N

N

Bocop - A collection of examples

Frédéric J. Bonnans, Pierre Martinon, Vincent Grélard

» To cite this version:

Frédéric J. Bonnans, Pierre Martinon, Vincent Grélard. Bocop - A collection of examples. [Research
Report] RR-8053, INRIA. 2012. hal-00726992

HAL Id: hal-00726992
https://inria.hal.science/hal-00726992
Submitted on 31 Aug 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-00726992
https://hal.archives-ouvertes.fr

BOCOP - A collection of
examples

Frédéric Bonnans, Pierre Martinon, Vincent Grélard

RESEARCH
REPORT

N° 8053

September 2012

ISSN 0249-6399 ISRN INRIA/RR--8053--FR+ENG

Project-Teams Commands







V4

: in]nrmatics,mathemutics

BOCOP - A collection of examples

Frédéric Bonnang Pierre Martinon*, Vincent Grélard*
Project-Teams Commands

Research Report n° 8053 — September 2012 — [21] pages

Abstract: In this document we present a collection of classical optimal control problems which
have been implemented and solved with Bocop. We recall the main features of the problems and
of their solutions, and describe the numerical results obtained.

Key-words: optimal control, direct method, nonlinear programming, automatic differentiation,
singular arc, state constraint

* Inria Saclay and Cmap Ecole Polytechnique

RESEARCH CENTRE
SACLAY - ILE-DE-FRANCE

Parc Orsay Université
4 rue Jacques Monod
91893 Orsay Cedex



BOCOP - Un catalogue d’exemples

Résumé : Ce document présente un catalogue d’exemples de problémes de controle optimal et
leur résolution avec Bocop. On rappelle les principales caractéristiques des problémes avec leur
solutions, et on décrit les résultats numériques obtenus.

Mots-clés : controle optimal, méthode directe, optimisation non linéaire, différentiation au-
tomatique, arc singulier, contrainte d’état
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4 Bonnans & Martinon & Grélard

1 Overview

The Bocop project aims to develop an open-source toolbox for solving optimal control problems,
with collaborations involving industrial and academic partners. Optimal control (optimization
of dynamical systems governed by differential equations) has numerous applications in the fields
of transportation, energy, process optimization, and biology. Bocop is developed in the frame-
work of the Inria-Saclay initiative for an open source optimal control toolbox (2010-2012), and
is supported by the Commands team.

Please visit the website for the latest news and updates. You are welcome to suscribe to the
trimestrial newsletter, and join the forum as well.

The Bocop team hopes you have a nice experience with the software !

Website: www.bocop.org
Contact: Pierre Martinon (pierre.martinon@inria.fr).

Platform

The native platform for Bocop is Linux, but Bocop can also be compiled under MacOS X and
Windows. We are considering the possibility of providing precompiled binaries for the thirdparty
softwares.

Interface

The current GUI for Bocop is written in Scilab, and a standalone GUI is planned for future
versions. Bocop can be used in command line mode, especially for experienced users. However,
we recommend using the GUI, at least for the first steps. Also, some graphical features such as
interpolation for the initial point are much easier to use with the GUI.

Core

The core files for Bocop are written in C++ and released under the Eclipse Public License.
User supplied functions can be written in plain C, and do not require advanced programming
skills. We plan to provide import guidelines for models already written in different languages,
such as Fortran.

Thirdparty
Bocop currently uses Ipopt (with MUMPS as linear solver) for solving the nonlinear pro-
gramming problem resulting from the direct transcription of the optimal control problem. Bocop

relies on ADOL-C (with ColPack for the sparsity) to compute derivatives of the objective and
constraints by automatic differentation.

Inria



BOCOP - A collection of examples 5

In this document we present a collection of classical optimal control problems which have been
implemented and solved with Bocop. We recall the main features of the problems and of their
solutions, and describe the numerical results obtained. Our numerical tests use generally 100
time steps or so, with initialization of the control and state variables by appropriate constants.
The solution is computed in a few seconds.

Users are encouraged to experiment with the data in these problems in order to get acquainted
with the use of Bocop. It is interesting to observe how the convergence is affected by changes in
the initialisation of the control and state, the number of time steps, or the discretization scheme.
A further step might be to make changes in the dynamics or cost function.

We hope that providing these documented examples will help users to write and solve their
own applications with Bocop. The following problems are sorted in four general categories:
integrator systems, process control, mechanical systems and aerospace, and PDE control of
parabolic equations.

RR n° 8053



6 Bonnans & Martinon & Grélard

2 Integrator systems

2.1 Generic form

We consider integrator systems of the form
x(k)(t) - u(t)v te [OvT]a (1)

for k = 1 to 3. The state variables are therefore y; = x, and for k > 1, yo = @,...,yp = 2F~,
The cost function is fOT 0(t,u(t),y(t))dt, with

0t u(t), y(t) == ax(t) + fra?(t) 4+ Bod®(t) + yu(t) + 0u(t). (2)

Setting the constants «,...,d allows for a wide variety of cost functions (note that of course
B2 = 0 when k& = 1). We add the control and state constraints for all ¢

ut) € [-1,1;  y(t) = a. (3)

2.2 First-order system

While these examples are very simple, they nevertheless show some typical behavior that will be

extended later to higher order systems. Consider first the problem
T

Mz'n/ 22 (t) + yu(t) + ou?(t) dt

0 (4)
i(t) =u(t), tel0,T], =z(0)=ax".

If (v,0) = (1,0), (0) = 1, and T > 1, then the solution is u(t) = —1 for ¢ € [0, 1], and u(t) = 0
for t > 1. In particular, the control is discontinuous but piecewise continuous. If we change § to
a small positive value, say 0.1, we see that the control is continuous, althought it varies sharply
when the time comes close to 1.

The user may experiment what happens when the state constraint threshold a is positive:
again the control is discontinuous when § = 0, and continuous when ¢ > 0.

We next discuss the optimal control of two second order integrator systems.

2.3 Fuller problem

Here is a very classical example of a chattering phenomenon [6]:
T
Min / 2(0)dt; #(t) = ult) € [-1,1]. (5)
0

The solution is, for large enough 7', bang-bang (i.e., with values alternativement +1), the switch-
ing times geometrically converging to a value 7 > 0, and then the (trivial) singular arc x = 0
and v = 0. These switches are not easy to reproduce numerically. We display in figure [I] the
control, with a zoom on the entry point of the singular arc.

e Numerical simulations: problem fuller

Discretization: Gauss II with 1000 steps.
We take here T = 3.5, (0) = 0,%(0) = 1, 2(T) = #(T) = 0 and u(t) € [-1072,1072].

Inria
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Figure 1: Fuller problem: chattering control (with zoom); = and v.

2.4 Second order singular regulator

We consider a second order singular regulator problem, see Aly [1], or [2]:
T
Min / 20 42t dt () = u(t) € [-1,1]. (6)
0

The difference with Fuller’s problem is that the cost function includes a penalization of the
“speed” z(t). We observe in figure the occurence of a singular arc, the optimal control being of
the form bang (-1) - singular.

e Numerical simulations: problem regulator
Discretization: Runge-Kutta 4 with 1000 steps. We take here T =5, x(0) = 0,£(0) = 1.

2.5 Third order state constraints

Robbins [14] considered the following family of problems:

T
Min / oy(t) + qu®)? iy (1) = ult); y(1) >0,

It has been proved by Robbins [I4] that, for appropriate initial conditions, the exact solution
has infinitely many isolated contact points, such that the length of unconstrained arcs decreases
geometrically. Detailed computations can be found in [8]. Therefore the isolated contact points
have an accumulation point; the latter is followed by the trivial singular arc u = 0, y = 0. It
is not easy to reproduce numerically this behavior, since the unconstrained arcs rapidly become
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Figure 2: regulator problem: control.

too small to be captured by a given time discretization. We display in Figure [3| the value of the
first state component and of the control, computed with Bocop.

o Numerical simulations: problem state_ constraint 3
Discretization: Runge-Kutta 4 with 100 steps.
We take here o = 3, T = 10, y(0) = (1,—-2,0).

0.97
0.8
0.7
0.6;
0.5;
0.4;
0.3

0.2

state.1l control.1

Figure 3: Robbins example: first order state constraint and control.

It seems that no “generic” (stable with respect to a perturbation) example of a third order
state constraint with a regular entry/exit point for a singular arc is known. It is conjectured
that no such point exists.

Jacobson et al. [I1I] considered the following example:

1 T
Ming [ u(0? dts 4 0) = ule): y(t) < v
0

with initial condition for which there is no boundary arc, and one or two touch points.
Fourth order state constraints
No example with a nontrivial boundary arc is known, and it is conjectured that this does not

Inria
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occur. Let us mention the example studied by Jacobson et al. [I1]:

1T
M”‘i/ u(t)? dt; y (1) =u(t); (1) < Ymaa-
0

RR n° 8053



10 Bonnans & Martinon & Grélard

3 Process control

3.1 Jackson problem

Consider the model in [I0], also discussed in Biegler [4], of reactions A < B = C. Here the
control u(t) € [0,1] is the fraction of catalyst, and we want to maximize the production of C.
The problem is written as

Max  ¢(T)

a(t) = u(t) (ha(t) = kab(t)

b(t) = u(t) (kra(t) — kab(t)) — (1 — u(t))ksb(t) (7)
ety = w(t)(1 — u(t))ksb(t)

u(t) € [0,1]

Note that, a(t) + b(t) + ¢(t) being an invariant, we could eliminate the third state variable.
However, we decided to keep it in our implementation. We display on figure [ the second state
variable and control. We observe that, as expected, the control has a singular arc, with a bang
(1) - singular - bang(0) structure.

o Numerical simulations: problem jackson
Discretization: Gauss II with 300 steps.
We take here k1 = ks = kg = 1,ke = 10, T =4, a(0) = 1,b(0) = ¢(0) = 0.

b u
0.08 Lo
0.07 0.9
1 0.8
0.06-
1 0.7
0.057 06
0.04+ 0.5
0.03- 047
1 0.3
0.02
1 0.2
0.014 0.14
0.00 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 4: Jackson problem: concentration of “B” and control.

3.2 Methane production

We study here a bio-reactor problem involving methane production with micro-algae. The ob-
jective is to maximize the methane production by the biomass. The dynamics of the biomass x,
substrate s and micro-algae y are as follows:

Maz fOT x(t)u(t) dt

gt) = AP —ry—uy

§(t) = uBlyy —s) — pa(s)z (8)
(t) = (p2(s) —ub)x

u(t) € [0’ 1] Inria
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The growth rate of the algae depends on the day/night cycle and is of the form
fn 0<t<T/2
”(t)_{o T/2<t<T ©)
The metabolic activity of the biomass is
() = ' =— (10)
H2(5) = Ko K. +s
We have a periodicity constraint, with the value for the initial /final being free
y(T) = y(0), s(T) = s(0), x(T) = x(0). (11)

We display the states and control below, and observe that the periodicity constraints are

satisfied. The control seems to present a bang (0) - singular - bang (0) structure. The spikes at

the day/night switch may be numerical artifacts.

o Numerical simulations: problem methane

Discretization: Gauss IT with 500 steps.

We take here i = 0.5, = 0.005,7 = 10, u5* = 0.1, K, = 5,8 = 1,y = 100.

We also add the constraint z(-) > 50.

MICRO-ALGAE
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6.2
6.0

5.8

5.6
[

BACTERIA

638.57
638.0
637.5
637.0
636.57
636.0
635.57

635.0

634.5

4.5+

4.0

3.5

3.0

2.5

2.0

1.59

0.5+

SUBSTRATE

0.0

0.12-)
0.10
0.08-
0.06-
0.04-|

0.02-

INPUT_FLOW

Methane problem: states y, s, x and control.
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12 Bonnans & Martinon & Grélard

Comparison of discretization methods

We set here a final time T' = 50 corresponding to five day/night cycles. It is worth noting that
we obtain a periodic solution of period 10 (one cycle) while the constraint only appears at 0 and
T. Let us compare several methods for 100 and 200 discretization steps.

TR

Methane problem (200 steps): RK/, Gauss II, Radau II A, Lobatto III C

We notice oscillations in several methods. A way to fix this behaviour is to force a parametrized
control, for instance continuous piecewise linear. We set 10 control intervals per cycle (50 in to-
tal), and keep the 200 steps.

Continuous piecewise linear control: RK/, Gauss II, Radau II A, Lobatto III C

Now we obtain similar solutions regardless of the method. With this formulation, even low
order methods (Euler, Midpoint) give a close solution.

Inria
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4 Mechanical systems, aerospace

4.1 Clamped beam

The classical example of second-order state constraint is the one of the Euler-Bernoulli beam,

see Bryson et al. [5]

Mins fol u(

E(t) = u(t);
z(0) = z(1)

)

t)2dt
x(t

)<a
i(0) = —i(1) = 1.

The exact solution, for various values of a, is displayed in figure

028
024 7 T
// \\
// \\
. N
P N
. N
0.20 | e AN
p N
; N
) N
y \
/ \
Lol [ e U
016 | 7 P AN == N
/, s - N . N\
/ e e > AN \
/ ‘ Ve AN N \
/ // e N N \
012 - /e e N N
Iy s ~ A
s P N W
R A — N — N ]
; = > = N
/"//// e \\ \\\\\\
008 o e N N
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/// 7 N \3\\
//// // \\ \\\
s A\
4 \
0.04 J s N, \\
] / e ANEY
// \\
N
0 T \ \ \ \ \ \ \ \
0 01 02 03 04 05 06 07 08 09 10

Figure 5: Shape of a beam: the three cases and the locus of junction points

The qualitative behavior is as follows:

If @ > 1/4, the constraint is not active and the solution is z(t) = ¢(1 — t).
If a € [1/6,1/4], there is a touch point at ¢t = 1/2.

If a < 1/6, there is a boundary arc without strict complementarity: the measure has its support
at end points. The locus of switching points is piecewise affine.

Our numerical results are in accordance with the theory: we display in figure [6] the displace-
ment and control when a = 0.1, i.e., when a boundary arc occurs.

o Numerical simulations: problem clamped beam

Discretization: Gauss II with 100 steps.

RR n° 8053
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0.10
0.09;
0.08;
0.0 7;
0.06;
0.05;
0.04;
0.03;
0.02;

0.019

0.00 T T T T T T T T T 1
00 01 02 03 04 05 06 07 08 09 1.0

0.0 011 012 0‘.3 0.‘4 015 016 0‘.7 018 019 110

Figure 6: Clamped beam: a = 0.1. Boundary arc and control.

4.2 Lagrange equations

We briefly recall the derivation of rational mechanics by the Lagrange approach [12]. Given
generalized coordinates ¢ € R™, we note E(q, ) and U(q) the expression of cinetic and potential
energy. The associated Lagrangian function and action functional are

L(q,d) = Bla,d) — U(a);  Alg,d) = / Liq(t). d(t))dt, (12)

where by (g, ¢) we have denoted generalized coordinates as function of time, and their derivatives.
The Lagrange equations are the Euler Lagrange equations of the classical calculus of variations,

namely

doL 0L d [(0E(q,q 0E(q, g

o 40L 0L _d (2.9)\ _ 9E(q q)+U,(q). (13)
dt 0¢ 0q dt a4 dq

Here by U’(q) we denote the derivative of the potential function (opposite of the force deriving

from the potential). The above relation must be understood as

d (aE(q,q)) _ 0E(¢,4) 9U(q)

- = ,oe=1,...,
0q; 0q; 0¢;

dt

N. (14)

Inria
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The cinetic energy is usually of the form

1

B(q.4) = 54" M(a)d. (15)

where the N x N mass matriz M(q) is symmetric, positive definite.
Since %{;,q) = M (q)¢;, the expression of the Lagrangian equations is then

2 (M(g)d); = ;(Q)Taqu(iq)q' — agq(iq), i=1,...,N. (16)

For the simplest spring model, we have E(q,¢) = $m¢? and U(q) = $kq?, where m and
k are the mass and spring stiffness. The Lagrangian equations reduce to md(t) = —kq(t), as
expected.

4.3 Holonomic constraints

A (vector) holonomic constraint G(g) = 0, with G : RN — RM | generates (generalized) forces
of the type DG(q) " ), i.e., orthogonal to KerDG(q). The simplest way to express the resulting
equations is to apply the Euler-Lagrange equation to the “augmented” Lagrangian L[\|(q, ¢) :=
L(q,q) + X - G(g). The resulting equations are, with the above notations

Sor@a; = @ 5 Wgen FD B v an)

Glq) = 0. (18)

This is an example of an algebraic differential system. The successive time derivatives of the
algebraic constraint are

GW(g) = DG(9)g; GP(q) = D*G(9)(4)(d) + DG(q)i (19)

Substituting the expression of § in , we obtain an expression of the form
G®(q) = DG(9)M(q)~' D G(g)A + F(g,4) = 0. (20)
If DG(q) is onto, and M(q) is positive definite, then DG(q)M(q)~!DT is invertible, meaning
that we can eliminate the algebraic variable A from the algebraic equation (20). This is a highly
desirable property for the numerical schemes, and hence, the reader is advised to use the second

derivative of the holonomic constraint in the discretizated problem, rather than the holonomic
constraint itself.

Of course the intial condition (g%, ¢°) should be compatible with the holonomic constraint,
i.e., it should satisfy

G(q°) = G (q) = DG(q°)§® = 0. (21)

RR n° 8053



16 Bonnans & Martinon & Grélard

4.4 Inverted pendulum

m

L | y(t)

The inverted pendulum has Lagrangian L = %méQ — gcos#, and equation ml = gsin § where
0 is the angle to the vertical. Alternatively, let (z,y) be the Cartesian coordinates of the position
of the pendulum, subject to the constraint G(z,y) = %(mz +y? —1) = 0. The Lagrangian is then

L= %(i2+y2)+mgy+%>\(x2+y2 - 1), (22)
and the mechanical equations are
mi = x+u, my=Ay—mg. (23)
where we have set an horizontal force as the control u.

We want to minimize the objective
T
Mm/ 20 + () — 12 +a2(t) dt
0

Figure [7] shows the states x,y, the control u and multiplier \.

o Numerical simulations: problem pendulum
Discretization: Runge Kutta 4 with 400 steps.
We take here T =12, m =1 and g = 1.

The final conditions are

The initial conditions are

2(0) = —0.4794255 , y(0) = 0.8775826
#(0) = 1.0530991  , #(0) = 0.5753106

Inria
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Figure 7: Inverted pendulum: states x,y, control v and multiplier .

4.5 Goddard problem

This well-known problem (see for instance [7], [15]) models the ascent of a rocket through the
atmosphere, and we restrict here ourselves to vertical (monodimensional) trajectories. The state
variables are the altitude, speed and mass of the rocket during the flight, for a total dimension
of 3. The rocket is subject to gravity, thrust and drag forces. The final time is free, and the
objective is to reach a certain altitude with a minimal fuel consumption, ie a maximal final mass.

RR n° 8053
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All units are renormalized.

max m(T)
v ; *7%2 + m(Tmaxu - D(T’ ’U))
m = bTmamu
(PB) u() € [07 1]
r(0) =1, v(0) = 0,m(0) =1,
r(T) = 1.01
D(r(-),v() <C
T free

The drag is D(r,v) := Av?p(r), with the volumic mass is p(r) := exp(—k * (r — r0)).

We use the parameters b =7,

maz = 3.5, A =310, k = 500 and 70 = 1.

The Hamiltonian is an affine function of the control, so singular arcs may occur. We consider

here a path constraint limiting the value of the drag effect: D(r,v) < C. We will see that de-
pending on the value of C, the control structure changes. In the unconstrained case, the optimal
trajectory presents a singular arc with a non-maximal thrust. When C'is set under the maximal
value attained by the drag in the unconstrained case, a constrained arc appears. If C' is small
enough, the singular arc is completely replaced by the constrained arc.

o Numerical simulations: problem goddard

Discretization: Heun with 100 steps.

Try to change the value of C and observe the resulting control structure after optimization. You
can access this value at Definition > Bounds > Paths Constraints

Solution plot:

l—B%

Path constraint J—ox

acceleration_u

o
000 002 004 005 008 010 012 014 016 018

00
00 o1 02 03 w8 05 08 o7 08 03 Lo

\

Goddard problem: drag constraint and control - unconstrained

Goddard problem: drag constraint and control - C' = 0.5,0.6

Inria
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5 PDE control of parabolic equations

The space discretization of parabolic equations allows to obtain large scale, stiff ODE models
for which an implicit Euler scheme is convenient. In the case of complex geometries, one should
import the dynamics from finite elements libraries such as FreeFem (available on FreeFem.org).
Relevent references on this subject are Barbu [3], Hinze et al. [9], Troltzsch [16], and of course
the pioneering book by J.L. Lions [13].

5.1 Control of the heat equation

We next give a simple example for the one dimensional heat equation, over the domain Q = [0, 1].
We set Q@ = Q x [0,7T], where the final time is fixed. The control u(t) is either (i) over a part
of the domain, with Dirichlet conditions, or (ii) at the boundary by the Neumann condition. So
the state equation is in case (i)

S 1) = o Y, 0) = Xpager ut), (,0) €Q, (24)
¥6,0) = (@) y(0.0) = y(1,0) =0, 1€ (0,7, (29)

where 0 < a <1, and x| is the characteristic function of [0, a], and in case (ii)

S ) = o vl ) =0, (5,0) €Q, (26)
y('70) = yo(m); ym(oﬂt) = _Clu(t)§ yx(17t) =0, te€ [07T]' (27)

The cost function is, for v > 0 and § > 0:

;/Qy(x,t)Qd:vdt—i—/o (yu(t) +5u(t)2) dt. (28)

We discretize in space by standard finite difference approximations.

RR n° 8053
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o Numerical simulations: problem heat

As an example, we take 50 space variables, with ¢y = 0.02, ¢; = 20, and a final time T=20. The
discretization method is implicit Euler with 200 steps.

We set here v = § = 0, which gives a singular arc for the control.

We display on Fig.@ the results in the case of the Dirichlet boundary condition (a = 0). Fig@
shows the Neumann case, this time with cO0 = 0.2.

We can clearly see the differences between the boundary conditions y(1,t) =0 and y,(1,t) = 0.
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Figure 8: Heat equation, Dirichlet condition, u(t) and y(-,t).
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Figure 9: Heat equation, Neumann condition, u(t) and y(-,t).
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