat e message toA without knowing if A has sent
multiple times (due to the recurrence type *). The eventdupthe r equest message or not. Therefore, the correct order
for the eventA3: i tinerary=* is (§,A3,iti nerary,*). between the two messages cannot be satisfied. We also show
A possible event sequence for the diagram shown in Figuréni2Figure 3 (right-hand side) the LTS generated for p&dy
is: 1, Al, A2, B1, B2, 2, B3. The conversation correspondingprojection.

B2:ack

to this event sequence is:equest, i nfo, i nf oAvai |, Although realizability can be easily determined for these

book, ack, resul t, i nvoi ce. simple examples, it is more difficult to determine if the col-
laboration diagram presented in Figure 2 is realizable d¢r no

C. Peer Model We present in the rest of this article an approach to automate

Before illustrating the realizability problem for collatzs the realizability check, and show that the train servicédadol
tion diagrams, let us introduce theeer model A peer is oration diagram is realizable for synchronous commurocati

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

lirequest 1irequest

A — 5 A — 5 operations such as parallel composition, label hidingellab
renaming, minimization, etc. SVL has also meta-operations
szm o ___ \ implementing higher-order strategies for compositionadi-v
Zupdate 1 /©°| fication. In this work we only need basic operators for real-
© ® © T __| izability verification purposes, namely a parallel comgosi
and an interleaving operator:
B = "ID.bcg" LTS
| Bi|[a1,...,as] | B2 parallel composition
Fig. 3. Examples of unrealizable collaboration diagrams | Bil | | B2 interleaving

B. LOTOS Encoding for Collaboration Diagrams

and it is unrealizable for asynchronous communication. Wen this section, we discuss how to encode a collaboration
also show that this collaboration diagram can be convertdthgram as a LOTOS process. The LOTOS process encoding a
to a realizable choreography specification for asynchrenotollaboration diagram is split up in as many parts (refeasd
communication if extra messages are allowed and we sh¢iwead behavior below) as there are threads in the colléibora
how to generate such extra messages. diagram. Each thread behavior encodes all the events in the
corresponding thread in the order in which they must be
I1l. ENCODING COLLABORATION DIAGRAMS IN LOTOS executed (this ordering is achieved using the LOTOS action

The backbone of our approach is an encoding of collapLefix operator). Each message is encoded using sender and
oration diagrams into the LOTOS process algebra [12]. Vvigceiver peer names as prefixes. The conditional recurrence
chose LOTOS because it provides a rich notation that allofg’€ “?” is encoded as a choice between the actual execution
specification of complex concurrent systems. Furtherntbee, Of the send event meaning that the condition is true, and a
LOTOS encoding allows (i) choreography verification by gsintermination é€xi t) meaning that the condition is false and
model checking tools available in the CADP toolbox [9]the event is not executedd, the message is not sent). The
(ii) realizability analysis and (iii) generation of sereipeer iterative recurrence type “*” is translated into LOTOS gin
implementations. The SVL scripting language [13] is als®" intermediate looping process whose behavior is specified
used to automate parts of the approach by calling the differ@S: Tessage; | oop_process[nessage] [] exit.

CADP tools we use. The steps of our approach are completelyFach thread behavior evolves independently, and they syn-

automated using several tools we present in Section VII. chronize together to respect dependency constraints that a
explicitly specified in the predecessor sets at the beginafn

A LOTOS and SVL in a Nutshell some eventse(g, 1/ Al: i nf 0) using new messages prefixed

o by “SYNC_". These messages are inserted in the LOTOS speci-
Here we present a simplified grammar for the LOTORcation in two cases: (i) before executing an event, if thane

notation (see [12] for a detailed presentation of the LOTORyg a predecessor set and, hence, depends on event ex@cution
notation). The behavior of a processin LOTOS is specified i other threads, (i) after executing an event, if that éven
using termination, communication, sequence (action pefix 5pnears in the predecessor set of another event in the diagra
sequential composition), choice, parallel compositioniet | the second case, the synchronization message should not
leaving, hide, and process call (to express a looping beljavi ¢k the thread execution, accordingly it is interleavethw

hide ai,...,an in B hide we generate as many (interleaved) binary synchronizatisns
Plai,...,an) process call g y() y sy

; internal action needed. In [11], we encoded such dependencies using a single
| @ communication on n-ary synchronization and restricted the behavior of the LO
TOS model more than necessary according to the collabaratio
The parallel composition operator denotes that processttagram semantics [2]. The n-ary synchronization encoding
B, and B; evolve in parallel and synchronize on the actionsnforcesn threads to synchronize at the synchronization
ai,...,a,. The interleaving operator corresponds to a concyseint which is not necessary according to the collaboration
rent evolution ofB; and B, without synchronization betweendiagram semantics. Hence, some possible behaviors of the
these two processes. collaboration diagram specification were being ignored in
LOTOS encoding given in [11]. The encoding given in
ﬁ%es article resolves this problem by using multiple binary
synchronizations instead of a single n-ary synchronimatio

B = exit correct termination he rest of the thread behavior. In both cases, if an event
| A; B action prefix L . .
| B.>>Bs sequential composition execution influences the execution of several other events (
| Bi[]B: choice the event is in the predecessor set of several other events),
| Bi|[a1,...,an]| B2 parallel composition ~ or if an event should be executed after several other events
I Byl | | B2 interleaving (i.e. the event has more than one event in its predecessor set),
|

A

An SVL script is a sequence of statements, which descri
verification operations (such as comparison modulo vario
equivalence relations, deadlock and livelock detectiamifiv
cation of temporal logic formulas, etc.) performed on behav Given a collaboration diagraf'D = (P, E, M), we gen-
iors. Basic behaviors are LTSs obtained here from LOTGSate the LOTOS process encoding the collaboration diagram
descriptions. Behaviors can be combined and handled usifi@p, by calling cd2/(C'D), as follows:

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

process cd [alpha(M),SYNC] :exit : = m, ifr=1
cd2l,(Thy, SYNC) cd2lm(m,r) =< (m;exit [] exit) >> if r="
| [SYNC_X1, ..., SYNC_X,] | | oop_process[m] >> if r=x
(Function add_pre_sync and add_post_sync respectively
cd2l¢(Thz, SYNC) generate additional messages used to synchronize thread be
| [SYNC.Y1, ..., SYNC.Y(] | haviors in order to make them respect the dependency nelatio
: defined by the predecessor sets specified in the collaboratio
) diagram:
endproc

add_pre_sync({e1,...,en}, 1) =
(SYNC.Yil;exit ||| ... ||| SYNCY,.l; exit)
whereY; = e;.l and
add_post_sync(l,SYNC) =
(SYNCXy;exit ||| ... ||| SYNCXy;exit)
where{X1,..., Xy} ={I1' | 11’ € SYNC}.
Functionalpha transforms the message names by prefixing Last, functionadd_exit adds a finalexi t to terminate a
each messagk/ with sender and receiver peers, respectivelyfread behavior:

alpha(M) = {send(m)_recv(m)-m | m € M}

where {Thi,...,Thy} = sort_by_thread(E),
SYNC = compute_sync(E), {X1,...,Xm} = gen_sync
(Thy,{Tha,...,Thy},SYNC), and {Yi,....Y,} =
gen_sync(Tha, {Ths,...,Thy},SYNC). We will explain
these functions below.

exit ifn=1
€ otherwise

add_exit(n) = {
Function sort_by_thread traverses the set of evenis of
the collaboration diagram, and builds a set of event listsreh . : . .
. ._.Our encoding preserves the collaboration diagram sensantic
each list keeps the events for only one thread. In these Ilﬁ%

: . rmalized in [2]. We claim that, given a collaboration diag
the events are ordered with respect to their sequence nemb D, CD and its corresponding LOTOS encoding2l(C D)

sort.by-thread(E) = {sort-tuples(Thx) | ¥(B,l,m,r) € E: gre trace equivalente., [CD]; = [cd2l(CD)], where[C D],
X =pre(l) & (B,l,m,r) € Thx} is the set of conversations generated by the collaboration
where the functiorpre retumns the prefix of an event labelgjiagram C'D. Recall that a conversation is the sequence of
identifying the thread for that event,(A, B, etc.). The event nessages that are sent (recorded in the order they are sent)
list Thx contains the events that are part of the thréad qring an execution of the collaboration diagram that retpe
The functionsort_tuples(Thx) sorts the events in the eventhe ordering of events defined by the predecessor sets and the
list Thx by their sequence numbers. sequence numbers. The conversation set for the LOTOS en-

Functioncompute_sync accepts as input a set of evets ¢oding[cd21(CD)], is defined by collecting the conversations
and extracts SYNC."” messages from the predecessor sets ghnerated by all possible executions of the LOTOS encoding.
all events: Each execution ofd2/(C' D) generates a conversation which

compute_sync(E) = {l'"_l | (B,l,m,r) € EAl € B} is defined by recording only the message send transitions

Functioneatract_sync computes theSYNC.” messages for _(in the order they are executed) that correspond to messages

: . b in the message se¥/ of the collaboration diagrant’D =
a given thread and functigfen_sync returns synchronizations " .
: . E, M). lL.e, all transitions except message send transitions
between a thread and other threads by computing the mtersarde inored and all the send transitions. corresponding to
tion of “SYNC_” messages used in its behavior and in the othg 9 P 9

thread behaviors: E;YNC_ messages are also ignored. For these remaining

) transitions, in order to make messages in both models match,
) ext""aCt-Sy”C(ThﬁjvSYNc) = {1 (Bvl;mﬂ") € Thx N we need to remove the peers names appearing as prefixes in
Vle SYNCYU{II'| (B,l,m,r) € Thx NI1" € SYNC} the messages generated by our translation.
gen_sync(Thi,{Tha,...,Th,}, SYNC) Below, we argue that based on the above definitions, the
extract_sync(Th1, SYNC) N (extract_sync(The, SYNC) U conversation sets of D and cd2l(CD) are the samei.e,
... U extract_sync(Thn, SYNC)) [CD]: = [ed2i(CD)]+, and we assume that messages are not
grefixed with peers names. We show this equivalence in three

the ordered list of thread events for a threddas its first parts, by discussing the encoding of a thread, a message send
input: Thyx = [(By,l1,m1,m) (B, L, mn,)], and event, and the dependency relation between events.
. X — 1,01, 1,71)5+ nsy 'ny my'nj/h

recursively translates one event after the other in therorde 1) Given a set of thread$),..., T, in a collaboration
they appear in the input list, that is in the order in whichythed'agram CD, each thread executes its events sequentially

must be executed (the function stops when the list is emptg’i‘}f?c(;?;fding to r:he (sjequencs ngmblers ozthebe_veqrs, and events
cd2l:([(B1, 11, ma,71), ..., (Bn, bny mn,)], SYNC) = of different threads can be interleaved arbitrarily asswnmi

that there are no dependencies among the events of different

add_pre_sync(Bu1,11) >> cd2lm, (send(m1)-recv(my)-m1,71)
: threads (e, if all predecessor sets are empty). In this basic

(add_post_sync(li, SY NC) >> add_exit(n)) .
20, ([(Ba,) (Bu. i 1. SYNC) case,cd2l(CD) generates a set of concurrent processes with-
castellib2, f2, M2, 12), -5 (By bny M, Tn), out any interactions where each thread of the collaboration

Functioned2l,,, translates a message send event into LOTQisagram corresponds to one concurrent proeg@$(CD) =
taking into account the recurrence type: Tyl || ... ||| T, such that[CD]: = [R,(its(Ty] | |

Function cd2l; translates a thread into LOTOS. It take

IEEE TRANSACTIONS ON SERVICES COMPUTING

| | | T.))]: where R, corresponds ta- reductions (see Sec-
tion 111-D for more explanations about transitions and their
suppression) antls is the function compiling the LOTOS into
LTS,

2) Messages send events are encoded differently depending

on their recurrence type:

L«

“m 1" is encoded simply ash
“m ?”" produces the set of tracdsn, c}. This is encoded
in LOTOS asm exit [] exit andthe corresponding
LTS consists of three transitiod$sg, m, s1), (s1,/, S2),
(s0,+/, $2)} Wheres is the initial state,s, is the final
state, and both transitions labeled withindicate proper

terminatior. Consequently, corresponding traces are the
same as in the original collaboration diagram, namely

{m,e}.

“m «" produces the set of tracds, m, mm, mmm,...}.

This is encoded in LOTOS using a looping process

whose behavior isn | oop_process[n] [] exit

|[SYNC_1_Al, SYNC A3 B1]|

((* -- thread B encoding -- =)
SYNC A3 Bl1; ts b book; b _ts_ ack;
SYNC B2 2; exit
oy
(b_c_invoice; exit [] exit) >>
exit
)
)
| [SYNC_B2_2]|
(* -- main thread’s encoding -- *)
c_ts_request;
SYNC 1 Al; exit
|l
SYNC B2 2; ts c_ result; exit

)

and the corresponding LTS consists of two transitions e can distinguish the three threads, respectively fortsven
{(s0,m, 50), (50,+/,51)} where sy is the initial state, Starting by A, B, and_ numbers (the main thread). Thread
ands; is the final state. Traces are therefore the sam@:for instance contains three events (for messageso,

).

3) Threads evolve concurrently and respect explicit ordgri

{e,m, mm,mmm, ..

of messages specified in the predecessor sets. To obtain(

i nf oAvai |, andi ti nerary) which are encoded sequen-
tially based on their sequence numbers and the messages
are prefixed with peers participating in these interactions
peer initials are shown). The last event (for message

same fraces as in the input collgboration diagram we n_egg s_itinerary) has an iterative recurrence type and is
to preserve the same dependencies between messages ifi&tore translated usinglaop_pr ocess. An example of

LOTOS specification. For each everit,. .. 1, /l : m” in the

“?” recurrence type is given at the end of threBdwhere

collaboration diagram, in the LOTOS specification genefate o choice (1) is used to express the execution of message

the send event; with messagen; is followed by a message
SYNC./;_I, and the send evertfor messagen appears only
after theseSYNC_/;_I| messages following the pattern:

.oma; SYNCUZL . | |] .-]|] - .mn; SYNCU.; ...
| [SYNC.U1L,...,SYNCIy I,...]]
. (SYNCUiZ;exit]]] ..-| || SYNCU,I; exit) >> m; ...

i nvoi ce (b_c_.i nvoi ce) or not xi t).

With regards to the synchronization between thread be-
haviors, we can see for instance that thréadynchronizes
with the two other threads using messa@¥\NC_1_Al and
SYNC A3 B1. The messag&YNC 1 Al is used to synchro-
nize the threadA and the main thread in order to make sure
that the event labeled1l with the message s_a_i nfo is

The corresponding LTS consists of first an interleaving @facyted after the execution of the event labeledith the

message send transitioms; and SYNC_/;_[(for each given
i, m; is executed befor&YNC.I;_[). When all these transi-
tions have been executed, and in particular all SY&C /; [

message€ _t s_request . Execution ofSYNC_1_Al acts as a
pre-condition to the execution 6% _a_i nf o guaranteeing the
correct ordering of the events. In threBdthe eventBl can

transitions that act as pre-condition to the execution f tt?)nly occur after the ever3, therefore the execution of the

event! have been executed, then the send transitionnfor

can be executed by the LTS. Thus, the dependencies defigeﬁi]

in the predecessor set 6f({l1,...,l,}) are preserved in the
generated LOTOS specification.

C. Running Example: The Train Station in LOTOS

Let us give the body of the LOTOS process generated
the functioned2! for our running example:

(» -- thread A encoding -- *)
SYNC 1 Al; ts_a_ info; a_ts_infoAvail;
| oop_process [a_ts_itinerary] >>
SYNC_A3_B1; exit
)

2This can be computed by usinGaesar.adt and Caesar compilers
belonging to the CADP toolbox.

SLTSs generated from LOTOS in CADP do not have final statesetbee
such,/ transitions are used to distinguish proper terminatiomfoeadlocks.

eventA3 with the messaga_t s_i ti ner ary is followed by
essag&SYNC.A3_B1 in order to enable the execution of
the evenB1 with the messages _b_book after the execution
of A3. Note that the synchronization messagéNC A3_B1
should not block the thread execution. Accordingly it is
interleaved with the rest of the thread behaviexi(t in this
ggse, since it is at the end of the thread behavior).

D. Compilation into LTS and Verification

After generating the LOTOS encoding of a collabora-
tion diagram using the functiond2!/, we can generate the
corresponding LTS using the state space generation tools
in the CADP toolbox, and verify temporal logic properties
of the input choreography specification using thealua-
tor model-checker [14]. For instance, for our running ex-
ample, we checked the liveness property stating that each

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

c_t s_request is eventually answered § c_resul t): alpha_peer' (p, M) = {send(m)_-recv(m)-m | m € M A
[trues. " CUSTOVER TRAI NSTATI ON REQUEST"] (send(m) =p V recv(m) = p)}

<truex. " TRAINSTATI ON_CUSTOVER RESULT"> true Functionalpha_peer generates the same subset of messages
We show in Figure 4 the LTS obtained for the collaboratioreturned byalpha_peer’, but also adds a suffix for the mes-
diagram from the LOTOS encoding. This LTS was obtaineshge direction, namely_SEN’ if the peer is the sender of
by hiding “SYNC_” messages, and by minimizing the resultthe message andREC’ if the peer is the receiver of the
ing LTS using reduction techniques available in the CADMessage. These suffixes are necessary since transitianereq
toolbox. In this article, these minimizations (determatian, a direction at the peer level indicating either a receive serad
removal ofr transitions, and suppression of similar paths) agetion.
achieve_o_l using weak tr_ace, safety_and strong reduc_ti_ores. Th alpha_peer(p, M) = {send(m)_reco(m).-m_SEN | m € M A
7 transitions stand for internal actions. These transitiares send(m) — p} U {send(m)_recv(m)-m_REC | m € M A
generated while compiling the LOTOS code. For example, tf;gcv —p)
LOTOS sequential composition operater>" inserts such a
transition in the corresponding state space. As a conseguen Once all the peer LOTOS processes are generated, cor-
they are completely removed during LTS generation and ¢iesponding LTSs are obtained automatically using CADP
not appear at the collaboration diagram (and peer) level. state space generation tools. Figure 5 gives a graphical
view of peers generated for our running example from their

a_ts_itinerary LOTOS descriptions. For instance, peBooki ng (Fig. 5,
c_ts_request mts_a_info ma_ts_infoAvaiI (b)) starts by receiying a bOOking reque$ts(b_book?)
P " > > from the train station, sends back an acknowledgement

ts_b_book (b_t s_ack!), and either stops or sends an invoice to the
ts_o_result —~ b_ts_ ack customer _c_i nvoi ce!). We recall that peers interact

on same message names with opposite directierts, the
request message is represented as s_request! in

b_ b_ . -
o-invoice o-invoice the customer peer LTS and ast s_r equest ? in the train
station peer LTS.
ts_c_result
@) CJSJECIUSS“/-\ ts_c_result? ° (d)
Fig. 4. Train station service: collaboration diagram LTS s a info?

b_c_invoice? b_c_invoice?

ts_c_result?

IV. PEER GENERATION
Peers are generated by projection from the LOTOS prgpts_b_book? (IR b invoice @

a_ts_infoAvail!

cess encoding the collaboration diagram. This is achieyed b N =
generating a LOTOS process for each peer whose body is

instance of the collaboration diagram process, and hiding i

this process all the messages that the peer does not seng, O~ o ts_reauest? ~ s ainfol — a ts infoAvail?

a_ts_itinerary!

a_ts_itinerary?

receive, as well as messages prefixed 8YNC_ " which were 7 7
used only to preserve message dependencies in the encodihg. ts_b_book!
process cd_peer _p [alpha_peer(p, M), SYNC] : exit := @ 'S-C-resu'“o pts “BO
cd-peer _p_aux[alpha_peer(p, M), SY NC]
wher e Fig. 5. Peers generated from the collaboration diagram:c(stomer,
process cd_peer _p_aux [alpha_peer’(p, M), SYNC] (b) booking, (c) train station, (d) availability
hi de gen_hide(p, M), SYNC in
cd[alpha(M), SY NC] Once peers are generated, it is difficult to say if their
endpr oc execution respect the interaction constraints specifiethén
endpr oc collaboration diagram (order of messages within a thread

defined by the sequence numbers, and the inter-thread neessag

Functiongen_hide generates a subset of the collaboratiolependencies defined by the predecessor sets). In the next
diagram alphabet consisting of messages where péenot subsection, we propose automated techniques for answering

involved: this question and checking realizability.
gen_hide(p, M) = {send(m)-recv(im)-m | m € M A
send(m) #p A reco(m) # p} V. REALIZABILITY

Functionalpha_peer’ generates a subset of the collabora- In this article, we consider projectionrealizability because
tion diagram alphabet consisting of messages wherepéeer this is one of the most widely used realizability definitipns
involved: see for instance [6], [7], [15]. Intuitively, a choreogrgph

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

is realizable if the set of interactions specified in the col- "di stribut ed_system bcg"=

laboration diagram and those executed by the interacting "peer pllts. bcg"

peers (obtained by projection from the collaboration caagy | [alpha-peer’(pl, M) N

are the same. This realizability definition does not coiirstra (alpha_peer’ (p2, M) U . ..U alpha_peer' (pn, M)) 1|
the internal actions of peers but preserves the ordering of (

their interactions. Weaker realizability notions haveodieen "peer p2_lts. bcg"

investigated [6]. Another alternative would have been tp sa | [alpha-peer’(p2, M) N

that a choreography is realizable if there exist peers which (alpha_peer’ (p3, M) U . ..U alpha_peer' (pn, M)) 1|
realize it and these peers do not have to be projections, see

for instance [2].)

We propose to compute realizability by comparing the

collaboration diagram LTS with the system composed of inter Ic_jet us go tb?jcllf tothou: rgnnltngt]. exampl_e: h;ret IStr:hfdetVL
acting peers using behavioral equivalences and more ptyecisco € generated for Ihe train station service. Note thatar tw
eers do not have to synchronize, they are composed using

using strong equivalence or bisimulation [16]. If these twQ ™~ terleavi ‘
systems are equivalent, it means that the peer generatﬁ fj Interieaving opera of (1.
exactly preserves the collaboration diagram constrailits. "distributed_system bcg” =

. "peer _Custoner_Its. bcg"
they are not, it is because peers do not generate the samel[¢ Ts requesi, ts c result, b_c_invoice]|

interactions than those specified in the diagram, theréfdse (
unrealizable. "peer_TrainStation_Its.bcg"
Therefore, computing realizability is achieved in threspst I ;z—g—'bggck" 3—: z-;gLoﬁ’a' I, a_ts_itinerary,
(i) generation of the collaboration diagram LTS, (ii) geatérn (- T
of the system composed of interacting peers, and (iii) eguiv "peer_Availability_Its.bcg"

lence checki_ng between _LTSs resulting from step (i) and (ii) | LLer_Booki ng I ts. bcg”
In the following, we consider both synchronous and bounded)
asynchronous communication models.)

Definition 2 (Projection realizability):A collaboration dia-
gramCD with n peers and queue lengghe N is realizable
iff CDLTS is strongly bisimilar to the peer composition
W = (PLTS4||...||PLTS,), where CDLTS is the col-

Iaboration diagrpam LTS obrt]ained fro@ D zs prejefnted in collaboration diagram is then realizable, or retuiadsewhich
Section lll, andPLT'S; are the peer LTSs obtained froff) o9ns that the diagram is unrealizable. As far as our running

as formalised in Section IV. In the rest of this article, thi%xample is concerned, the equivalence test rettmns for
test is notedRealizable(CD, W9) whereW? stands for the synchronous communié:ation

compositionW of peers interacting using queues of size

Once this system is generated and reduced, we compare
it to the collaboration diagram LTS (generated as explained
in Section Ill) using a strong equivalence relation [16].isTh
check either says that both systems are equivalent and the

A. Synchronous Communication B. Asynchronous Communication

LOTOS relies on synchronous communication, therefore This case is slightly more complicated because asyn-
from the LOTOS code obtained previously, we generate ahronous communication is not directly supported by LOTOS.
LTS for each peer process, and compose all peers in parallel simulate how the system evolves with an asynchronous
explicitly stating the messages on which they synchronizzommunication model, we generate some LOTOS code to
This system is generated using SVL [13], which is a scriptingplement bounded FIFO queues. Each peer is associated
language that complements the LOTOS encoding, and awtdth a queue (a LOTOS process) from which it can consume
mates parts of the approach by calling the different CADRessages received beforehand (see Fig. 6). This also means
tools we use. Moreover, these scripts were used to circumvéimat a peer which wants to send a message to another one,
the state explosion problem (see a discussion on this issuawill actually interact (synchronously) with the other ome’
Section VII).Bcg files (delimited by double quotes and withqueue. A queue process needs a bounded queue datatype
extensionbcg below) are internal state/transition represent§BQueue below) to store received messages. This datatype is
tions computed (by CADP) from the LOTOS peer processdgiplemented using algebraic specification facilities fded
Message directions “I” and “?” that are shown in Figure By LOTOS. The datatype encoding queues defines several
for readability reasons, have a different meaning in LOTOSperations:bi sful | tests if the queue is fullpi nsert
(they are used for value passing). Since we do not need vahppends a message to the end of the qubushead tests
passing here, we have encoded messages without any diredfi@ message appears at the head of the queuebaadove
for the synchronous case as they appear in the synchramizasuppresses the message at the head of the queue.
sets (noted betwedn ..] |) below. A queue process can either interact with other peers on

From a collaboration diagratdD = (P, E, M) involving messages that can be received by its own pegiif queue_p
n peers, first, peer LTSs iBcg format are obtained from below), or synchronizes with its own peer if that peer wants
their LOTOS encoding presented in Section IV, and then the evolve by consuming a message available in its own queue
distributed system is generated as follows: (m1_REC in queue_p). Note that a local communication

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

""""""""" ‘ legend

P2 | © input port Once the distributed system is computed, realizability is
| et checked similar to the synchronous case, by comparing if the
o collaboration diagram LTS obtained as presented in Sedtion

02| is strongly equivalent to the distributed system.

L | As far as our running example is concerned, first the
distributed system is generated as follows:

Fig. 6. System architecture: communication between pestsqaeues
"distributed_system async. bcg"=
"peer _queue_Cust oner. bcg"
. |[c_ts_request, ts_c_result, b_c_invoice]|

between a peer and its queue has the suffReC’, whereas (
a communication between a peer (sender) and a queue does | Feter_queu]?_Tr ai PSt _at;OR- b_clg" s it

. s_a_info, a_ts_infoAvail, a_ts_itinerary,
not have a suffix. ts b book. b ts ack]|

process queue_p [m1,m1-REC, ..., my, m, REC] ("peer_queue_Avail ability. beg”
(g: BQueue) : exit := 1
[not(bisfull(q))] -> m; "peer _queue_Booki ng. bcg"
queue_p[m1,m1_REC,...] (bi nsert (mi,q))))
(1 ... 1l
[bi shead(m1, q)] -> mi_REC The equivalence check returfalse and indicates that the
queue_p[m1,m1-REC,...] (bremove(q)) trace consisting of messagest s_r equest, ts_a.i nf o,
[1 exit a_ts_.i nfoAvai |l ,t s_b_book appears in both systems, but
endpr oc ats.itinerary is then present in the distributed system
where{my,...,my} = alpha_peer’ (p, M). (it should not be), and not in the collaboration diagram

Next, a process for each pajpeer, queuejs generated in LTS. The problem here is that the train station peer has
2P Papeer, g 9 no way to know whether the availability peer will send a

LO.TOS' A peer and a queue interact_together on all MesSadePs iti ner ar y or not because the recurrence type is
(with suffix “_REC") that can be received by the peer. Fronj,, which means zero or one or more ftimes. So. what
an external point of view, these messages are not of interﬁst : '

while checking realizability (collaboration diagrams shthe appens 1s that the tr{;un station heer §etrxsl$_bqok to the
booking peer (assuming the availability peer will neverdsen

global ordering of message send events), and that is why the¥s_i tinerary), and after this emission, the availability

are hidden. We show below such a LOTOS process for a pgér ' L
Notice that the processueue_p below is instantiated with peer finally sendsits.itinerary, thus the dependency
p: - relation A3/ B1: book is not respected. We show in Sec-
tion VI how such unrealizable collaboration diagrams can be

a size set t@B and an empty queuai|). The queue size is
an input parameter of the LOTOS encoding. implemented without modifying the collaboration diagram.
process peer _queuep[mi,...,mn, SYNC] : exit :=
hi de mi.REC,...,m,_REC in

(

C. Relating Realizability Results with Queue Sizes

peer p[mi,...,mn, SYNC] The cost of the realizability check increases exponemtiall
[mi-REC,...,m,.REC]| when queues’ length increases. In [5], Bual. showed that
queue_p[m1,m1-REC,...] (queue(B, nil)) asynchronous messaging leads to state space explosion for
) bounded message queues and undecidability of the model
endpr oc checking problem for unbounded message queues. Collabo-
where{m,, ..., my,} = alpha_peer' (p, M). ration diagrams in combination with the projection method

. L . . . ‘i(]isntroduced in Section IV) have an interesting property: it
Finally, the distributed system (in SVL below) is obtaineqy hssible to generalize results of the realizability dhec

by compiling all LOTOS processes encoding palfer, ¢, queues with size one to queues with any size. More
gueue)into Bcg files, and making all these pairs SynChron!Zﬁrecisely, if the parallel composition of the projected nsee
correctly on messages exchanged among peers, that ISV\RH‘I gueue length one realizes a collaboration diagrans, thi
messages sent from peers to corresponding queues. parallel composition also realizes the collaboration diag

"di stribut ed_systemasync. bcg"= when peers have a queue length- 1 or unbounded queues.
"peer _queue_pl. bcg" Also, if the parallel composition of the projected peershwit
| [alpha_peer'(pl, M) N gueue length one does not realize a collaboration diagtam, t
(alpha_peer' (p2, M) U ... U alpha_peer'(pn, M)) 1| parallel composition does not realize the collaborati@ytim
(when peers have queue length > 1 either. Theorem 1
" peer _queue_p2. bcg" formalizes this property (formal proof of this theorem can b
| [alpha-peer’ (p2, M) N found in Appendix).
(alpha_peer’ (p3, M)U. . .Ualpha_peer’' (pn, M)) 1| Theorem 1:Given a collaboration diagrar@'D, a queue

length ¢ € N'T, and the parallel composition of thgro-
) jected peers W, W4 realizesCD if and only if W' re-

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

alizes CD: YCD,W,q € N . Realizable(CD,W9) < Given two eventse = (B,l,m,r) ande’ = (B',I',m/,r")
Realizable(CD, W1) to be executed in order, we state two conditions below for
Intuitively, there are three main reasons for this property synchronous and asynchronous communication, respagtivel

1) The equivalence check involves only sent messag#sWwhich these new messages are not needed:
and received messages can be run at any moment withoufsync(e,€’) = (r = 1) A ((send(m’) €
any control (it is not important when peers dequeue receivétrd(m),reco(m)}) v (reco(m’) € {send(m), recv(m)}))
messages or in what order these messages are dequeue&"ﬁsync(e’el) = (= 1 A (sendm) €
Therefore, in compositions with larger queues, while prese {send(m),reco(m)})) v ((r # 1) A (send(m) = send(m’)))
ing realizability, peers can postpone receiving messagéds a Then, we define both setSEQ and SY NC containing
send their own messages first. additional messages that must be added to realize the input

2) Peer specifications are obtained from the collaborati§RoreographySEQ is defined using functiomompute_seq
diagram by projection. This guarantees that being redtizafvhich accepts as input the list of threads computed from
or not, W always strongly simulate§ DLT'S. Also, the only the collaboration diagram using functienrt_by_thread pre-
difference betweeml ¢ andWl is thatWW? has |arger queues_sented in Section Ill. For each threﬁdzi ConSiSting of a list
This means thatV? always strongly simulate$/’’. Using ©f events(B, i, m,r), function compute_seq keeps messages

these two properties, the forward direction of Theorem 1 c&FQ- if condition C; is not verified. To cover all the events
be proved. in each thread, we iterate frointo |T'h;| — 1 which is the last

3) Each collaboration diagram defines a partial order giyent considered since we compare each ekewith event

the occurrence of its events (see Appendix for more de.tailé)Jr 1in the list.

As a consequence, a message can be sent if and only iPEQ = compute_seq(Ths = [(Bi,li,mi,ri)lic1n) =
sending that message does not violate the defined order $8EQL | Vk € 1..[Thi| — 1 : e = Thi[k] Ae’ = Thi[k + 1] Ae =
message send events. On the other hand, by definition, thefel;m:7) A€’ = (B, I',m’,r') A=Cale,e)}

is no deadlock situation in a collaboration diagram (nor S NC works directly on the collaboration diagraf =

in a realizable composition of peers). Thus, in a realizab{é> £, M) and takes as input the sét of events. For each
composition of peers, when a message is sent, it means: if¥gNt used in the collaboration diagram, we check all the
will be eventually received, ii) time of receiving a messag@refixes ¢1, ..., d,, below) and keep only those which do not
does not change the possible occurrence orders of everth wigSPect conditio, (this is checked using functiarheck_C).
have not occurred yet, and thus iii) while preserving obesieley SYNC_llcil’,.wSYNz_lk_l’ | vec,omf“t(eé‘ff/ﬁ%%E,’)r,) c 5.
behaviors, a message can be received right after it has b%ﬁp. .., lx} = check_C(B',¢', E)}

sent. Using the last property, without changing observable.peck C({d;}ic1. 4, ¢/, E) = {di | Ve = (B,di,m,r) € E :
behavior of¥'!, it can receive (dequeue) a message right afte@w(&ef)}

it has been sent (enqueued). Therefore,can keep its queueswhere = in C, is either sync or async depending on the
empty, and this property makes peerdift able to send any communication model.

message that peers Ii¥? are capable of sending (it proves

the backward direction of Theorem 1). Let us describe how the generated LOTOS and SVL code

presented in Sections I, 1V, and V is extended to take addi-
VI. PEER GENERATION. EXTENDED tional synchronizations into account. First of all, the ediag
' ' of collaboration diagram into LOTOS (Section I11) shouldal
Collaboration diagrams are unrealizable because peers @@sider new SEQ” messages as specified below, and all pro-
not respect either (i) the application order of messages dss alphabets have to be extended with messages belonging

each thread, or (i) dependency relations of messages amefg £ (in functionsalpha, alpha_peer, alpha_peer’).
threads. To make peers respect interaction constraints-of u cd20y([(By, 11, m1,71), - (Bus by s 7)), SYNC, SEQ) =

realizable collaboration diagrams, we need to enforcespeer

to execute messages in the same order as specified in the

diagram. To do so, we will insert additional communication

among peers. The first constraint (respecting the applicati

order of messages in each thread) is achieved by adding in

the collaboration diagram encoding some explicit messagebereadd_seq(l,SEQ) =

prefixed with ‘SEQ.” between each thread message. With

regards to the second one (respecting dependency reationsWhile generating peers (Section IV), the main difference

we will use the ‘SYNC_” messages that have been used in tHegoncerns thehi de construct generated in the body of each

initial encoding to respect message dependency relations. Process:d_peer _p_aux where messagesSYNC.” should not
However, all these additional messages are not necesd@yhidden since we need them in the forthcoming peer LTSs:

to make peers realize the collaboration diagram, and adding process cd_peer _p_aux [alpha_peer’(p, M), SY NC]

systematically a new message for each sequence in all thread hi de gen_hide(p, M)-S¥-NE in

and for each dependency relation may lead to excessive com- cd[alpha(p, M), SY NC]

munication overhead between peers. Consequently, we want endpr oc

to minimize the number of extra communication operations.

add_pre_sync(B1,l1) >> c¢d2lm (send(mi)-recv(mi)-mi,r1)
add_seq(l1, SEQ)

(add_post_sync(li, SY NC) >> add_exit(n))
cd2l:([(B2,l2, m2,72), ..., (Bn,ln,mn,)], SY NC, SEQ)
SEQI; ifle SEQ

otherwise

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

Finally, the SVL code generated in Section V is extended For instance, peers generated for our running example and
with synchronizations between peers on additional messagextended with additional messages are shown in Figure 7.
To do so, we need a function which is able to extract messag@dN\C A3 _B1 is the only necessary message because message
from SEQ andSY NC in which a given peer is involved. Fort s_b_book must be run only after the message identified
each peer, functioproj_peer checks each action iIfRY NC by A3 (a_t s_i ti ner ary) in the collaboration diagram, and
(SEQ, respectively) and verifies whether the correspondirigvolved peers have no other ways to respect this dependency
evente involves as sender or receiver the peepassed as Notice that three peers are involved in this interactiomely
input to the function: Booki ng, Trai nSt ati on, andAvail ability.

proj_peer(p,SYNC,SEQ,E) = {SYNC_X_Y | SYNC_X_.Y €

SYNC Ae = (Bl,m,r) € EA(X =1VY =1)Ap € <‘>/Q“m‘ @
{send(m),recv(m)}} U {SEQ.I | SEQI € SEQ Ne = b e imvorcer b ¢ ivoice? ts_a_info? e
(B,l,m,r) € E Ap € {send(m),recv(m)}} e oo
proj_peers({p1,...,pn},SYNC,SEQ, E) = o-cresult?
proj_peer(p1, SYNC,SEQ, E) U e U SYNC_A3_BL
proy_peer(pn, SYNC7 SEQ, E) (wSYNC_AS_BlolS_b_book. Obilsiack @bicimvolce @
Now, let us illustrate how the
di stri buted_systemasync process is extended ooty to el —
for the asynchronous case (the modification is similéfy?/@ ——(O——0— a_ts_itnerary?
for the synchronous communication model). Basically SYNC_A3 B

synchronization sets are complemented with some of the (@) e) e oo
additional actions: 4 -

"di stribut ed_systemasync. bcg"= Fig. 7. Peers with additional messages: (a) customer, (bkibg, (c) train
"peer _queue_pl_l ts. bcg" station, (d) availability

| [(alpha_peer'(pl, M) U proj_peer(pl,SYNC,SEQ,E)) N L .
(alpha_peer' (p2, M) U .. . U alpha_peer’ (pn, M) Once the new peers are generated, the distributed system is

U proj_peers({pz, ..., pn}, SYNC,SEQ, E)) 1| g_u!It by extendm_g th_e description given in _S_ecuon V with-ad
(itional communication and also synchronizing peers omthe
"peer queue p2l ts. bcg" We recall that all peers do not synchronize on all additional
|1 (alphapeer'(p2, M) U proj_peer(p2, SYNC, SEQ, E)) N communlcatlo_n but only on those b_elonglng t_o their alphabet
(alpha_peer’ (p3, M) U .. . U alpha_peer’ (pn, M) and shared W|_th th(_e other peers. Finally, (_equ_lvalence tmtwe_
U proj_peers({ps, ..., pn}, SYNC,SEQ, E)) 1| the_ coIIabora_tl_on diagram L'_FS and the dlstrlb_uted syster_n in
which all additional communication has been hidden, cordirm
) that the extended peers realize the collaboration diagram.

Let us illustrate this extension with thre&dof our running VII. TOOL SUPPORT ANDEXPERIMENTS
example. With respect to the sequential ordering of message

within each thread, note that potential new mess&EQ AL Tr;]e ste_ps ?f our agproach are aut0||"nated b){ several tools.
and SEQA2 do not appear after messages_a_i nf o and YVé have implemented a prototype tool nantei2lotos ((1)

a_t s_i nf oAvai | because they are not necessary for realili'1 Figure 1) which, given a collaboration diagram, genesate
ing the choreography((,,.. returnstrue when called with the LOTOS_ code necessary to compute all the results we have
the corresponding events). As far as dependency rel(,;lti(m'gsented|nth|s article. Troel2lotos prototype also generates
are concerned, messaGYNC.A3_B1 appears at the end ofSome SVL scripts that complement the LOTOS encoding and
the thread behavior, and this message is necessary bec@yigmate the rest of Lhe proczgs by calling the different ﬁ_AD J
peers have no other way to preserve the dependency relaf%?lls we use. From this encoding, LTS gengranon IS achieve
specified in the event labelled IBL (i.e., A3/ BL: book). On using Caesar.adt and Caesar LOTOS compilers, as well as

the other hand, messa@NC_1_Al is discarded (since it is reduction techniques available Reductor ((2) in Figure 1).
not needed for realizability) Model-checking can be performed usiftyaluator ((3) in

_ Figure 1). Note that model-checking is the only step which is
((» -- thread A encoding -- x) not fully automated. Indeed, if a designer wants to go beyond
ts_a_info; a_ts_infoAvail; .
| oop_process[a ts itinerary] >> SYNC A3 Bl;exit basic checks (such as deadlock—fr_eeness), (s)he has to man-
ually write some temporal properties that the choreography
| [SYNC_A3_B1] | specification is supposed to satisfy. LaBisimulator is used
o to check that the collaboration diagram LTS is equivalent to
From this extended collaboration diagram encoding, pedte distributed peer implementation ((4) in Figure 1).
are generated by keeping the messages in which the peer do&ur approach, and especially the tool we implemented
participate in visible, and also the additional commundgat (cd2lotos), was applied and validated on about 115 col-
introduced above. Peers synchronize on all additional comniaboration diagrams either obtained from available resesir
nication that they share in their alphabets. (research papers and on-line material) or written by ouesel

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

Applying our code generator to these examples results intabo VIIl. RELATED WORK

59,000 lines of LOTOS and 32,000 lines of SVL. It took about)) o

61 minutes to check realizability for all the case studieswaf ~ 1heré has been earlier work on studying and defining

database for both communication models: 34 examples turi§ réalizability problem for choreography. In [17], [18he
ithors define models for choreography and orchestratiwh, a

out to be unrealizable in the case of synchronous communi@¥! : g
tion, and 71 in the case of asynchronous communication Aﬂrmallze a conformance relation between both models. 8hes

the unrealizable ones were were verified to be realizable ofB04€!S are given as input whereas we focus on the generation
additional communication was inserted in the peer progcoP! One from the other (generation of peers from a global

and it took about 48 minutes to check again realizability giPecification) while ensuring conformance. In [19], thehaus
the whole database. focus onlLet’'s dancemodels for choreographies, and define

Table | shows experimental resditsn some of the exam- for them an algorithm that determines if a global model is

ples belonging to our database. For each experiment, the te{BCa"y enforceable, and another algorithm for generalig

gives the size of the diagram in terms of number of peet@’odels from global ones. In [20], the authors show through

messages, and threads. Next, the table contains the numb imple example_how BPEL stubs can be derived _from WS-
lines of LOTOS and SVL generated by our prototype as well L choreographies, but, due to the Ia.ck of semantics of both
the size (number of states and transitions) of the LTS géaekra anguages, correct.ness of the ge_nera_t!on ca_nnot be ensur(_ad
from the collaboration diagram. Last, we give realizapitie- Some works define several realizability notions, and diassi

sults for both synchronous and asynchronous communicati}iem in & hierarchy [6]. However, some of these notions (the
and the time needed to compute both realizability checki€ak ones) are questionable because by relaxing the message

Example cd-045 corresponds to the running example used?f§lering constraints, the choreography specificatiorsbier
this article. is not preserved. Bultan and Fu [2] tackle the realizabitispe

It takes 2.4s for our prototype to generate LOTOS aHH the context of asynchronous communication, and define
} gome sufficient conditions to test realizability of choreng

communication models (synchronous and asynchronous) £s specified with cpllaborauon dlagr.ams. In this aetiete
refine and extend this former work with tool support, some

both strategies (with and without additional communiaatio . L
For medium size examples (cd-008, cd-025, cd-045), tfgchniques to enforce realizability, and some new resuits o

generation of all intermediate LTSs and the realizabilitgaks asynchronous communicationtt. queue sizes).
are quite fast (less than 20 seconds). For bigger collaborat Message Sequence Charts (MSCs), also know as sequence
diagrams (cd-059, cd-102), the computation time increadd@grams, are often compared with collaboration diagrams
up to several minutes. It is interesting to note that exampl@nce they both allow the description of interactions of en-
involving more threads (cd-094) induce time consuming corf{iéS being composed. The realizability problem for MSCs
putations since they generate bigger intermediate stateesp NS already been studied, see for instance [15], [21], [22].
due to the higher number of interleavings introduced due fepllaboration diagrams and MSCs provide a different view of
the number of threads. interactions: MSCs specify the local orderings of the sewt a
Table Il shows results obtained for the unrealizable exarrr?-ce'veOI messages, whereas collaboration d|z?1grams gwve th
ples presented in Table | once additional communication %obal ordering of the sent messages. In particular, receiv

inserted. As expected, all these examples become reﬁiza{BFlssages |trr1]collabtorat|on diagrams C??hbe o(;dered m_fgr:jy_w?r)]/
once the additional communication is added. Notice thgp '°ONd as the sent messages respect the order speciiied in the

realizability tests may take less time compared to Tablel{ (c |agram|_. Trl‘)?riforti' earllﬁr rislgtlts ?n rlelaltl)zab|tl_|ty (:jf_]SESare
059, cd-094) because adding extra communication increal8% aPPlicable to the realiza ity of cotaboration ciagrs.
the sequentiality of the system, and therefore reduces asmm " trms of tools that check realizability, WSAT [23] is the
nication interleaving only other tool we know. WSAT checks a set of realizability
During the experiments, we faces the state explosion procbo-ndr']tIOnS onkconversanon protocols I[ISf]. d |
lem. In a first attempt, we were computing distributed system Other works [7], [8] propose Well-lormedness rules to
in a single step, but, even for simple examples, the Stamespgnforce the choreography specification to be_ realizable. Fo
compilation lasted several minutes. Experiments showet tﬁxample,_ln [8]. the authors rely onﬂa_calculus-llke 'a”‘-?l“age
for collaboration diagrams of medium size (4/5 peers al’?(?d session types to f_O”T‘a”y describe choreog_raphlesn,The
10/15 messages), the compilation of paeer, queuewas they identify three principles for global descrlptlon gnd_e
returning LTSs containing hundreds even thousands ofssta 'C_h tr;]ey define a soufn(;:l. an_g co(rjnplete end-pfomt p;}olect;uon,
(resp.transitions). Consequently, we decided to build first eadfjdt’s the ge”‘?r?‘“O” or Istri u_te processes .ro.mt eecho
pair (peer, queue)minimize them individually, and Cornposeography descr|pt|on.. This solution is too restrictive siric
them to finally obtain the expected system. This techniqtﬁ%ay preve_n_t the_ deS|gn¢r from specifying what (s)he_want_s to
(known as compositional verification in CADP) allows us t hO. (Ijn a_ddltlon, I complhc:ltes the choreog_rgphy de&gn;mh
generate any step of the (distributed) system computati@n jthe esigner cannot only focus on composition issues, kit ha
few seconds to consider at the same time these well-formedness rules.
To the best of our knowledge, the only work which proposes
4Experiments have been carried out on a Vaio VGN-FZ11Z (Iemie 2 0 add messages in order to implement unrealizable chaxeogr
Duo Processor T7300 2GHz, 2GB of RAM). phies is [7]. To do so, the authors extend their choreography

IEEE TRANSACTIONS ON SERVICES COMPUTING

13

Collab. Size LOTOS | SVL CD LTS Realizability
diagrams|| peers| messageq threads|| (lines) | (lines) | (states/transitions) sync.| async.| time
cd-008 5 9 4 388 148 27146 N V4 19.56s
cd-025 4 6 3 304 130 12/15 Vv N 16.20s
cd-045 5 8 3 341 130 10/13 Vv X 18.69s
cd-059 10 20 3 666 238 56/175 X X 1m12.31s
cd-094 7 13 6 495 184 96/396 X X 1m46.14s
cd-102 16 30 4 959 346 220/748 X X 6m31.39s
TABLE |
REALIZABILITY RESULTS FOR SOME CASE STUDIES(NO ADDITIONAL COMMUNICATION)
Collab. Size LOTOS | SVL CD LTS Realizability
diagrams|| peers| messageq threads|| (lines) | (lines) | (states/transitions) sync.| async.| time
cd-045 5 8 3 343 134 10/13 vV V4 17.09s
cd-059 10 20 3 674 242 56/175 Vv N 44.45s
cd-094 7 13 6 501 188 96/396 N4 v 1m25.25s
cd-102 16 30 4 974 350 220/748 N4 v 6m51.51s
TABLE I

REALIZABILITY RESULTS FOR SOME CASE STUDIESWITH ADDITIONAL COMMUNICATION)

language with new constructs (named dominated choice aas/nchronous communication, and is completely automated
loop). During the projection of these new operators, some agith a prototype tool we implemented to generate LOTOS
ditional communication is added in order to make peers @speode, and the use of the CADP toolbox to analyze results
the choreography specification. This solution complicéites generated from this code. If a collaboration diagram is not
design because these new constructs are more restricting ttealizable, we have proposed an alternative projectioreef$
the original ones, and they oblige the designer to expficitivhich adds some additional communication in their descrip-
state extra-constraints in the choreography specificdtipn tion, and makes peers realize the choreography. We have also
associatingdominant rolesto certain peers. proved that realizability results in the case of asynchusno

To sum up, most of these approaches focus on theoreticammunication can be checked with queue size one, and
aspects (no tool support) whereas our contribution consbingeneralized to any size of queues, possibly infinite ones.
theoretical resultse(g., relation between realizability results)]))
and message queue sizes) and tool support (the LOTngrfuture v_vork,c_';lflrst perspective concernsmplementatlo_
encoding makes possible the complete automation of realf$Sues. In this article, we focused on formal and theoreti-
ability test, choreography verification, and peer generti €&l aspects, and we have not discussed how code can be
Second, our approach allows implementation of any Chor@utqmaﬂcallly) generated from abstract descrlptlonseﬁrs”
ography specification without adding any rule or constraiﬂptamed using our approach. From these abstract specifica-

on the choreography language or specifications written wilnS: New services can be implemented in any programming
it. Finally, we consider in this article both synchronousianl2nguage, in JAVA for instance as done in [24], using Pi4SOA

asynchronous communication models. technologies [25], or following guidelines presented i6][2
where some BPEL code generation techniques are proposed.

An alternative solution is to reuse an implementation of a
service that already exists. In such a case, discovery tech-
In this article, we have studied the realizability questioniques [27] can be used to check whether some existing
for choreography specifications. Realizability aims atosireg services are compatible [28] with the peer LTSs at hand.
whether peers involved in the choreography specification pif additional messages need to be taken into account to
duce exactly the same behavior once they are obtained by emake peers implement the choreography, some wrappers can
point projection and interact together in a distributechfas. be generated as presented in [29]. These wrappers would
In this article we focused on collaboration diagrams as alow us to guide the service behavior to make it respect
choreography specification language. In order to detetizreaits specification (in particular the additional communicat
ability issues, we have presented an encoding of collalooratappearing in the peer LTS) without changing the service
diagrams into LOTOS. LOTOS is a process algebra expressfuactional code. A second perspective aims at extending our
enough to specify all the interaction constraints that can Bpproach considering as input a set of collaboration dragra
specified with collaboration diagrams. In addition, LOTQS ilndeed, a choice construct is missing in the collaboration
equipped with CADP toolbox which we used to implemerdiagram notation, and using a set of diagrams would allow to
the different checks required to verify the choreographal-re fill this gap. Finally, we plan to keep studying the relatibips
izability. Our approach can deal with both synchronous artween queue sizes and realizability results in the case of

IX. CONCLUDING REMARKS

IEEE TRANSACTIONS ON SERVICES COMPUTING

14

asynchronous communication. In particular, we would like f21] R. Alur, K. Etessami, and M. Yannakakis, “Inference ofeséage
see if results presented in this article (Queue size onedsgn

to check realizability of collaboration diagrams) hold @iher

[22]

choreography specification languages.

Acknowledgements.The authors thank Javier Camara and

José Antonio Martin for fruitful discussions and intdneg

comments on a former version of this article. This work has
been partially supported by US National Science Foundati]
Grants CCF-0614002 and CCF-0716095.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[25]

26
REFERENCES [26]

X. Fu, T. Bultan, and J. Su, “Conversation Protocols: ArRalism for
Specification and Verification of Reactive Electronic Seegi” Theor.
Comput. Scj.vol. 328, no. 1-2, pp. 19-37, 2004.

T. Bultan and X. Fu, “Specification of Realizable Servi€®nversa- 28]
tions using Collaboration DiagramsService Oriented Computing and
Applications vol. 2, no. 1, pp. 27-39, 2008.

G. Salain, L. Bordeaux, and M. Schaerf, “Describing d&ehsoning
on Web Services using Process Algebra,’Piroc. of ICWS'04 |EEE
CSP, 2004, pp. 43-51.

W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, &hd. W.
Verbeek, “Choreography Conformance Checking: An Approbaked
on BPEL and Petri Nets,” iflProceedings of the Dagstuhl Seminar on
The Role of Business Processes in Service Oriented Artlritgc2006.

X. Fu, T. Bultan, and J. Su, “Synchronizability of Consations among
Web Services,"IEEE Transactions on Software Engineeringl. 31,
no. 12, pp. 1042-1055, 2005.

R. Kazhamiakin and M. Pistore, “Analysis of RealizatyiliConditions
for Web Service Choreographies,” roc. of FORTE'06 ser. LNCS,
vol. 4229. Springer, 2006, pp. 61-76.

Z. Qiu, X. Zhao, C. Cai, and H. Yang, “Towards the Thearati
Foundation of Choreography,” iaroc. of WWW’07 ACM Press, 2007,
pp. 973-982.

M. Carbone, K. Honda, and N. Yoshida, “Structured Comioation-
Centred Programming for Web Services,” Broc. of ESOP’'07 ser.
LNCS, vol. 4421. Springer, 2007, pp. 2-17.

[27]

[29]

Sequence ChartslEEE Transactions on Software Engineeringl. 29,
no. 7, pp. 623-633, 2003.

S. Uchitel, J. Kramer, and J. Magee, “Incremental Etabon of
Scenario-based Specifications and Behavior Models usimpdjdch Sce-
narios,” ACM Transactions on Software Engineering and Methodglogy
vol. 1, no. 13, pp. 37-85, 2004.

] X. Fu, T. Bultan, and J. Su, “WSAT: A Tool for Formal Analg of

Web Services,” inProc. of CAV'04 ser. LNCS, vol. 3114.
2004, pp. 510-514.

N. Roohi, G. Salaiin, and S. H. Mirian, “Analyzing ChgpeRifications
by Translation into FSP,” irProc. of FOCLASA'09ser. ENTCS, vol.
255, 2009, pp. 159-176.

“Pi4SOA Project.”Wwww. pi 4s0a. or g.

R. Mateescu, P. Poizat, and G. Salaiin, “Adaptationesf’i8e Protocols
using Process Algebra and On-the-Fly Reduction Technjgire$roc.
of ICSOC’08 ser. LNCS, vol. 5364. Springer, 2008, pp. 84-99.

A. Zisman, G. Spanoudakis, and J. Dooley, “A FramewarkDynamic
Service Discovery,” irProc. of ASE'08 |IEEE Computer Society, 2008,
pp. 158-167.

F. Duran, M. Ouederni, and G. Salaiin, “Checking Protd@ompati-
bility using Maude,” inProc. of FOCLASA'09ser. ENTCS, vol. 255,
2009, pp. 65-81.

G. Salaiin, “Generation of Service Wrapper Protocodenf Choreogra-
phy Specifications,” inProc. of SEFM'08 IEEE Computer Society,
2008, pp. 313-322.

Springer,

Gwen Salalinreceived the PhD degree in Computer
Science from the University of Nantes, France, in
2003. In 2003-2004, he held a post-doctoral position
at the University of Rome “La Sapienza”. In 2004-
2006, he held a second post-doctoral position at
INRIA, France. In 2006-2009, he was a research as-
sociate at the University of Malaga, Spain. He is cur-
rently an associate professor at Ensimag (Grenoble
INP) in Grenoble, France. His research interests in-
clude formal techniques and tools, process algebras,
concurrent and distributed systems, specification and

H. Garavel, R. Mateescu, F. Lang, and W. Serwe, “CADP 2086 verification, software engineering, composition of comgrus and services.

Toolbox for the Construction and Analysis of Distributecb&&sses,” in
Proc. of CAV'07 ser. LNCS, vol. 4590. Springer, 2007, pp. 158-163.
G. J. Holzmann, “The Model Checker SPINEEE Trans. Software
Eng, vol. 23, no. 5, pp. 279-295, 1997.

G. Salaiin and T. Bultan, “Realizability of Choreognas using Process
Algebra Encodings,” inProc. of IFM'2009 ser. LNCS, vol. 5423.
Springer, 2009, pp. 167-182.

ISO, “LOTOS — A Formal Description Technique Based ore th
Temporal Ordering of Observational Behaviour,” Interoaéil Standards
Organisation, Tech. Rep. 8807, 1989.

H. Garavel and F. Lang, “8_: A Scripting Language for Compositional
Verification,” in Proc. of FORTE'01 Kluwer, 2001, pp. 377-394.

R. Mateescu and M. Sighireanu, “Efficient On-the-Fly débChecking
for Regular Alternation-Free Mu-Calculus,” vol. 46, no.p. 255-281,
2003.

R. Alur, K. Etessami, and M. Yannakakis, “Realizalyiland Verification
of MSC Graphs,'Theoretical Computer Scienceol. 331, no. 1, pp. 97—
114, 2005.

R. Milner, Communication and Concurrencger. International Series in
Computer Science. Prentice Hall, 1989.

N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavatia“Choreog-
raphy and Orchestration Conformance for System DesignProt. of
Coordination’06 ser. LNCS, vol. 4038. Springer, 2006, pp. 63-81.
J. Li, H. Zhu, and G. Pu, “Conformance Validation betweghoreogra-
phy and Orchestration,” iRroc. of TASE'07 IEEE Computer Society,
2007, pp. 473-482.

J. M. Zaha, M. Dumas, A. H. M. ter Hofstede, A. P. Barrosda
G. Decker, “Service Interaction Modeling: Bridging Glokaid Local
Views,” in Proc. of EDOC'06 IEEE Computer Society, 2006, pp.
45-55.

J. Mendling and M. Hafner, “From Inter-organizationdlorkflows to
Process Execution: Generating BPEL from WS-CDL,” Rroc. of
OTM’'05 Workshopsser. LNCS, vol. 3762. Springer, 2005, pp. 506-
515.

Tevfik Bultan is a Professor in the Department of
Computer Science at the University of California,
Santa Barbara. He received his B.S. in electrical
and electronics engineering in 1989 from the Middle
East Technical University, and his M.S. in computer
engineering and information science in 1992 from
the Bilkent University, both in Ankara, Turkey. He
received his Ph.D. in computer science in 1998
from the University of Maryland, College Park. He
joined the Department of Computer Science at the
University of California, Santa Barbara in 1998. His

current research interests are: service oriented congputoncurrency, model
checking, static analysis, and software engineering.

Nima Roohi received his MSc degree from Com-
puter Science department of Sharif University of
Technology, Iran, in 2008. He is interested in formal
research areas, such as formal specification and
verification, program development from formal spec-
ification, choreography and orchestration of Web
services, concurrent programming.

