Copulas based multivariate Gamma modeling for texture classification - Archive ouverte HAL Access content directly
Conference Papers Year : 2009

Copulas based multivariate Gamma modeling for texture classification

(1) , (1) , (1)
1

Abstract

This paper deals with texture modeling for classification or retrieval systems using multivariate statistical features. The proposed features are defined by the hyperparameters of a copula-based multivariate distribution characterizing the coefficients provided by image decomposition in scale and orientation. As it belongs to the multivariate stochastic models, the copulas are useful to describe pairwise non-linear association in the case of multivariate non-Gaussian density. In this paper, we propose the d-variate Gaussian copula associated to univariate Gamma densities for modeling the texture. Experiments were conducted on the VisTex database aiming to compare the recognition rates of the proposed model with the univariate generalized Gaussian model, the univariate Gamma model, and the generalized Gaussian copula-based multivariate model.
Fichier principal
Vignette du fichier
icassap2009_STITOU_LASMAR_BERTHOUMIEU_VF.pdf (67.9 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00727108 , version 1 (04-09-2012)

Identifiers

Cite

Youssef Stitou, Nour-Eddine Lasmar, Yannick Berthoumieu. Copulas based multivariate Gamma modeling for texture classification. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, Taipei, Taiwan. pp.1045-1048, ⟨10.1109/ICASSP.2009.4959766⟩. ⟨hal-00727108⟩
212 View
1106 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More