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X-Kaapi: un support exécutif multi-paradigme
pour architecture multi-cœur

Résumé : Ce rapport présente X-Kaapi, un support exécutif pour archi-
tecture multi-cœur qui permet l’exploitation conjointe de plusieurs paradigmes
de programmation parallèle (boucles indépendantes, fork-join, flot de don-
nées). Les surcoûts à l’exécution sont faibles et nous présentons des compara-
isons pour la programmation de boucles indépendantes avec OpenMP, et sur
des problèmes en algèbre linéaire dense nous nous comparons à QUARK/-
PLASMA. Enfin nous présentons les résultats obtenus lors de la parallélisa-
tion du code EUROPLEXUS de dynamique rapide et qui utilise plusieurs de
ces paradigmes.

Mots-clés : environment de programmation parallèle, X-Kaapi, Euro-
plexus
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1 Introduction

Industrial codes usually require mixing different parallelization paradigms to
achieve interesting speedups. The challenge is to develop programming and
runtime environments that efficiently support this multiplicity of paradigms.
We introduce X-Kaapi, a runtime for multicore architectures designed to
support multiple parallelization paradigms with high performance thanks
to a low overhead scheduler. Our case study is the industrial numerical
simulation code for fast transient dynamics called EUROPLEXUS. EURO-
PLEXUS1,2 is dedicated to complex simulations in industrial framework,
with a large source code composed of 600.000 lines of Fortran. It supports
1-D, 2-D and 3-D models, based on either continuous or discrete approaches,
to simulate structures and fluids in interaction. EUROPLEXUS supports
non-linear physics for both geometrical (finite displacements, rotations and
strains) and material (plasticity, damage, etc) properties. A typical simula-
tion spends more than 70% of the execution time in:

1. large loops with independent iterations,

2. Sparse Cholesky matrix factorizations in a Skyline storage format.

As EUROPLEXUS is mainly used to simulate impacts, structures are subject
to important deformations, leading to changing and unbalanced work loads.

Reaching high performance on multicore architectures requires several
threads of control running mostly independent code, with few synchroniza-
tions to ensure a correct progress of the computation. Programming directly
with threads is highly unproductive and error prone [16]. Two main pro-
gramming alternatives have been developed. Cilk [3] promotes a fork-join
parallel paradigm with theoretical guarantees on the expected performance.
OpenMP [17] relies on code annotations to generate parallel programs. Cilk
and OpenMP have both basic constructs to parallelize independent loops.
With OpenMP the user has also the ability to guide the way iterations are
scheduled among the threads.

Ten years after Cilk, the introduction of tasks in OpenMP-3.0 makes Cilk
and OpenMP, at a first glance, very close. They seem to be good candidates
for a task based Cholesky factorization [13, 1], but the current implemen-
tation of tasks in OpenMP-3.0 [17] (in Intel compiler or GCC compiler) is
several orders of magnitude more costly than in Cilk, making it hard to reach
portable performance because of the grain size decision problem [3, 6].

Moreover, [13, 6] show that OpenMP-3.0 and Cilk parallel models limit
the available parallelism for a dense Cholesky factorization. The authors
promote a data flow runtime that is able to encode finer data flow synchro-
nizations between tasks. The runtime can detect concurrent tasks as soon as

1http://europlexus.jrc.ec.europa.eu/public/manual_html/index.html
2http://www.repdyn.fr
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their inputs are produced. Such data flow programming model is a promising
approach for our sparse Cholesky factorization.

Several runtimes and languages were based on a data flow paradigm,
like Athapascan [9] used for sparse Cholesky factorizations [5], QUARK [22],
the data flow runtime of the PLASMA dense linear algebra library [4], the
StarSS programming model with its SMP implementation called SMPSs [2],
or StarPU [1] dedicated to multi-GPU computations. But none of these soft-
wares support independent loops. Moreover, they do not allow the creation
of recursive tasks, discarding recursive parallel algorithms.

The X-Kaapi runtime we introduce in this paper proposes a new unified
framework based on data flow tasks and workstealing dynamic scheduling
to develop multi-paradigms fine grain parallel programs. A comparison with
OpenMP shows that our dynamic scheduler can outperform both the static
and dynamic OpenMP scheduler. We also used X-Kaapi to develop a binary
compatible QUARK library to schedule PLASMA’s algorithms with better
scalability at a finer grain. Finally, we report preliminary results mixing
both parallel loops and data flow task parallelism in EUROPLEXUS.

Next section presents the X-Kaapi’s parallel programming model. We
focus on its adaptive task model, and how it is used to support parallel loops.
Section 3 reports experimental evaluations compared to OpenMP [17] on
parallel loops and QUARK [22] on dense Cholesky factorizations. Section 4
evaluates the parallelization of EUROPLEXUS as compared with OpenMP,
before concluding.

2 Data flow task programming with X-Kaapi

The X-Kaapi’s task model [10] , as for Cilk [3], Intel TBB [19], OpenMP-
3.0 [17] or StarSs/SMPSs [2], enables non blocking task creation: the caller
creates the task and continues the program execution. The semantic re-
mains sequential like for its predecessor Athapascan [9], but the runtime
was redesigned [10] and the task model extended to support adaptive tasks
(section 2.4).

The execution of a X-Kaapi program generates a sequence of tasks that
access to data in a shared memory. From this sequence, the runtime extracts
independent tasks to dispatch them to idle cores. We focus here on the
multicore version of X-Kaapi.

2.1 Design choices

More than a runtime, X-Kaapi3 is a fully featured software stack to program
heterogeneous parallel architectures. The stack is written in C and was
designed using a bottom up approach: each layer is kept as specialized as

3http://kaapi.gforge.inria.fr
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possible to fit a specific need. Currently, the stack includes: a runtime
supporting multicores and multiprocessors; a set of ABIs (QUARK [22],
OpenMP runtime libGOMP); a set of high level APIs (C [14], Fortran and
C++; subset of Intel TBB [19]); and a source to source compiler [15] based
on the ROSE framework [18].

2.2 Data flow task model

A X-Kaapi program is composed of sequential C or C++ code and some
annotations or runtime calls to create tasks. The parallelism in X-Kaapi is
explicit, while the detection of synchronizations is implicit [10]: the depen-
dencies between tasks and the memory transfers are automatically managed
by the runtime.

A task is a function call that returns no value except through the shared
memory and the list of its effective parameters. Depending of the APIs,
tasks are created using code annotation (#pragma kaapi task directive) if
the X-Kaapi’s compiler [15] is used, or by library function (kaapic_spawn
call using X-Kaapi’s C API [14]), or by low level runtime function calls.

Tasks share data if they have access to the same memory region. A
memory region is defined as a set of addresses in the process virtual address
space. This set has the shape of a multi-dimensional array. The user is
responsible for indicating the mode each task uses to access memory: the
main access modes are read, write, reduction or exclusive [9, 10, 15, 14].
When required [10], the runtime computes true dependencies (Read after
Write dependencies) between tasks thanks to the access modes. At the
expense of memory copy, the scheduler may solve false dependencies through
variable renaming.

A thread creates tasks and pushes them in its own workqueue. The
workqueue is represented as a stack. The enqueue operation is very fast,
typically about ten cycles on the last x86/64 processors. As for Cilk, a
running X-Kaapi’s task can create child tasks, which is not the case for
the other data flow programming softwares previously mentioned [22, 2, 1].
Once a task ends, the runtime executes the children following a FIFO or-
der. During task execution, if a thread encounters a stolen task, it suspends
its execution and switches to the workstealing scheduler that waits for de-
pendencies to be met before resuming the task. Otherwise, and because
sequential execution is a valid order of execution [9, 10], tasks are performed
in FIFO order without computation of data flow dependencies.

2.3 Execution with workstealing algorithm

X-Kaapi relies on workstealing, popularized by Cilk [3], to dynamically bal-
ance the work load among cores. Once a thread becomes idle, it becomes a
thief and initiates a steal request to a randomly selected victim. On reply,

RR n° 8058
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the thief receives one or more ready tasks. X-Kaapi favors request aggrega-
tion [11]: N pending requests to a same victim are handled in one operation,
reducing the number of ready task detections. A theoretical analysis in [20]
shows a reduction of the total steal request number. In our protocol, one of
the thieves is elected to reply to all requests.

As opposed to Cilk, X-Kaapi considers tasks with data flow dependen-
cies. Following the work first principle [8], X-Kaapi computes ready tasks
on steals, favoring work at the expense of the critical path. The detection
of a ready task consists in a traversal of the victim stack from the top most
task (the oldest), to look all its predecessors have been completed. Follow-
ing the Cilk’s T.H.E protocol [8], X-Kaapi synchronizes the thief and victim
using a Dijkstra’ protocol. Except in rare cases, the victim and the thief ex-
ecute concurrently. Using this approach, X-Kaapi and Cilk show similar
overheads for the execution of independent tasks (see section 3.1).

The overhead to manage tasks and to compute the data flow graph may
remain important. To reduce this overhead, X-Kaapi implements two orig-
inal optimizations.

First, when the cost of computing ready tasks becomes important, the
runtime attaches to the victim an accelerating data structure for steal oper-
ations. The structure contains a list that gets updated with tasks becoming
ready due to the completion of their data flow dependencies. A subsequent
steal operation is reduced to the pop of a task from the ready list (nearly
constant time operation), without a traversal of the victim stack.

The second optimization enables a more fundamental reduction of par-
allelism overhead. Parallel versions of some algorithms require more opera-
tions than their sequential counterpart. The overhead is directly related to
the number of created tasks. The idea is thus to limit the number of tasks
by creating them on demand, as computing resources become idle. These so
called adaptive tasks are detailed in the following section.

2.4 Adaptive task model

Writing performance-portable programs within the task programming model
requires creating much more tasks than available computing resources. Then,
the scheduler can efficiently and dynamically balance the work load. How-
ever, the extra operations required to merge the partial results account for
overhead since it is not present in the sequential algorithm. Fich [7] proved
that any parallel algorithm of time log n to compute prefix of n inputs re-
quires at least 4n operations, versus n−1 operations in sequential. Adapting
the number of created parallel tasks to dynamically fit the number of avail-
able resources is the key point to reach high performance. With an other
approach for implementing this adaptation, we have proposed this on de-
mand task creation to build coarse grain parallel adaptive algorithms for
most of the STL algorithms [21]. Here, the proposed solution extends the

RR n° 8058
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task model for a much more finer integration with the scheduler.
In data flow model, once all inputs of a task are produced, it becomes

ready for execution. A task being executed cannot be stolen. To allow
on demand task creation, X-Kaapi extends this model: a task publishes
a function, called the splitter, to further divide the remaining work. The
splitter is called on a running task by an idle thread during a steal operation.
The task and its splitter are concurrent and must be carefully managed as
they both need to access shared data structure. The programmer is held
responsible for writing correct task and splitter codes. To help him, the
X-Kaapi runtime ensures that only one thief performs splitter concurrently
with the task execution. It allows for simple and efficient synchronization
protocols. Moreover, for applications developers, a set of higher parallel
algorithms, like those of the STL [21], are proposed on top of the adaptive
task model. Next section focuses on the parallel foreach algorithm.

2.5 Adaptive tasks for parallel loops

Following the OpenMP parallel for directive, X-Kaapi proposes a par-
allel loop function called kaapic_foreach, which is used in the backend of
our X-Kaapi compiler [15].

A call to kaapic_foreach creates an adaptive task that iterates through
the input interval [first, last) to apply a functor (the loop body). The initial
interval is partitioned in p slices, one slice reserved to each available core.
When a thread calls the splitter to obtain work from the adaptive task, it
grabs the reserved slice if available. The splitter returns an adaptive task
that calls the functor for each iteration of the slice.

If the initial slice is not longer available, the splitter tries to split the
interval [bt, e) corresponding to the iteration that remains to be process at
time t. Thanks to the concurrency level guaranteed by the scheduler, a
Dijkstra’s like protocol ensures coherent split of interval while task iterates.
The aggregation protocol is able to process k steal requests at once. The
main thief tries to split [bt, e) into k+1 equal slices, leaving one slice for the
victim. Then, for each of the k requests, the thief returns approximately the
same amount of work for balancing purpose [20].

3 Benchmarks

This section presents a synthetic selection of three benchmarks to compare
X-Kaapi performance with respect to three parallel programming models:
fork-join model, parallel loops and data flow tasks.

The multicore platform used in this section is a 48 cores AMD Magny
Cours platform with 256GBytes of main memory. Each core frequency is
2.2Ghz. The machine has 8 NUMA nodes. Each node has 6 cores sharing a
L3 cache of 5 MBytes. Reported times are averaged over 30 runs.

RR n° 8058
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3.1 Task creation time

This section compares the overhead of task creation and execution with re-
spect to the sequential computation. The experiment evaluates the time to
execute the X-Kaapi program of figure 1 for computing the 35-th Fibonacci
number. The program recursively creates tasks without any data flow depen-
dency. X-Kaapi is compared with Intel Cilk+ (icc 12.1.2), Intel TBB-4.0
and OpenMP-3.0 (gcc-4.6.2). Fibonacci is a standard benchmark used by
Cilk [8] and Intel TBB (part of TBB-4.0 source code). Sequential time is
0.091s. Figure 1 reports times using 1, 8, 16, 32 and 48 cores.

void f i b o n a c c i ( long ∗ r e su l t ,
const long n)

{
i f (n<2)

∗ r e s u l t = n ;
e l s e
{

long r1 , r2 ;
#pragma kaapi task wr i t e (&r1 )

f i b o n a c c i ( &r1 , n−1 ) ;
f i b o n a c c i ( &r2 , n−2 ) ;

#pragma kaapi sync
∗ r e s u l t = r1 + r2 ;

}
}

#cores Cilk+ TBB Kaapi OpenMP
1 1.063 2.356 0.728 2.429

(slowdown:1) (x 11.7) (x 26) (x 8) (x27)
8 0.127 0.293 0.094 51.06
16 0.065 0.146 0.047 104.14
32 0.035 0.072 0.024 (no time)
48 0.028 0.049 0.017 (no time)

a. X-Kaapi Benchmark using KaCC b. Time (second)

Figure 1: Fibonacci micro benchmark. Sequential time is 0.091s for Fi-
bonacci 35.

Benchmark sources for OpenMP or TBB are not listed but they create
exactly the same number of tasks and synchronization points. TBB has more
overhead with respect to the sequential computation (slowdown of about
26) in comparison to X-Kaapi (slowdown of 8). This overhead can easily be
amortized by increasing the task granularity, but at the expense of increasing
the critical path, thus reducing the available parallelism [8]. OpenMP (gcc
4.6.2) performs poorly: the grain is too fine and OpenMP cannot speed
up the computation. Computation was stopped on 32 and 48 cores after
5 minutes. The relatively good time of OpenMP with 1 core is due to an
artifact of the libGOMP runtime: for one core, task creation is degenerated
to a standard function call.

3.2 Data flow Cholesky factorization

The Cholesky factorization is an important algorithm in dense linear algebra.
This section reports performances of the block version PLASMA_dpotrf_Tile

RR n° 8058
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of PLASMA 2.4.2 [4]. On a multicore architecture, PLASMA relies on the
runtime QUARK [22] to manage data flow tasks. QUARK only supports
a subset of the functionalities offered by X-Kaapi. Thus, we have ported
QUARK on top of X-Kaapi to produce a binary compatible QUARK li-
brary, which is linked with PLASMA algorithms for X-Kaapi experiments.
Figure 2 reports the performances (GFlop/s) with respect to the matrix size
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Figure 2: Gflops on Cholesky algorithm with QUARK and X-Kaapi. Tile
size of NB = 128 (left) or NB = 256 (right).

on 48 cores. QUARK implements a centralized list of ready tasks, with
some heuristics to avoid accesses to the global list. For fine grain tasks
(NB = 128) and due to a contention point to access the global list, X-Kaapi
outperforms QUARK. We can expect this contention point to become more
severe as the core number increases with next generation machines, affect-
ing PLASMA performance. When the grain increases, X-Kaapi remains
better but the difference decreases because of the relatively small impact of
task management with respect to the whole computation. One can also note
that increasing the grain size reduces the average parallelism and limits the
speedup. For matrix of size 3000, the performance for NB = 128 reaches
almost 150GFlops, while for NB = 256, it drops to about 75GFlops.

3.3 Parallel independent loops

We compare OpenMP/GCC 4.6.2 parallel loop using static and dynamic
schedule against X-Kaapi (kaapic_foreach version). Figure 3 reports speedups
(Tseq = 386s) of the two parallel loops of the EUROPLEXUS application
(next section). Both OpenMP static and dynamic schedule have the same
performances. Globally, OpenMP and X-Kaapi speedups are very close, but
X-Kaapi outperforms OpenMP past 25 cores. The same cores were used by
X-Kaapi and OpenMP by binding threads to cores using an affinity mask.

RR n° 8058
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Figure 3: Comparison of parallel loop speedup

4 EUROPLEXUS

EUROPLEXUS is a computer program for the simulation of fluid-structure
systems under transient dynamic loading. The code is co-owned since 1999
by French CEA and European Commission (Joint Research Center, Institute
for the Protection ans Security of the Citizen) and jointly developed through
a consortium also involving EDF (French national electricity board) and ON-
ERA (French aerospace research labs). EUROPLEXUS uses finite elements,
SPH particles or discrete elements to model structures and finite elements,
finite volumes or SPH particles to model fluids. EUROPLEXUS is dedicated
to simulating the consequences of extreme loadings such as explosion and im-
pacts, with strong coupling between structures and fluids. Time integration
is explicit (central difference schemes for structures and explicit Euler for
fluids) and about 140 geometric elements are available, along with about
100 material models and about 50 kinds of kinematic connexions between
entities, such as unilateral contact, fluid structure links for both conformant
meshes and immersed boundaries or various kinds of constrained motions.
To avoid non-physical parameters throughout the kinematic constraints en-
forcement procedure, Lagrange multipliers are used to compute link forces,
yielding the need for linear system solvers alongside the classical explicit
solution process.

The source code is thus complex (600.000 lines of Fortran) and many al-
gorithms are involved simultaneously within classical simulations. However,
two main kinds of algorithmic tasks accounts for 70% of a common EU-
ROPLEXUS execution: 1/ independent parallel loops for nodal force vector
evaluations and kinematic link detection; 2/ sparse Cholesky factorization of
the so-called H matrix, obtained from the condensation of dynamic equilib-
rium equations onto Lagrange multipliers, in a Skyline representation (the
cost of following triangular system solutions being neglected).

RR n° 8058
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Practically, three main algorithms are considered for subsequent exam-
ples: representative of classical EUROPLEXUS simulations in structural do-
main. They are named from the Fortran procedure used in EUROPLEXUS
to perform the task:

1. LOOPELM: independant loop on finite elements to compute nodal
internal forces from local mechanical behaviour,

2. REPERA: independant loop to sort candidates for node_to_facet uni-
lateral contact,

3. CHOLESKY: perform Cholesky factorization of a symetric positive
semi-definite matrix.

The distribution of execution times between these three algorithms varies
with the simulation step and with the considered instance. In this paper we
focus on two simulation scenarios. The first one, called MEPPEN, consists
in the crash of a large steel missile on a perfectly rigid wall. The second
one, called MAXPLANE, consists in the impact of a ice projectile on a
composite plate. Due to physics and modelling, these two instances provide
very different repartitions of time among the considered algorithms:

• MEPPEN is characterized by large structural strains, strongly non-
linear behaviour and multiple contacts as the missile undergoes dy-
namic buckling: time is then mainly split between LOOPELM, with
large ratios between finite elements, and REPERA,

• MAXPLANE is characterized by a modelling of the composite plate
plies using 3D finite elements, with contact conditions between each
plies, so that the size and filling of the H matrix are close to those of the
system stiffness matrix: the solution procedure is then strongly domi-
nated by the condensed system solution, and then by the CHOLESKY
algorithm.

4.1 LOOPELM and REPERA loops

Figure 4 details the X-Kaapi speedups for the MEPPEN (left) and MAX-
PLANE (right) instances. On the smallest instance, MEPPEN, the LOOPELM
has limited speedup due to its memory intensive character. REPERA is more
computation intensive leading to a good speedup.

4.2 Sparse Cholesky factorization

The sparse Cholesky factorization (LDL t) represents about 60% of the ex-
ecution time for the MAXPLANE instance. The numerical scheme requires
to factor and solve a linear system at each time step. The linear system is
sparse and its size and density depend on the interactions in the simulation.

RR n° 8058
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Figure 4: Speedups of LOOPELM and REPERA on MEPPEN and MAX-
PLANE.

1 for ( k = 0 ; k < N; k += BS)
2 {
3 po t r f (k , &s l i ) ;
4 for (m = k + BS ; m < N; m += BS)
5 {
6 i f ( is_empty (m, k , &s l i ) ) continue ;
7 trsm (k , m, &s l i ) ;
8 }
9 for (m = k + BS ; m < N; m += BS)

10 {
11 i f ( is_empty (m, k , &s l i ) ) continue ;
12 syrk (k , m, &s l i ) ;
13 for (n = k + BS ; n < m; n += BS)
14 {
15 i f ( is_empty (n , k , &s l i ) ) continue ;
16 i f ( is_empty (m, n , &s l i ) ) continue ;
17 gemm(k , m, n , &s l i ) ;
18 }
19 }
20 }
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Figure 5: Sequential sparse Cholesky code. Speedups of X-Kaapi vs
OpenMP.

The pseudo sequential code is sketch in figure 5. Variable sli is the skyline
representation of the sparse matrix to factorize. The function calls potrf,
trsm, syrk and dgemm at lines 3, 7, 12, and 17 are pseudo blas functions
with sli the skyline matrix parameter and k, n, m the indexes delimiting
the block to process. All these calls create tasks in the X-Kaapi version.
Only calls at line 7, 12 and 17 create tasks in OpenMP.

In the X-Kaapi version, these indexes serves as defining memory accesses
to compute dependencies. OpenMP parallelization implies synchronization
between tasks in order to satisfy data flow dependencies. So, #pragma omp
taskwait directives have to put after lines 8 and 19. As noted by [13], the
parallel data flow version only specifies tasks with access modes, without
explicit synchronizations.

Figure 5 reports speedup using a matrix that appear during the MAX-
PLANE simulation. The dimension of the matrix is 59462 with 3.59% of
non zero elements. We looked for the best block size for this experiment:
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BS = 88. The sequential time is 47.79s. X-Kaapi version outperforms
OpenMP (gcc-4.6.2) version, for the same reasons as for the dense Cholesky
factorization [13].

4.3 Overall gains of EUROLEXUS

Figure 6 reports the performances of the parallel version with respect to the
sequential code. The left bar in the histograms represents sequential time
decomposition with respect to the time of each algorithm presented above.
The Amdhal’s law applies: we have started parallelization of the remaining
sequential part.
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Figure 6: Overall gains of EUROPLEXUS with X-Kaapi.

5 Related work

Kaapi [10] was designed in our group after the preliminary work on Athapas-
can [9, 5]. X-Kaapi keeps definition of access mode to compute data flow
dependencies between a sequence of tasks. StarSs/SMPSs [2], QUARK [22],
StarPU [1] follow the same design. Differences are in the kind of access mode
and the memory region shape that is defined : StarSs/SMPSs, QUARK
have similar access mode and consider unidimensional array. QUARK has
an original scratch access mode to reuse thread specific temporary data.
StarPU [1] has a more complex way to split data and define sub-view of a
data structure. X-Kaapi has direct support for multi-dimensional arrays.

The data flow task model is flat in StarSs/SMPSs, QUARK and StarPU
while X-Kaapi allows recursive task creation. The fork-join parallel paradigm
is only supported by X-Kaapi, Intel TBB [19], Cilk [8] and Cilk+ (Intel ver-
sion of Cilk). The X-Kaapi performance for fine grain recursive applications
is equivalent, or even better, than Cilk+ and Intel TBB that only allow in-
dependent task creations. In TBB, Cilk or X-Kaapi task creation is several
order of magnitude less costly than in StartSs/SMPSs, QUARK or StarPU.
QUARK and StarPU cannot scale well due to their central list scheduling.
SMPSs seems to support a more distributed scheduling.
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X-Kaapi has a unique model of adaptive task that allow a runtime adap-
tation of task creation when resources are idle. The OpenMP libGOMP
runtime implements a threshold heuristic that limits task creation when the
number of tasks is greater than 64 times the number of threads. It can limit
the parallelism of the application and thus performance cannot be guaranteed
like with a workstealing algorithm. TBB, with autopartitionner heuristic, is
able to limit the number of tasks without, a priori, limit the parallelism of
the application.

Intel TBB, Cilk+, OpenMP and X-Kaapi support parallel loop which
are not present in StarSs/SMPSs, QUARK or StarPU. Our comparison with
OpenMP/GCC 4.6.2 shows that for benchmarked instances and applications,
scheduling strategy is not an important feature.

6 Conclusions and future directions

This paper introduced the X-Kaapi multi paradigm parallel programming
model. Experiments highlighted that for each paradigm specific benchmark,
X-Kaapi reaches a similar or better performance than the reference soft-
ware for this paradigm. We also compare OpenMP and X-Kaapi on the in-
dustrial code EUROPLEXUS. If for the parallel loop parallelism, X-Kaapi
and OpenMP show an equivalent performance (with better scalability for
X-Kaapi), for data flow tasks the OpenMP parallel model imposes synchro-
nizations that limits the speedup. This overhead experienced with our sparse
Cholesky factorization, was already spotted in [13] on dense linear algebra
factorizations.

This X-Kaapi evaluation draws two interesting conclusions: 1/ the OpenMP
dynamic and static schedulers, which comes from historical design choices,
would benefit from being unified. Intel TBB only proposes a dynamic sched-
uler; 2/ a (macro) data flow task model supporting recursivity can be effi-
ciently implemented and be competitive with a simple fork-join model.

Ongoing work focuses on our compiler infrastructure, and to integrate our
multi-CPUs multi-GPUs support [12] and distributed memory architecture
support [10].
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