On a Hierarchical Parallel Algebraic Domain Decomposition Linear Solver

Abstract : The solution of linear systems is often the most computational consuming kernel in large complex numerical simulations. In this talk, we will describe a parallel algebraic hierarchical linear solver for sparse linear systems. The numerical scheme based on a partition of the adjacency graph of a sparse matrix, that leads to the solution of a Schur complement system, will be presented as well as the related preconditioning technique. Parallel numerical experiments of the hybrid direct/iterative technique will be described on 3D examples from both academic and industrial relevance. Prospective for implementations on many- cores heterogeneous systems on runtime systems will be discussed.
Type de document :
Communication dans un congrès
Scalable Hierarchical Algorithms for eXtreme Computing (SHAX-C) Workshop, Apr 2012, KAUST, Saudi Arabia. 2012
Liste complète des métadonnées

https://hal.inria.fr/hal-00726630
Contributeur : Emmanuel Agullo <>
Soumis le : jeudi 30 août 2012 - 19:16:40
Dernière modification le : jeudi 11 janvier 2018 - 06:22:35

Identifiants

  • HAL Id : hal-00726630, version 1

Collections

Citation

Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Stojce Nakov, Jean Roman. On a Hierarchical Parallel Algebraic Domain Decomposition Linear Solver. Scalable Hierarchical Algorithms for eXtreme Computing (SHAX-C) Workshop, Apr 2012, KAUST, Saudi Arabia. 2012. 〈hal-00726630〉

Partager

Métriques

Consultations de la notice

342