Copulas based multivariate Gamma modeling for texture classification

Abstract : This paper deals with texture modeling for classification or retrieval systems using multivariate statistical features. The proposed features are defined by the hyperparameters of a copula-based multivariate distribution characterizing the coefficients provided by image decomposition in scale and orientation. As it belongs to the multivariate stochastic models, the copulas are useful to describe pairwise non-linear association in the case of multivariate non-Gaussian density. In this paper, we propose the d-variate Gaussian copula associated to univariate Gamma densities for modeling the texture. Experiments were conducted on the VisTex database aiming to compare the recognition rates of the proposed model with the univariate generalized Gaussian model, the univariate Gamma model, and the generalized Gaussian copula-based multivariate model.
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00727108
Contributeur : Nour-Eddine Lasmar <>
Soumis le : mardi 4 septembre 2012 - 12:27:50
Dernière modification le : mercredi 31 janvier 2018 - 13:46:02
Document(s) archivé(s) le : mercredi 5 décembre 2012 - 10:04:53

Fichier

icassap2009_STITOU_LASMAR_BERT...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Youssef Stitou, Nour-Eddine Lasmar, Yannick Berthoumieu. Copulas based multivariate Gamma modeling for texture classification. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, Taipei, Taiwan. IEEE, pp.1045-1048, 2009, 〈10.1109/ICASSP.2009.4959766〉. 〈hal-00727108〉

Partager

Métriques

Consultations de la notice

323

Téléchargements de fichiers

739