J. D. Haynes and G. Rees, Decoding mental states from brain activity in humans, Nature Reviews Neuroscience, vol.16, issue.7, pp.523-534, 2006.
DOI : 10.1038/nrn1931

T. Mitchell, R. Hutchinson, R. Niculescu, F. Pereira, X. Wang et al., Learning to Decode Cognitive States from Brain Images, Machine Learning, vol.57, issue.1/2, pp.145-175, 2004.
DOI : 10.1023/B:MACH.0000035475.85309.1b

S. Hanson and Y. Halchenko, Brain Reading Using Full Brain Support Vector Machines for Object Recognition: There Is No ???Face??? Identification Area, Neural Computation, vol.17, issue.11, pp.486-503, 2008.
DOI : 10.1016/S0896-6273(02)00877-2

O. Yamashita, M. Sato, T. Yoshioka, F. Tong, and Y. Kamitani, Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns, NeuroImage, vol.42, issue.4, pp.1414-1429, 2008.
DOI : 10.1016/j.neuroimage.2008.05.050

S. Ryali, K. Supekar, D. A. Abrams, and V. Menon, Sparse logistic regression for whole-brain classification of fMRI data, NeuroImage, vol.51, issue.2, pp.752-764, 2010.
DOI : 10.1016/j.neuroimage.2010.02.040

M. K. Carroll, G. A. Cecchi, I. Rish, R. Garg, and A. R. Rao, Prediction and interpretation of distributed neural activity with sparse models, NeuroImage, vol.44, issue.1, pp.112-122, 2009.
DOI : 10.1016/j.neuroimage.2008.08.020

B. Ng and R. Abugharbieh, Generalized Sparse Regularization with Application to fMRI Brain Decoding, Proc. International Conference on Information Processing in Medical Imaging, pp.612-623, 2011.
DOI : 10.1007/978-3-642-22092-0_50

R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, F. Bach et al., Multi-scale Mining of fMRI Data with Hierarchical Structured Sparsity, 2011 International Workshop on Pattern Recognition in NeuroImaging, pp.69-72, 2011.
DOI : 10.1109/PRNI.2011.15

URL : https://hal.archives-ouvertes.fr/inria-00589785

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion, Total Variation Regularization for fMRI-Based Prediction of Behavior, IEEE Transactions on Medical Imaging, vol.30, issue.7, pp.1328-1340, 2011.
DOI : 10.1109/TMI.2011.2113378

L. Grosenick, B. Klingenberg, B. Knutson, and J. E. Taylor, A Family of Interpretable Multivariate Models for Regression and Classification of Whole-brain fMRI Data, 2011.

M. Van-gerven, B. Cseke, F. P. De-lange, and T. Heskes, Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior, NeuroImage, vol.50, issue.1, pp.150-161, 2010.
DOI : 10.1016/j.neuroimage.2009.11.064

J. S. Damoiseaux and M. D. Greicius, Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity, Brain Structure and Function, vol.68, issue.1, pp.525-533, 2009.
DOI : 10.1007/s00429-009-0208-6

S. Yan, D. Xu, B. Zhang, H. J. Zhang, Q. Yang et al., Graph Embedding and Extensions: A General Framework for Dimensionality Reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.1, pp.40-51, 2007.
DOI : 10.1109/TPAMI.2007.250598

M. Schmidt, D. Kim, and S. Sra, Projected Netwon-type Methods in Machine Learning, Optimization for Machine Learning, pp.312-316, 2011.

C. B. Goodlett, P. T. Fletcher, J. H. Gilmore, and G. Gerig, Group analysis of DTI fiber tract statistics with application to neurodevelopment, NeuroImage, vol.45, issue.1, pp.133-142, 2009.
DOI : 10.1016/j.neuroimage.2008.10.060

D. K. Jones, S. C. Williams, D. Gasston, M. A. Horsfield, A. Simmons et al., Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time, Human Brain Mapping, vol.17, issue.4, pp.216-230, 2002.
DOI : 10.1002/hbm.10018

N. Toussaint, J. C. Souplet, and P. Fillard, MedINRIA: Medical Image Navigation and Research Tool by INRIA, Proc. MICCAI Workshop on Interaction in Medical Image Analysis and Visualization, pp.1-8, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00616047

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin et al., A supervised clustering approach for fMRI-based inference of brain states, Pattern Recognition, vol.45, issue.6, pp.2041-2049, 2012.
DOI : 10.1016/j.patcog.2011.04.006

URL : https://hal.archives-ouvertes.fr/inria-00589201