Correlation-Based Burstiness for Logo Retrieval

Jérôme Revaud 1 Matthijs Douze 1 Cordelia Schmid 1
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Detecting logos in photos is challenging. A reason is that logos locally resemble patterns frequently seen in random images. We propose to learn a statistical model for the distribution of incorrect detections output by an image matching algorithm. It results in a novel scoring criterion in which the weight of correlated keypoint matches is reduced, penalizing irrelevant logo detections. In experiments on two very diff erent logo retrieval benchmarks, our approach largely improves over the standard matching criterion as well as other state-of-the-art approaches.
Type de document :
Communication dans un congrès
MM 2012 - ACM International Conference on Multimedia, Oct 2012, Nara, Japan. ACM, pp.965-968, 2012, 〈10.1145/2393347.2396358〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-00728502
Contributeur : Thoth Team <>
Soumis le : jeudi 6 septembre 2012 - 11:28:37
Dernière modification le : jeudi 11 janvier 2018 - 06:21:56
Document(s) archivé(s) le : vendredi 7 décembre 2012 - 03:41:58

Fichiers

msp073-revaud.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jérôme Revaud, Matthijs Douze, Cordelia Schmid. Correlation-Based Burstiness for Logo Retrieval. MM 2012 - ACM International Conference on Multimedia, Oct 2012, Nara, Japan. ACM, pp.965-968, 2012, 〈10.1145/2393347.2396358〉. 〈hal-00728502〉

Partager

Métriques

Consultations de la notice

609

Téléchargements de fichiers

1429