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Abstract. We study a graph-augmentation problem arising from a technique applied in recent ap-

proaches for route planning. Many such methods enhance the graph by inserting shortcuts, i.e., addi-

tional edges (u,v) such that the length of (u,v) is the distance from u to v. Given a weighted, directed

graph G and a number c ∈Z>0, the shortcut problem asks how to insert c shortcuts into G such that the

expected number of edges that are contained in an edge-minimal shortest path from a random node s to

a random node t is minimal. In this work, we study the algorithmic complexity of the problem and give

approximation algorithms for a special graph class. Further, we state ILP-based exact approaches and

show how to stochastically evaluate a given shortcut assignment on graphs that are too large to do so

exactly.

1 Introduction

Background. Computing shortest paths in graphs is used in many real-world applications like

route-planning. Shortest paths from a given source to a given target can be computed by DIJK-

STRA’S algorithm, but the algorithm is slow on huge datasets. Therefore, it can not be directly

used for applications like car navigation systems or online working route-planners that require an

instant answer to a source-target query. In the last decade various preprocessing-based techniques

have been developed that yield much faster query-times (see [25, 31] for an overview).

One core part of some of these approaches is the insertion of shortcuts [7, 9, 13–15, 20, 24,

26, 28, 29], i.e., additional edges (u,v) whose length is the distance from u to v and that represent

shortest u-v-paths in the graph. The strategies of assigning the shortcuts and of exploiting them

during the query differ depending on the speedup-technique. Many techniques work as follows:

In a preprocessing stage, the nodes of the input graph are assigned to a level and shortcuts are

added to the graph. Afterwards, the query stage is similar to bidirectional Dijkstra’s algorithm

but omits –depending on the level – some edges. However, it is still guaranteed that correct dis-

tances are computed. Until now, all existing shortcut insertion strategies are heuristics and only

few theoretical worst-case or average case results are known [1, 5].

In this context, an interesting new theoretical problem arises: Given a weighted, directed graph

G and a number c ∈ Z>0, the shortcut problem asks how to insert c shortcuts into G such that the

expected number of edges that are contained in an edge-minimal shortest path from a random node

s to a random node t is minimal.

Contribution. In this work, we formally state the SHORTCUT PROBLEM and a variant of it, the

REVERSE SHORTCUT PROBLEM. While we study the algorithmic complexity of both problems,

the algorithmic contribution focuses on the SHORTCUT PROBLEM. We state exact, ILP-based

solution approaches. We further describe two algorithms that give approximation guarantees on

graphs in which, for each pair s, t of nodes, there is at most one shortest s-t-path. It turns out

⋆ Partially supported by the DFG (project WA654/16-1).



that this class is highly relevant as in road networks, most shortest paths are unique and only

small modifications have to be made to obtain a graph having unique shortest paths. Finally, we

show how to stochastically evaluate a given shortcut assignment on graphs that are too large to do

so exactly. Besides its relevance as a step towards theoretical results on speedup-techniques, we

consider the problem to be interesting and beautiful on its own right.

Related Work. Parts of this work have been published in [6]. The diploma thesis [30] experimen-

tally examines heuristic algorithms to find shortcut assignments with high quality, including local

search strategies and a betweenness-based approach. Furthermore, the GREEDY-step Algorithm 3

is proposed in this thesis. To the best of our knowledge, the problem of finding shortcuts as stated

in this work has never been treated before.

Speedup-techniques that incorporate the usage of shortcuts are the following. Given a graph

G= (V,E) the multilevel overlay graph technique [29, 27, 20, 26, 21, 19] uses some centrality mea-

sures or separation strategies to choose a set of ‘important’ nodes V ′ in the graph and inserts the

shortcuts S such that the graph (V ′,S) is edge-minimal among all graphs (V ′,E ′) for which the

distances between nodes in V ′ are as in (V,E). Highway hierarchies [23, 24] and Reach Based

Pruning [17, 14–16] iteratively sparsificate the graph according to the ‘importance’ of the nodes.

After each sparsification step, nodes v with small in- and out-degree are deleted. Then for each

pair of edges (u,v), (v,w) a shortcut (u,w) is inserted if necessary to maintain correct distances in

the graph. SHARC-Routing [7, 8, 11, 10] and Contraction Hierarchies [13] use a similar strategy.

Overview. This paper is organized as follows. Section 2 introduces basic definitions. The SHORT-

CUT PROBLEM and the REVERSE SHORTCUT PROBLEM are stated in Section 3. Furthermore,

results concerning complexity and non-approximability of the problems are given. The remainder

of the paper focuses on the SHORTCUT PROBLEM. Section 4 proposes two exact, ILP-based ap-

proaches. In Section 5, a greedy algorithm is presented that gives an approximation guarantee on

graphs in which shortest paths are unique. Section 6 states an approximation algorithm that works

on graphs with bounded degree in which shortest paths are unique. A probabilistic approach to

evaluate a given solution of the SHORTCUT PROBLEM is introduced in Section 7. The paper is

concluded by a summary and possible future work in Section 8.

2 Preliminaries

Let A⊆ X be a subset of a set X . The indicator function of A and X is the function 1A : X →{0,1}
defined as 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

Common Graph Theory. Throughout this work, G = (V,E, len) denotes a directed, weighted

graph with positive length function len : E →R>0. Given nodes u and v, we call u a neighbor of

v if there is an edge (u,v) or (v,u). We denote by N(v) the set of all neighbors of v. Given a set S

of nodes, the neighborhood of S is the set S∪
⋃

u∈S N(u).

We denote by
←−
G the reverse graph of G, i.e. the graph (V,

←−
E ,
←−
len) with

←−
E := {(v,u) | (u,v) ∈

E} and
←−
len being defined by

←−
len(u,v) := len(v,u) for (v,u) ∈ E.

A path P from x1 to xk in G is a finite sequence (x1,x2, . . . ,xk) of nodes such that (xi,xi+1)∈ E,

i = 1, . . . ,k−1 and xi 6= x j for each i 6= j. We say P contains an edge (u,v) if (u,v) = (xi,xi+1) for

some i ∈ {1, . . . ,k− 1} and use the abbreviation (u,v) ∈ P. The length len(P) of P is the sum of

the lengths of all edges in P, i.e. len(P) = ∑
k−1
i=1 len(xi,xi+1). A shortest path from node s to node

t is a path from s to t of minimum length. Given two nodes s and t the distance dist(s, t) from s to

t is the length of a shortest path from s to t and ∞ if there is no path from s to t. The diameter of a

graph G is the largest distance in G, i.e. max{dist(s, t) | s, t ∈V}. The eccentricity εG(v) of a node

v is the maximum distance between v and any other node u of G.

2



A cycle is a finite sequence (x1,x2, . . . ,xk) of nodes such that (xi,xi+1)∈ E, i = 1, . . . ,k−1 and

xi = xk. A (rooted) tree with root (node) s is a directed graph T = (V ′,E ′) without cycles such that

for each node t ∈ V ′ there is exactly one path from s to t. We call v a descendant of t in T , if the

path from s to v in T contains t. Note that each node is a descendant of itself.

A shortest-paths tree with root s is a subgraph T = (V ′,E ′) of G such that T is a tree, V ′ is the

set of nodes reachable from s and such that for each edge (u,v)∈E ′ we have dist(s,u)+ len(u,v) =
dist(s,v). Note that each path in T is a shortest path. The shortest-path subgraph with root s is the

subgraph Gs = (V ′,E ′′) of G such that V ′ is the set of nodes reachable from s and E ′′ is the set of

all edges with dist(s,u)+ len(u,v) = dist(s,v). Note that Gs contains exactly all shortest-paths in

G that start with s. Further, Gs is directed acyclic in case all edge weights are strictly positive.

Specific Notation and Considered Graphs. Consider a path P = (x1,x2, . . . ,xk). We say P con-

tains node u before node v if there are numbers i, j with 0≤ i≤ j ≤ k such that u = xi and v = x j.

Given is a sequence y1, . . . ,yk for k ≥ 2. A y1-y2-. . .-yk-path is a path P from y1 to yk such that

P contains node yi before node yi+1 for i = 1, . . . ,k−1. A shortest y1-y2-. . .-yk-path is a y1-y2-. . .-
yk-path that is a shortest path from y1 to yk. Let

P−(x,y) := {s ∈V | ∃ shortest s-y-path containing x}

P+(x,y) := {t ∈V | ∃ shortest x-t-path containing y}

denote the sets of start- or end-vertices of shortest paths through x and y. Similarly, let

P(x,y) := {(s, t) ∈V ×V | ∃ shortest s-t-path that contains x before y}

consist of all pairs of nodes, for which a connecting shortest path containing first x and then y

exists. Finally, let

P⊲⊳(x,y) := {u ∈V | ∃ shortest x-y-path that contains u}

be the set of all nodes that lie on a shortest x-y-path.

We call a graph G sp-unique if, for any pair of nodes s and t in G, there is at most one, unique

shortest s-t-path in G. Let P = (x1,x2, . . . ,xk) be a path. The hop-length |P| of P is k−1. Given two

nodes s and t, the hop-distance hG(s, t) from s to t is the minimum hop-length of any shortest s-t-

path in G and 0 if there is no s-t-path in G or if s = t. We abbreviate hG(s, t) by h(s, t) if the choice

of the graph G is clear. We further assume that for each edge (u,v) in G it is len(u,v) = dist(u,v).
This can easily be assured by deleting edges (u,v) with len(u,v) > dist(u,v) in a preprocessing

step. This guarantees that, after the insertion of a shortcut (a,b), there is only one edge (a,b) in

the graph.

3 Problem Statement and Complexity

In this section, we introduce the SHORTCUT PROBLEM and the REVERSE SHORTCUT PROB-

LEM. We show that both problems are NP-hard. Moreover, we show that there is no polynomial-

time constant-factor approximation algorithm for the REVERSE SHORTCUT PROBLEM and no

polynomial-time algorithm that approximates the SHORTCUT PROBLEM up to an additive con-

stant unless P = NP. Finally, we identify a critical parameter of the SHORTCUT PROBLEM and

discuss some monotonicity properties of the problem.
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In the following, we augment a given graph G with shortcuts. These are edges (u,v) that are

added to G such that len(u,v) = dist(u,v). A set of shortcuts is called a shortcut assignment.

Definition (Shortcut Assignment). Consider a graph G = (V,E, len). A shortcut assignment for

G is a set E ′ ⊆ (V ×V ) \E such that, for any (u,v) in E ′, it is dist(u,v) < ∞. The notation G[E ′]
abbreviates the graph G with the shortcut assignment E ′ added, i.e., the graph (V,E ∪E ′, len′)
where len′ : E ∪E ′→R>0 equals dist(u,v) if (u,v) ∈ E ′ and equals len(u,v) otherwise.

When working with shortcuts we are interested in the expected number of edges that are contained

in an edge-minimal shortest path from a random node s to a random node t. The gain of a shortcut

assignment E ′ measures how much this value decreases due to the graph-augmentation with E ′.

Definition (Gain). Given a graph G = (V,E, len) and a shortcut assignment E ′, the gain wG(E
′)

of E ′ is

wG(E
′) := ∑

s,t∈V

hG(s, t)− ∑
s,t∈V

hG[E ′](s, t) .

We abbreviate wG(E
′) by w(E ′) in case the choice of the graph G is clear.

We briefly consider an augmented graph G[E ′] = (V,E ∪E ′, len′) and choose nodes s and t uni-

formly at random. The expected number of edges on an edge-minimal shortest s-t-path is
1
|V |2 ∑s,t∈V hG[E ′](s, t) when we count pairs s and t with dist(s, t) = ∞ by 0. The term ∑s,t∈V hG(s, t)

does not depend on E ′ and hence is constant. Consequently, maximizing the gain and minimiz-

ing the expected number of edges on edge-minimal shortest-paths are equivalent problems. The

SHORTCUT PROBLEM consists of adding a number c of shortcuts to a graph, such that the gain is

maximal.

Problem (SHORTCUT PROBLEM). Let G = (V,E, len) be a graph and c ∈ Z>0 be a positive

integer. Given an instance (G,c), the SHORTCUT PROBLEM is to find a shortcut assignment E ′

with |E ′| ≤ c such that the gain wG(E
′) of E ′ is maximal.

The REVERSE SHORTCUT PROBLEM searches for a shortcut assignment E ′ of minimum cardinal-

ity achieving at least some given gain k. We assure that such a solution exists by stating an upper

bound on k. To obtain k, we first compute the number

∣∣{(u,v) ∈V ×V | dist(u,v)< ∞,u 6= v}
∣∣ .

This is exactly the value of ∑s,t∈V hG[S](s, t) when inserting all possible shortcuts S to G. Then we

subtract this value from ∑s,t∈V hG(s, t) to yield a sharp bound on the gain.

Problem (REVERSE SHORTCUT PROBLEM). Let G=(V,E, len) be a graph and k∈Z>0 be less

than or equal to ∑s,t∈V hG(s, t)−|{(u,v) ∈V ×V | dist(u,v)< ∞,u 6= v}|. Given an instance (G,k)
the REVERSE SHORTCUT PROBLEM is to find a shortcut assignment E ′ such that wG(E

′)≥ k and

such that |E ′| is minimal.

As an auxiliary problem to shorten proofs we also consider the SHORTCUT DECISION PROBLEM.

Problem (SHORTCUT DECISION PROBLEM). Let G = (V,E, len) be a graph and c,k ∈ Z>0 be

positive integers. Given an instance (G,c,k), the SHORTCUT DECISION PROBLEM is to decide if

there is a shortcut assignment E ′ for G = (V,E, len) such that wG(E
′)≥ k and |E ′| ≤ c.

In order to show the complexity of the problems we make a transformation from SET COVER and

MIN SET COVER.
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Definition (SET COVER and MIN SET COVER). Let C be a collection of subsets of a finite set

U such that
⋃

c∈C c =U and let k ∈ Z>0 be a positive integer. A set cover of (C,U) is a subset C′

of C such that every element in U belongs to at least one member of C′. Given an instance (C,U),
the problem MIN SET COVER is to find a set cover C′ of (C,U) of minimum cardinality. Given

an instance (C,U,k), the problem SET COVER is to decide if there is a set cover C′ of (C,U) of

cardinality no more than k. The size of a MIN SET COVER instance (C,U) is ∑c∈C |c|.

Notation (Solution). Given a {SHORTCUT PROBLEM, REVERSE SHORTCUT PROBLEM, MIN

SET COVER}-instance I, we denote by opt{SP,RSP,MSC}(I) an arbitrary (optimal) solution of I of

the according problem.

We now show a relationship between SET COVER and the SHORTCUT PROBLEM.

Lemma 1. Let (C,U,k) be a SET COVER-instance. Then, there is a graph G= (V,E, len) such that

there is a set cover C′ for (C,U) of cardinality |C|′ ≤ k if, and only if there is a shortcut assignment

E ′ for G of cardinality |E|′ ≤ k and gain w(E ′)≥ (2|C|+1)|U |. Further, the size of G and the time

to compute G is polynomial in the size of (C,U). Finally, given a shortcut assignment E ′ with

w(E ′)≥ (2|C|+1)|U |, we can compute a set cover of cardinality at most |E ′| in time polynomial

in the size of (C,U,k).

Proof. Given an instance (C,U,k) of SET COVER, we construct the graph G = (V,E, len) as fol-

lows, see Figure 1 for an illustration: We denote the value 2|C|+ 1 by ∆ . We introduce a node s

to G. For each u ∈U , we introduce a set of nodes Uu = {u1, . . . ,u∆} to G. For each c in C, we

introduce nodes c−, c+ and edges (c−,c+), (c+,s) to G. The graph furthermore contains, for each

u ∈U and each c ∈C with u ∈ c, the edges (ur,c
−),r = 1, . . . ,∆ . All edges are directed and have

length 1. We abbreviate U :=
⋃

u∈U Uu, C− := {c−|c ∈C} and C+ := {c+|c ∈C}.

c
+

1

c
−

1

c
+

2

c
−

2

c
+

3

c
−

3

U1 U2 U3 U4

U

C
−

C
+

s {s}

Fig. 1: Graph G= (V,E) constructed from the SET COVER-instance {c1 = {1,2},c2 = {2,3},c3 =
{3,4}}.

We first observe that shortcuts in G are always contained in one of the following three sets:

U×{s},C−×{s} and U×C+. Given u ∈U , we say u is covered by a shortcut (c−,s) ∈C−×{s}
if u ∈ c.

Claim. Let C′ be a set cover of (C,U). Then, the shortcut assignment E ′ = {(c−,s) | c∈C′} fulfills

|E ′|= |C′| and w(E ′)≥ ∆ |U |.

Obviously |E ′| = |C′| holds. For each node v ∈U the hop-distance to node s decreases by 1

due to the insertion of E ′. As |U |= ∆ |U |, it is w(E ′)≥ ∆ |U |.

Claim. Let E ′ be a shortcut assignment of G with w(E ′)≥ ∆ |U |. Then, we can construct a shortcut

assignment E ′′⊆C−×{s} of G with cardinality |E ′′| ≤ |E| and w(E ′′)≥ ∆ |U | in polynomial time.
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We first check if |E ′| > |C|. If this is the case, we set E ′′ := {(c−,s)|c ∈ C} and terminate.

Otherwise, we proceed as follows until E ′ ⊆ C−×{s} or each u ∈ U is covered by a shortcut

(c−,s): We choose a shortcut (x,y) in E ′ ∩ (U ×C+ ∪U ×{s}). We further choose a shortcut

(c−,s) ∈V ×V such that there is a u ∈ c which is not covered by any shortcut in E ′. Then, we set

E ′ := (E ′∪{(c−,s)})\{(x,y)}.
The removal of a shortcut in U ×C+ ∪U ×{s} decreases the gain by at most 2. Let u ∈ U

be an element that is not covered by a shortcut in E ′ and let u ∈ c ∈C. The insertion of (c−,s) in

E ′ improves the hop distance h(v,s) for each node in v ∈Uu which is not part of a shortcut in E ′

by 1. As there are 2|C|+ 1 nodes in Uu and we have at most |C| shortcuts, the gain increases by

at least 2|C|+1−|C|. Summarizing, at each step w(E ′) increases at least by 2|C|+1−|C|−2 =
|C|−1≥ 0. Any shortcut assignment that covers all u ∈U results in the desired gain. Hence, after

termination E ′′ := E ′∩ (C−×{s}) gives a solution to the claim.

Claim. Let E ′ be a shortcut assignment of G with w(E ′) ≥ ∆ |U |. Then, we can compute in poly-

nomial time a set cover C′ for (C,U) of cardinality at most |E ′|.

We use the last claim to transform E ′ such that E ′ ⊆C−×{s} and w(E ′)≥ ∆ |U |. It is w(E ′) =
|E ′|+∆ |{u∈U | u is covered by a shortcut in E ′}|≥∆ |U |. This implies that each u∈U is covered

by a shortcut in E ′ and {c|(c−,s) ∈ E ′} is a set cover of (C,U).

Theorem 1. The SHORTCUT DECISION PROBLEM is NP-complete.

Proof. Let (C,U,k) be a SET COVER-instance and G be constructed as described in Lemma 1. It is

(C,U,k) a yes-instance if and only if the SHORTCUT DECISION PROBLEM-instance (G, |k|,(|2|C|+
1)|U |) is a yes-instance, and the transformation is polynomial.

We remember that an optimization problem P is NP-hard if there is an NP-hard decision problem

P′ such that following holds: Problem P′ can be solved by a polynomial-time algorithm which uses

an oracle that, for any instance of P, returns –in constant time– an optimal solution along with its

value.

Corollary. The SHORTCUT PROBLEM and the REVERSE SHORTCUT PROBLEM are NP-hard.

The transformation applied in Lemma 1 also preserves part of the non-approximability of MIN

SET COVER.

Theorem 2. Unless P = NP, no polynomial-time constant-factor approximation algorithm exists

for the REVERSE SHORTCUT PROBLEM, i.e., there is no combination of an algorithm apx and an

approximation ratio α > 0 such that

– apx(G,k) is a shortcut assignment for G of gain at least k

– |apx(G,k)|/|optRSP(G,k)| ≤α for all instances (G,k) of the REVERSE SHORTCUT PROBLEM

– the runtime of apx(G,k) is polynomial in the size of (G,k).

Proof. Given a MIN SET COVER-instance (C,U), assume to the contrary that there is a polynomial-

time constant-factor approximation apx of the REVERSE SHORTCUT PROBLEM with approxima-

tion ratio α . Using apx, we construct a constant-factor approximation algorithm for MIN SET

COVER, contradicting the fact that MIN SET COVER is not contained in the class APX unless

P = NP [4]:

As described in Lemma 1, we first construct the graph G. Then we compute E ′= apx(G,(2|C|+
1)|U |) and finally transform E ′ to a set cover C′ of (C,U) of size at most |E ′|. With Lemma 1 we

have that

|optMSC(C,U)|= |optRSP(G,(2|C|+1)|U |)| .
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Hence it is

|C′|/|optMSC | ≤ |E
′|/|optRSP(G,(2|C|+1)|U |)| ≤ α

which shows the theorem.

Using a stronger result on the inapproximability of the MIN SET COVER-problem, we get

an asymptotically tighter lower bound on the approximation factor of the REVERSE SHORTCUT

PROBLEM.

Proposition. Unless P = NP, no polynomial-time algorithm exists that approximates the RE-

VERSE SHORTCUT PROBLEM to a factor Ω
(
log(log |V |)

)
.

Proof. By [3], MIN SET COVER is not approximable within a factor η · ln |U |, for a certain con-

stant η . Assume that there is a polynomial-time approximation algorithm apx for the REVERSE

SHORTCUT PROBLEM such that |apx(G,k)|/|optRSP(G,k)| ≤ η · ln
( log(|V |)

2
−2
)

for all instances

(G = (V,E),k) of the REVERSE SHORTCUT PROBLEM.

Let (C,U) be an arbitrary instance of MIN SET COVER. Analogous to the proof of Theorem

2, we construct a graph G = (V,E) with (2|C|+ 1)|U |+ 2|C|+ 1 nodes and a set cover C′ in

polynomial-time such that |C′|/|optMSC(C,U)| ≤ η · ln
( log(|V |)

2
−2
)
.

Our goal is to obtain an upper bound on log(|V |) depending on |U |, thus we aim to get an

upper bound on |V | in the form 2x. As |C| ≤ 2|U | and |U | ≤ 2|U |, it is

|V | ≤ (2|U |+1+1)|U |+2|U |+1+1≤ (2|U |+1+1)2|U |+1+2|U |+1+1= 22|U |+2+2|U |+2+1≤ 22|U |+4

Hence, it is 2|U |+4≥ log(|V |) and thus |C′|/|optMSC(C,U)| ≤ η · ln |U |, contradicting the inap-

proximability of MIN SET COVER.

Theorem 3. Unless P = NP, no polynomial-time algorithm exists that approximates the SHORT-

CUT PROBLEM up to an additive constant, i.e., there is no combination of an algorithm apx and a

maximum error α ∈R>0 such that

– apx(G,c) is a shortcut assignment for G of cardinality at most c

– the runtime of apx(G,c) is polynomial in the size of (G,c)
– wG(optSP(G,c))−wG(apx(G,c))≤ α for all instances (G,c) of the SHORTCUT PROBLEM.

Proof. Assume to the contrary that there is an polynomial-time algorithm apx that approximates

the SHORTCUT PROBLEM up to an additive constant maximum error α and let (G=(V,E, len),c,k)
be a SHORTCUT DECISION PROBLEM-instance. To assure α ∈Z+, we set α := ⌈α⌉. We construct

an instance (G = (V ,E, len),c) of the SHORTCUT PROBLEM by adding to G, for each node v ∈V ,

exactly χ := α + 1+ |V |2 nodes v1, . . . ,vχ and directed edges (v1,v), . . . ,(vχ ,v). We further set

len(vi,v) = 1 for i = 1 . . .χ . This construction can be done in polynomial time. Let E ′ denote

apx(G,c).
Our aim is to solve (G = (V,E, len),c,k) in polynomial time. We can insert at most cmax :=

|{(u,v)∈V ×V \E|dist(u,v)< ∞,u 6= v}| shortcuts into G. If c≥ cmax we can decide the problem

in polynomial time by adding all possible shortcuts and computing the according gain. Hence, in

the following we may assume c < cmax.

Claim. The endpoints of all shortcuts inserted by apx in G lie in V , i.e E ′ ⊆V ×V .

If a shortcut in G is not contained in V ×V , it must be contained in V ×V because of the

edge directions in G. Assume that there is a shortcut (u,v) ∈ E ′ such that (u,v) ∈ (V \V )×V .

Removing (u,v) from E ′ will decrease the gain wG(E
′) by at most |V |2 (as it represents only paths

starting from u of length at most |V |+1). Afterwards inserting an arbitrary shortcut (x,y) ∈V ×V
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increases the gain wG(E
′ \ {(u,v)}) by at least χ (as it represents at least χ paths ending at y of

length at least 2). Summarizing,

wG(({(x,y})∪E ′)\{(u,v)})−wG(E
′)≥ χ−|V |2 > α

contradicting the approximation guarantee of apx.

Claim. We can use apx to decide (G = (V,E, len),c,k) in polynomial time contradicting the as-

sumption P 6= NP.

An exact algorithm can be seen as an approximation algorithm with maximum error α = 0. We

can show in a similar fashion as in the last claim that an optimal solution of (G,c) only consists

of shortcuts in V ×V , i.e., optSP(G,c) ⊆ V ×V . Given a shortcut assignment E ′′ ∈ V ×V , it is

wG(E
′′) = (1+χ) ·wG(E

′′). Given an optimal solution E∗ for (G,c) and (G,c), it follows

(1+χ)
(
wG(E

∗)−wG(E
′)
)
= wG(E

∗)−wG(E
′)≤ α.

Hence, wG(E
∗)−wG(E

′)≤ α/(1+χ)< 1 which implies wG(E
∗) = wG(E

′) as both wG(E
∗) and

wG(E
′) are integer valued. This shows the claim and finishes the proof.

To obtain a better intuition on the SHORTCUT PROBLEM, we report some properties of the

problem.

Trivial approximation bounds. Consider an arbitrary non-empty shortcut assignment E ′. It is

0≤∑s,t∈V hG(s, t)≤ |V |
3 for any graph G = (V,E, len) and hence wG(E

′)≤ |V |3. As each shortcut

in E ′ decreases the hop-distance from its start to its end-node by at least one 1 we have that each

E ′ is a trivial factor |V |3/|E ′|-approximation of the SHORTCUT PROBLEM. Further, any short-

cut assignment achieving the desired gain is a trivial factor |V |2-approximation of the REVERSE

SHORTCUT PROBLEM.

Bounded number of shortcuts. If the number of shortcuts we are allowed to insert is bounded

by a constant kmax, the number of possible solutions of the SHORTCUT PROBLEM is at most

(
|V |2

kmax

)
=

|V |2!

(|V |2− kmax)!kmax!
≤ |V |2kmax .

This is polynomial in the size of the input graph G = (V,E, len). We can evaluate a given short-

cut assignment by basically computing all-pairs shortest-paths, hence this can be done in time

O(|V |2 log |V |+ |V ||E|) using Dijkstra’s algorithm. For this reason, the case with bounded number

of shortcuts can be solved in polynomial time by a brute-force algorithm.

Monotonicity. In order to show the hardness of working with the problem beyond the complexity

results, Figure 2 gives an example that, given a shortcut assignment S and an additional shortcut

s 6∈ S, the following two inequalities do not hold in general:

w(S∪{s}) ≥ w(S)+w(s) (1)

w(S∪{s}) ≤ w(S)+w(s). (2)

It is easy to verify that in Figure 2 the inequalities w({s1,s2})>w(s1)+w(s2) and w({s1,s2,s3})<
w({s1,s2})+w(s3) hold.

Note that Inequality 2 holds if, for any pair of nodes (s, t) of graph G, there is at most one,

unique shortest s-t-path in G. We call such a graph sp-unique and prove that fact in the following

lemma.
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2

s1 s2

s3

Fig. 2: Example Graph G with shortcuts s1, s2, s3. All edges for which no weight is given in the

picture have weight 1.

Lemma 2. Given an sp-unique graph G = (V,E, len) and a set of shortcuts S = {s1,s2, . . . ,sk}.
Then, wG(S)≤ ∑

k
i=1 wG(si) and wG(S)≤ wG({s1, . . .sk−1})+wG(sk).

Proof. Given arbitrary but fixed a,b ∈V we denote by wab
G (S) the gain of S on graph G restricted

to shortest a-b-paths, i.e., wab
G (S) = hG(a,b)− hG[S](a,b). Because of wG(S) = ∑u,v∈V wuv

G (S) it

suffices to show wab
G (S)≤ wab

G ({s1, . . .sk−1})+wab
G (sk). The inequality wab

G (S)≤∑
k
i=1 wab

G (si) then

follows by induction. We write sk = (x,y). It is

wab
G (S) = wab

G ({s1, . . . ,sk−1})+wab
G[s1,...,sk−1]

({(x,y)}).

If (a,b) ∈ P(x,y), we have

wab
G[s1,...,sk−1]

({(x,y)})≤ hG[s1,...,sk−1](x,y)−1≤ hG(x,y)−1 = wab
G (sk).

Further, if (a,b) 6∈ P(x,y) we have wab
G[s1,...,sk−1]

({(x,y)}) = 0 = wab
G (sk). Hence, we have

wab
G (S)≤ wab

G ({s1, . . .sk−1})+wab
G (sk)

which shows the lemma.

Later, we use these results to present an approximation algorithm for sp-unique graphs.

4 ILP-Approaches

In this section we present two exact, ILP-based approaches for the SHORTCUT PROBLEM. Through-

out this section, we are given an instance (G = (V,E, len),c) of the SHORTCUT PROBLEM that is

to be solved optimally.

For a vertex x ∈ V , we denote by Px the set of all vertices u ∈ V for which an x-u-path exists.

Remember that we denote by P+(x,y) the set of all vertices u ∈ V for which a shortest x-u path

containing y exists and that we denote by P⊲⊳(x,y) the set of all vertices that lie on a shortest

x-y-path. We assume that all distances in the graph are precomputed and hence that the sets Px,

P⊲⊳(x,y) and P+(x,y) are known for all x,y ∈V .

Simple ILP-Formulation. The following ILP-formulation (SLSP) is straightforward and simple

but has the drawback to incorporate O(|V |4) variables and constraints. The interpretation of the ILP

is as follows: The variables ks
t (·, ·) represent an edge-minimal shortest s-t-path in the augmented

graph. It is ks
t (u,v) = 1 if and only if the edge (u,v) is used in this path. We characterize all edges

or possible shortcuts (u,v) that can be used for a shortest s-t-path by introducing the set

A := {(s,u,v, t) ∈V 4 | dist(s,u)+dist(u,v)+dist(v, t) = dist(s, t)< ∞, u 6= v}.
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Consequently, for fixed s,v, t ∈V , the set {u∈V | (s,u,v, t)∈ A} contains each node u such that the

edge or shortcut (u,v) can be used in a shortest s-t-path. The variable c(u,v) equals 1 if the com-

puted shortcut assignment contains (u,v). Instead of maximizing the gain, our aim is to minimize

the sum of all hop-distances in the augmented graph. This value equals the sum of all variables

ks
t (u,v) with (s,u,v, t ∈ A).

(SLSP) minimize ∑
(s,u,v,t)∈A

ks
t (u,v) (3)

such that

∑
{v∈V |(s,v,t,t)∈A}

ks
t (v, t) = 1 s ∈V, t ∈ Ps \{s} (4)

∑
{u∈V |(s,u,v,t)∈A}

ks
t (u,v) = ∑

{w∈V |(s,v,w,t)∈A}

ks
t (v,w)

s ∈V, t ∈ Ps \{s}
v ∈ P⊲⊳(s, t), v 6= s, t

(5)

ks
t (u,v)≤ c(u,v) (s,u,v, t) ∈ A, (u,v) 6∈ E (6)

∑
(u,v)∈(V×V )\E

c(u,v)≤ c (7)

ks
t (u,v) ∈ {0,1} (s,u,v, t) ∈ A (8)

c(u,v) ∈ {0,1} (u,v) ∈V ×V \E (9)

Constraint 4 and Constraint 5 ensure that a shortest path is considered for every s-t-pair: Con-

straint 4 requires that each target t owns exactly one incoming edge on an s-t-path while Con-

straint 5 guarantees that, for each node v 6= s, t, there is an incoming edge (on an s-t-path) if there

is an outgoing edge (on such a path). Constraint 6 forces shortcuts to be present whenever edges

are used that are not present in the graph. Finally, Constraint 7 limits the number of shortcuts to

be inserted. Consequently, a solution of model (SLSP) gives an optimal solution of (G,c): The

set {(u,v) ∈ V ×V |c(u,v) = 1} is a shortcut assignment for G of maximum gain and cardinality

at most c.

Obviously, there can be more than one edge-minimal shortest path from a given source to a

given target. Hence, the model may incorporate unwanted symmetries. In order to break these

symmetries one could use additional constraints. We did not further pursue this direction because

of the huge number of constraints that would be necessary. Note that the model stays correct when

relaxing Constraint 8 to

ks
t (u,v) ∈ [0,1] (s,u,v, t) ∈ A.

Flow-Based ILP-Formulation. The number of variables and constraints of the following integer

linear program (LSP) is cubic in |V |. The model exhibits two types of variables. It is c(u,v) = 1 if

and only if the solution found uses the shortcut (u,v). Instead of directly counting the hop-distance

for each pair of nodes, we use a flow-like formulation that counts, for each edge, how often it is

used in the solution. In detail, the value of f s(u,v) can be interpreted as the number of vertices t for

which the hop-minimal shortest s-t-path found by (LSP) includes the edge or shortcut (u,v). To

characterize all possible combinations of s,u,v ∈V such that (u,v) could be an edge or a shortcut

in the shortest-paths subgraph with root s, we introduce the set

B := {(s,u,v) ∈V 3 | dist(s,u)+dist(u,v) = dist(s,v)< ∞, u 6= v} .
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The flow outgoing from source s is exactly the number of vertices reachable from s (Constraint 11).

As each node consumes exactly one unit of flow (Constraint 12), it is assured that a shortest

path from s to any reachable node is considered. Constraint 13 forces shortcuts to be present

whenever edges are used that are not present in the graph. Finally, Constraint 14 limits the number

of shortcuts to be inserted. Again, instead of maximizing the gain, our aim is to minimize the sum

of all hop-distances in the augmented graph which is given as obj( f ,c).

(LSP) minimize obj( f ,c) := ∑
(s,u,v)∈B

f s(u,v) (10)

such that

∑
{v∈V |(s,s,v)∈B}

f s(s,v) = |Ps|−1 s ∈V (11)

∑
{u∈V |(s,u,v)∈B}

f s(u,v) = 1+ ∑
{w∈V |(s,v,w)∈B}

f s(v,w) s ∈V, v ∈ Ps, v 6= s (12)

f s(u,v)≤ |P+(s,v)| · c(u,v) (s,u,v) ∈ B, (u,v) 6∈ E, (13)

∑
(u,v)∈(V×V )\E

c(u,v)≤ c (14)

f s(u,v) ∈ Z≥0 (s,u,v) ∈ B (15)

c(u,v) ∈ {0,1} (u,v) ∈V ×V \E (16)

We now prove the correctness of model (LSP). The proof of the following preparatory lemma

shows that a solution of (LSP) can be converted into a solution of equal objective value that, for

each node, induces a shortest-paths tree.

Lemma 3. There exists an optimal solution ( f ,c) of (LSP), such that for each s∈V , the subgraph

induced by Ts := {(u,v) ∈V ×V | f s(u,v)> 0} is a tree.

Proof. Let ( f ,c) be a solution of (LSP). Then Ts is a directed acyclic graph with root s as Ts is

contained in the shortest-paths subgraph of G with root s. As long as Ts is not a tree proceed as

follows:

First, consider an arbitrary node y such that there are two edges (v,y) and (w,y) in Ts. Let x be

an arbitrary node such that there are disjoint x-y-paths P1 and P2 in Ts. Such a node x has to exist

as there is more than one shortest s-y-path in Ts and we can take any topologically maximal node

x for which there is more than one x-y-path. Let (y′,y) be the last edge on P1 and ∆ := f s(y′,y).
For each edge e on P1 we set f s(e) := f s(e)−∆ , for each edge e on P2 we set f s(e) := f s(e)+∆ .

It is easy to verify that this does not change the feasibility of the solution. Obviously, the objec-

tive function cannot decrease because of this operation as ( f ,c) is optimal. Further, the objective

function may not increase: Assume the contrary. Then P2 contains more edges than P1. Let (y′′,y)
be the last edge of P2 and ∆ ′ := f s(y′′,y). We would obtain a better feasible solution by setting

f s(e) := f s(e)−∆ ′ for each edge e∈P2 and f s(e) := f s(e)+∆ ′ for each edge e∈P1, contradicting

the optimality of ( f ,c).

The following theorem shows that model (LSP) and the SHORTCUT PROBLEM are equivalent

with regard to exact solutions.
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Theorem 4. Given an optimal solution E ′ of the SHORTCUT PROBLEM, the assignment

c′(u,v) :=

{
1 ,(u,v) ∈ E ′

0 ,otherwise

can be extended to an optimal solution of (LSP). Further, given an optimal solution ( f ,c) of

(LSP), the set

E ′′ := {(u,v) ∈V ×V | c(u,v) = 1}

is an optimal solution for the SHORTCUT PROBLEM.

Proof. Let (G = (V,E, len),c) be a SHORTCUT PROBLEM-instance. As we have observed before,

maximizing the gain is equivalent to finding a shortcut assignment E ′ that minimizes obj(E ′) :=

∑s,t∈V hG[E ′](s, t). Throughout this proof, we use this point of view.

Let E ′ be a shortcut assignment of (G = (V,E, len),c). Consider an arbitrary vertex s ∈ V .

There is a shortest-paths tree Ts ⊆ G[E ′] such that, for each t ∈ V with dist(s, t) < ∞, the number

of edges on the s-t-path in Ts equals hG[E ′](s, t). Such a tree Ts can be computed using Dijkstra’s

algorithm by altering the distance labels to be tuples (edge length,hop distance) and applying

lexicographical ordering. Let

c′(u,v) =

{
1 ,(u,v) ∈ E ′

0 ,otherwise

and

f ′s(u,v) =

{
0 ,(u,v) 6∈ Ts

|{w | w is descendant of v in Ts}| , otherwise

The pair (c′, f ′) is a feasible solution of (LSP). We denote by PTs
(s, t) the s-t-path in Ts and by

|PTs
(s, t)| the number of edges on this path. It is

∑
t∈Ps

hG[E ′](s, t) = ∑
t∈Ps

|PTs
(s, t)|= ∑

t∈Ps

∑
e∈Ts

1e(PTs
(s, t)) = ∑

e∈Ts

∑
t∈Ps

1e(PTs
(s, t))

= ∑
(u,v)∈Ts

|{w | w is descendant of v in Ts}|= ∑
u∈Ps, v∈P+(s,u), u 6=v

f ′s(u,v)

Consequently, obj( f ′,c′) = obj(E ′).
On the other hand, let ( f ,c) be a feasible solution of (LSP). With Lemma 3 we may assume

that, for each node s, the subgraph induced by Ts := {(u,v) ∈ V ×V | f s(u,v) > 0} is a tree.

Hence, we can show by induction that f s(u,v) = |{w | w is descendant of v in Ts}| for each edge

(u,v) ∈ Ts. Further, the set

E ′′ = {(u,v) ∈V ×V | c(u,v) = 1}

is a feasible solution of the SHORTCUT PROBLEM. Finally, we show that obj(E ′′)≤ obj( f ,c). We

consider each root s ∈V separately. To bound the hop-distances in G[E ′′] starting at s from above

we use the shortest-paths tree Ts as a witness. This yields

∑
t∈Ps

hG[E ′′](s, t)≤ ∑
t∈Ps

|PTs
(s, t)|

With the same computation as above, we derive

∑
t∈Ps

hG[E ′′](s, t)≤ ∑
t∈Ps

|PTs
(s, t)|= ∑

u∈Ps, v∈P+(s,u), u 6=v

f s(u,v)

which shows the claim.
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Tuning the Flow-Based Formulation. In order to simplify model (LSP), we relax Constraint 15

to

f s(u,v) ∈R≥0 (s,u,v) ∈ B (17)

and denote the resulting model (10, 11, 12, 13, 14, 16, 17) by (RLSP).

Lemma 4. Let ( f ,c) be a solution of (RLSP). Then there is a solution ( f ′,c) of (LSP) with same

objective value.

Proof. Note that Lemma 3 also holds for (RLSP). Hence, we assume that, for each node s, the

subgraph induced by Ts := {(u,v)∈V×V | f s(u,v)> 0} is a tree. The integrality of f now follows

by induction on the nodes in reverse topological order and Constraint 12.

In order to heuristically speedup the solving process we may add the following constraints that

give bounds on the f -variables.

f s(u,v)≤ |P+(s,v)| (s,u,v) ∈ B (18)

An additional heuristic improvement works as follows: The sum ∑s,t∈V hG(s, t) is the value of the

objective function of model (LSP) in case no shortcuts are allowed. The value (hG(a,b)− 1) ·
|P(a,b)| is an upper bound for the amount that shortcut (a,b) improves the objective function. We

precompute ∑s,t∈V hG(s, t) and, for each pair (a,b) of connected nodes, the value (hG(a,b)− 1) ·
|P(a,b)|. Then we can add the constraint

∑
(s,u,v)∈B

f s(u,v)

︸ ︷︷ ︸
=obj( f ,c)

≥ ∑
s,t∈V

hG(s, t)

︸ ︷︷ ︸
lower bound of obj( f ,0)

− ∑
a,b∈V

dist(a,b)<∞

c(a,b) · (hG(a,b)−1) · |P(a,b)|︸ ︷︷ ︸
upper bound of improvement

because of shortcut (a,b)

(19)

to additionally tighten the model.

Case Study. While our main interest on the problem is of theoretical nature, we report some

experimental results of the ILP-based approaches. This shall allow for a brief comparison of both

formulations and for assessing the heuristic improvements. Our implementation is written in Java

using CPLEX 11.2 as ILP-Solver and was compiled with Java 1.6. The tests were executed on one

core of an AMD Opteron 6172 Processor, running SUSE Linux 10.3. The machine is clocked at

2.1 GHz and has 16 GB of RAM per processor.

We tested on four different graphs. The graph Gdisk is a unit-disk graph and generated by

randomly assigning 100 nodes to a point in the unit square of the Euclidean plane. Two nodes are

connected by an edge if their Euclidean distance is below a given radius. This radius is adjusted

such that the resulting graph has approximately 1000 edges. The graph Gka represents a part of

the road network of Karlsruhe. It contains 102 nodes and 241 edges. The graph Ggrid is based on

a two-dimensional 10×10 square grid. The nodes of the graph correspond to the crossings in the

grid. There is an edge between two nodes if they are neighbors on the grid. Finally, the graph Gpath

is a path consisting of 30 nodes. In each graph, edge weights are randomly chosen integer values

between 1 and 1000. For each experiment, the computation time has been limited to 60 minutes.

The integrality constraints of the variables kt
s(·, ·) of the simple model and the variables f s(·, ·) of

the flow model have been relaxed. Some example outcomes are depicted in Figure 3.

The results are summarized in Table 1. Columns mean the following: Columns Eq19 and Eq18

indicate if Equation 19 and Equation 18 are incorporated in the model. For the simple model, we

adapted Equation 19 in a straightforward fashion. Columns opt show if an optimal solution has
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been found and proven to be optimal. Columns gap give the guaranteed approximation ratio of the

best feasible solution found within 60 minutes, i.e., the value (best feasible solution found - best

proven lower bound) / best proven lower bound. The value of gap is ∞ if no feasible solution has

been found in 60 minutes. Finally, columns time give the computation time in minutes.

We observe that the simple model does not benefit from Equation 19 and the plain version

without this enhancement is always superior. For the flow formulation, it turned out that the version

enriched with Equation 18 is best: This version is always better than the plain model without

improvement and than the formulation enhanced only with Equation 19. Further, it is most times

better than the version enriched with Equation 19 and 18. Finally, we see that Equation 19 was an

improvement to the plain model if more than one shortcut was to be inserted.

Comparing the two formulations we obtain that the flow formulation is superior. The flow

formulation enhanced with Equation 18 was most times better than the simple model, sometimes

with a big gap. With one exception, the difference was small when the simple model was better.

Concluding, in this testset the flow formulation enhanced with Equation 18 performed best.

Ggrid Gka Gpath Gdisk

shortcuts model Eq19 Eq18 opt gap time opt gap time opt gap time opt gap time

1 flow X 0 2 X 0 5 X 0 1 X 0 2

1 flow X X 0 2 X 0 3 X 0 0 X 0 1

1 flow X X 0 4 X 0 8 X 0 0 X 0 3

1 flow X X X 0 2 X 0 7 X 0 0 X 0 2

1 simple X 0 16 X 0 29 X 0 1 X 0 14

1 simple X X 0 18 X 0 49 X 0 1 X 0 24

2 flow 0.02 60 0.09 60 0.2 60 X 0 12

2 flow X X 0 10 X 0 35 X 0 8 X 0 2

2 flow X X 0 17 0.01 60 0.06 60 X 0 2

2 flow X X X 0 3 X 0 40 X 0 9 X 0 2

2 simple X 0 20 X 0 26 X 0 2 X 0 12

2 simple X X 0 21 X 0 48 X 0 2 X 0 20

5 flow 0.16 60 0.53 60 0.4 60 0.06 60

5 flow X X 0 28 X 0 46 0.16 60 X 0 4

5 flow X 0.05 60 0.12 60 0.39 60 X 0 55

5 flow X X 0 60 0.01 60 0.17 60 X 0 9

5 simple X 0 30 X 0 40 0.04 60 X 0 15

5 simple X X 0 58 ∞ 60 ∞ 60 X 0 38

10 flow 0.58 60 0.83 60 0.45 60 0.11 60

10 flow X 0.03 60 0.49 60 0.27 60 X 0 27

10 flow X 0.14 60 0.49 60 0.49 60 0.07 60

10 flow X X 0.05 60 0.34 60 0.32 60 X 0 25

10 simple ∞ 60 ∞ 60 0.47 60 X 0 22

10 simple X ∞ 60 ∞ 60 2.08 60 X 0 39

Table 1: Experimental results of the ILP-approaches.

In our experiments, we did not take memory consumption into account as the limiting factor

was computation time. However, to enable a vague comparison of the memory consumption, we

report in Table 2 the number of nonzeros reported by CPLEX after the presolve routine. Note that,

this number turned out to be almost independent from the number of shortcuts to be inserted.

14



graph ka with 5 optimal shortcuts graph ka with 10 optimal shortcuts

graph grid with 5 optimal shortcuts graph grid with 10 optimal shortcuts

graph disk with 5 optimal shortcuts graph disk with 10 optimal shortcuts

Fig. 3: Optimal shortcut assignments for some example graphs.
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model Eq19 Eq18 Ggrid Gka Gpath Gdisk

flow 274.818 328.102 34.391 249.564

flow X 327.022 392.422 41.849 295.460

flow X 342.689 409.157 43.029 311.547

flow X X 394.737 473.390 50.379 357.146

simple 1.241.560 1.724.034 259.211 1.005.390

simple X 1.551.052 2.165.022 324.256 1.250.583

Table 2: Number of nonzeros reported by CPLEX after the presolve routine for each model and

graph.

5 Approximation using the GREEDY-Strategy

In this section, we propose a polynomial-time algorithm that approximatively solves the SHORT-

CUT PROBLEM in a greedy fashion. Given the number c of shortcuts to insert, the approach finds a

c-approximation of the optimal solution if the underlying graph is sp-unique. While the algorithm

works on arbitrary graphs, we restrict our description to strongly connected graphs to improve

readability. The restriction to sp-unique graphs is only needed for achieving the approximation

guarantee.

Description. Given the instance (G,c), the GREEDY approximation scheme consists of iteratively

constructing a sequence G = G0,G1, . . . ,Gc of graphs where Gi+1 results from solving the SHORT-

CUT PROBLEM on Gi with only one shortcut allowed to insert. The pseudocode for the approach

is given as Algorithm 1. The following theorem shows the approximation ratio for GREEDY.

Algorithm 1: GREEDY(G,c)

input : graph G = (V,E, len), number of shortcuts c

output: shortcut assignment E ′

1 E ′← /0; for i = 1,2, . . . ,c do

2 (x,y)← argmax(x,y)∈(V×V )\(E∪E ′), dist(x,y)<∞{wG[E ′]({(x,y)})}

3 E ′← E ′∪{(x,y)}

4 output E ′.

Theorem 5. Consider an sp-unique graph G= (V,E, len) together with a positive integer c∈Z>0.

The solution E ′ := GREEDY(G,c) of the GREEDY-approach is a c-approximation of an optimal

solution E∗, i.e., wG(E
∗)/wG(E

′)≤ c.

Proof. Let e1 ∈ E ′ be the first shortcut inserted by GREEDY. Then, wG(e) ≤ wG(e1) for each

e ∈ E∗. Moreover by Lemma 2, w(E∗)≤ ∑e∈E∗ w(e). This yields

wG(E
∗)≤ ∑

e∈E∗
wG(e)≤

c

∑
i=1

wG(e1) = c ·wG(e1)≤ c ·wG(E
′)

which shows w(E∗)/w(E ′)≤ c.

Basic Runtime Issues. The runtime of GREEDY crucially depends on how the next shortcut to be

inserted is found. A straightforward approach would be to first precompute the distance dist(s, t)
for each pair s, t ∈ V as well as the shortest-paths subgraph Gs for each node s ∈ V . Then, the
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evaluation of a possible shortcut can be done by running breadth-first searches on the |V | graphs

Gs. After insertion of a shortcut (a,b) to G, the shortest-paths subgraphs Gs can be adapted by

adding (a,b) to each subgraph Gs for which dist(s,a)+dist(a,b) = dist(s,b). Hence Gs contains

at most |E|+ c edges and the time needed for evaluating one shortcut is O(|V | · (|V |+ |E|+ c)).
This leads to a runtime in O(|V |2 · |V | ·(|V |+ |E|+c)) for evaluating all |V |2 possible shortcuts. The

runtime O(|V |2 log |V |+ |V | · |E|) of precomputing the shortest-paths subgraphs can be neglected.

In the remainder of this section, we show how to perform this step in time O(|V |3) using

a dynamic program. Consequently, the GREEDY-strategy can be implemented to work in time

O(c · |V |3).

Greedily finding one optimal shortcut in sp-unique graphs. In sp-unique graphs each shortest

path is edge-minimal. Hence, we can compute the gain of a shortcut (a,b) restricted to a pair of

nodes (s, t) ∈ P(a,b) by the equation

hG(s, t)−hG[(a,b)](s, t) = hG(a,b)−1. (20)

Furthermore, for general graphs, the following lemma holds.

Lemma 5. (s, t) ∈ P(a,b) if and only if s ∈ P−(a,b) and t ∈ P+(s,b).

Proof. ⇒: Let (s, t) ∈ P(a,b), then there is a shortest s-t-path p containing first a and then b.

Obviously, this path also shows that t ∈P+(s,b) and as subpaths of shortest paths are again shortest

paths, the subpath of p from s to b is a witness that s is in P−(a,b).
⇐: Let s∈P−(a,b) and t ∈P+(s,b). Then, dist(s,b)= dist(s,a)+dist(a,b) and hence dist(s, t)=

dist(s,b)+dist(b, t) = dist(s,a)+dist(a,b)+dist(b, t). This shows that (s, t) ∈ P(a,b).

Exploiting Lemma 5 and Equation 20, we obtain

w(a,b) = (hG(a,b)−1) · |P(a,b)|= (hG(a,b)−1) · ∑
s∈P−(a,b)

|P+(s,b)|. (21)

This equation directly leads to Algorithm 2 that finds one optimal shortcut for sp-unique graphs.

The runtime of the algorithm lies in O(|V |3) as the computation of |P+(s,b)| is linear in |V |: For

each v ∈V we have to check if dist(s,b)+dist(b,v) = dist(s,v).

Algorithm 2: GREEDY STEP ON SP-UNIQUE GRAPHS

input : graph G = (V,E, len), distance table dist(·, ·) of G

output: optimal shortcut (a,b)

1 initialize w(·, ·)≡ 0

2 compute hG(·, ·)
3 for s ∈V do

4 for b ∈V do

5 compute |P+(s,b)|
6 for a ∈V do

7 if dist(s,a)+dist(a,b) = dist(s,b) then

8 w(a,b)← w(a,b)+(hG(a,b)−1)|P+(s,b)|

9 output arbitrary (a,b) with maximum w(a,b)

The problem of this approach is that we can not apply Algorithm 2 for the GREEDY-strategy,

even when the input graph is sp-unique: After insertion of the first shortcut, the augmented graph

is not sp-unique any more and hence we can not use Equation 20.
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An O(|V |3)-implementation for greedily finding one optimal shortcut. In the following, we

generalize the above approach to work with arbitrary graphs. The offset

ωsb(t) := hG(s,b)+hG(b, t)−hG(s, t)

reflects the increase of the hop-distance between given nodes s and t, if we restrict ourselves to

shortest paths containing b. We define the potential gain gs(a,b) of a shortcut from a to b with

respect to s as

gs(a,b) := hG(a,b)−1−ωsa(b) .

This is an upper bound for the decrease of the hop-distance between s and any t in the graph

G[(a,b)].

Lemma 6. For all vertices s, t,a,b ∈V such that (s, t) ∈ P(a,b) it holds that

hG(s, t)−hG[(a,b)](s, t) = max{gs(a,b)−ωsb(t), 0}.

Proof. Directly from the definition of potential gain and offset we obtain

gs(a,b)−ωsb(t)> 0⇐⇒ hG(s, t)> hG(s,a)+1+hG(b, t) (22)

Case [gs(a,b)−ωsb(t)> 0]. Then hG(s, t)> hG(s,a)+1+hG(b, t). The presence of shortcut (a,b)
decreases the s-t-hop-distance to hG[(a,b)](s, t) = hG(s,a)+1+hG(b, t) as the lemma assumes that

there is a shortest s-a-b-t-path. This yields

hG(s, t)−hG[(a,b)](s, t) = hG(s, t)−hG(s,a)−1−hG(b, t)

= hG(a,b)−1

−hG(s,a)−hG(a,b)+hG(s,b)︸ ︷︷ ︸
=−ωsa(b)

−hG(s,b)−hG(b, t)+hG(s, t)︸ ︷︷ ︸
=−ωsb(t)

= gs(a,b)−ωsb(t).

Case [gs(a,b)−ωsb(t) ≤ 0]. With Equation (22) we obtain hG(s, t) ≤ hG(s,a) + 1 + hG(b, t).
Hence, a shortcut (a,b) does not improve the hop-distance from s to t and we have hG(s, t)−
hG[(a,b)](s, t) = 0.

Lemma 6 implies that vertices t in P+(s,b) with the same value of ωsb(t) benefit from a

shortcut ending at b to the same extent, if we restrict ourselves to shortest paths starting at s. We

divide the vertices in P+(s,b) in equivalence classes with respect to ωsb. Let

∆i(s,b) := |{t ∈ P+(s,b) | ωsb(t) = i}|

be the number of vertices in these equivalence classes.

The algorithm we propose makes use of partial (weighted) sums of the ∆i(s,b) for fixed s and

b in V . For convenience, we introduce two further abbreviations :

Cr(s,b) :=
r

∑
i=0

∆i(s,b)

Dr(s,b) :=
r

∑
i=0

i ·∆i(s,b).

With these definitions, we can form an alternative equation for w(a,b).
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Lemma 7. Let a,b,s, t ∈V be arbitrary nodes. Then

w(a,b) = ∑
s∈P−(a,b)
gs(a,b)>0

(
gs(a,b) ·Cgs(a,b)−1(s,b)−Dgs(a,b)−1(s,b)

)
.

Proof.

w(a,b) = ∑
s,t∈V

(
hG(s, t)−hG[(a,b)](s, t)

)

= ∑
(s,t)∈P(a,b)

(
hG(s, t)−hG[(a,b)](s, t)

)
+ ∑

(s,t)/∈P(a,b)

(
hG(s, t)−hG[(a,b)](s, t)

)
︸ ︷︷ ︸

=0

= ∑
(s,t)∈P(a,b)

ωsb(t)<gs(a,b)

(
hG(s, t)−hG[(a,b)](s, t)

)
+ ∑

(s,t)∈P(a,b)
ωsb(t)≥gs(a,b)

(
hG(s, t)−hG[(a,b)](s, t)

)
︸ ︷︷ ︸

=0 with Lemma 6

.

With Lemma 6, we yield

w(a,b) = ∑
(s,t)∈P(a,b)

ωsb(t)<gs(a,b)

gs(a,b)−ωsb(t).

It is ωsb(t)≥ 0 as (s, t) ∈ P(a,b), hence with Lemma 5 we have

w(a,b) = ∑
s∈P−(a,b)
gs(a,b)>0

gs(a,b)−1

∑
i=0

∑
t∈P+(s,b)
ωsb(t)=i

gs(a,b)− i.

As gs(a,b) is independent of t we can transform the equation as follows

w(a,b) = ∑
s∈P−(a,b)
gs(a,b)>0

gs(a,b)−1

∑
i=0

∆i(s,b) ·
(
gs(a,b)− i

)

= ∑
s∈P−(a,b)
gs(a,b)>0

(
gs(a,b)

gs(a,b)−1

∑
i=0

∆i(s,b)−
gs(a,b)−1

∑
i=0

(
i ·∆i(s,b)

))

= ∑
s∈P−(a,b)
gs(a,b)>0

(
gs(a,b) ·Cgs(a,b)−1(s,b)−Dgs(a,b)−1(s,b)

)
.

This finishes the proof.

Lemma 7 is the key for obtaining our O(|V |3)-algorithm for performing one GREEDY-step,

which is stated as Algorithm 3: First, all distances and hop-distances are precomputed. We then

consider, for each s ∈V , each shortest-paths subgraph with root s separately. It is easy to see that

the values of ∆·(s, ·), C·(s, ·) and D·(s, ·) can be computed in time O(|V |2).
Prepared with these values we are ready to apply Lemma 7. We initialize the values w(·, ·)

with 0. For each triple s,a,b ∈V , we check if there is a shortest s-a-b-path and if gs(a,b)> 0. We

increment w(a,b) according to Lemma 7 in case of a positive answer. Finally, we take an arbitrary

shortcut (a,b) that maximizes w(a,b). The correctness of the algorithm directly follows from the

definitions of ∆·(·, ·), C·(·, ·) and D·(·, ·) and Lemma 7. To reach the runtime in O(|V |3) we answer

the question if a shortest s-a-b path exists by checking if dist(s,a)+dist(a,b) = dist(s,b).
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Algorithm 3: GREEDY STEP

Input: Strongly connected graph G = (V,E, len)
Output: shortcut (a,b) maximizing wG({(a,b)})

1 compute dist(·, ·), h(·, ·)
2 initialize w(·, ·)≡ 0

3 initialize ∆i(·, ·)≡ 0

4 for s ∈V do

5 for b, t ∈V do /* compute ∆ */

6 if there exists a shortest s-t-path containing b in G then

7 j← ωsb(t)
8 ∆ j(s,b)← ∆ j(s,b)+1

9 for b ∈V do /* compute C and D */

10 C0(s,b)← ∆0(s,b)
11 D0(s,b)← 0

12 for r := 1 to |V |−1 do

13 Cr(s,b)←Cr−1(s,b)+∆r(s,b)
14 Dr(s,b)← Dr−1(s,b)+ r ·∆r(s,b)

15 for a,b ∈V do /* apply Lemma 7 */

16 if there exists a shortest s-b-path containing a and gs(a,b)> 0 then

17 w(a,b)← w(a,b)+gs(a,b) ·Cgs(a,b)−1(s,b)−Dgs(a,b)−1(s,b)

18 output arbitrary (a,b) with maximum w(a,b)

6 Approximation via Partitioning

The second algorithm works for sp-unique graphs in which the degree of each vertex is bounded

by a constant. Given an sp-unique graph G = (V,E, len) in which the degree of each vertex is

bounded by a constant B. Algorithm 4 partitions V into small subsets, solves the SHORTCUT

PROBLEM restricted to each subset and then chooses the best solution among all subsets as an

approximated solution. If the subsets are small enough, we can solve the SHORTCUT PROBLEM

restricted to each set in polynomial time.

In detail, our scheme works as follows. First, we partition the set V into sets P = {P1, . . . ,Pk},
where each Pi has size size = c

√
|V |ε/B for an arbitrary constant ε ∈ (0,c). Then, for each set

Pi ∈P , we compute the neighborhood Ci := Pi∪{u ∈ N(v) | v ∈ Pi} of Pi and solve the shortcut

problem on G restricted to shortcuts in Ci. That is, we compute

S̃i = argmax{w(S) | S is shortcut assignment ⊆Ci×Ci and |S| ≤ c}.

Finally, we determine the set Ci, for which the shortcut assignment yields the highest gain. This

solution gives an approximation ratio of O
(

max
{
|V |1−

ε
c , 1

c
· |V |1+

ε
c

})
to the optimal solution

(see Theorem 1).

Algorithm 4: PARTITION

input : graph G = (V,E, len), number of shortcuts c, parameter ε ∈ (0,c)
output: shortcut assignment S′

1 Partition the set V into sets P = {P1, . . . ,Pk} each of size size = c
√
|V |ε/B.

2 for Pi ∈P do

3 Ci := Pi∪{u ∈ N(v) | v ∈ Pi}

4 S̃i := argmax{wG(S) | S⊆Ci×Ci and |S| ≤ c}

5 output S′ := argmax{wG(S̃i) | i = 1,2, . . . ,k}
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e∗

D(e∗)

(a) Sets D(e∗)

overlapping non-overlapping

(b) Example of overlapping and non-overlapping shortcuts

Fig. 4: Illustrations to proof of Theorem 1

Since size = c
√
|V |ε/B and G has bounded degree B, |Ci| ≤

c
√
|V |ε holds. Hence, each solution

S̃i can be computed by performing at most ( c
√
|V |ε)2c = |V |2ε all pairs shortest paths computations

in G. As there are ⌈|V |/size⌉ = ⌈|V |B/ c
√
|V |ε⌉ sets and B = O(1), the overall computation time

is O( f (|V |) · |V |2ε · |V |/ c
√
|V |ε), where f (|V |) is the time needed for computing all pairs shortest

paths in G.

The following theorem shows the approximation ratio for PARTITION. A detailed discussion

on the ratio is given after the proof.

Theorem 1. Given a weighted, directed, SP-unique graph G = (V,E, len) in which the degree of

each vertex is bounded by a constant, and a positive integer c ∈N. Then, the solution computed

by PARTITION is an O
(

max
{
|V |1−

ε
c , 1

c
· |V |1+

ε
c

})
approximation for the optimal solution of the

SHORTCUT PROBLEM instance (G,c).

Proof. The proof is outlined as follows: We break up the shortcuts in an optimal shortcut assign-

ment into shortcuts whose endpoints are contained in the same neighborhood. We then show that at

least one of the neighborhoods contains a subset of these shortcuts that fulfills the approximation

guarantee stated in the theorem.

Let E∗ denote an optimal solution to (G,c), P the partition and C the set of neighborhoods

Ci used by PARTITION. Now each shortcut e∗ = (a,b) ∈ E∗ is subdivided as follows: Let p =
(v1, . . . ,vr) be the unique shortest path from a to b in G and D(e∗) be the set of shortcuts containing

(vi,vi+2) for all odd i with 1 ≤ i ≤ i− 2, see Figure 4a. It is easy to see that for each of these

shortcuts there is at least one neighborhood containing both endpoints, as these are connected by

a path of length 2 in the original graph. Let E ′ =
⋃

e∗∈E∗ D(e∗) and Ei be the set of e = {a,b} ∈ E ′

such that both a and b are contained in Ci. Due to the construction of the Ei, this is a cover of E ′,

i. e.
⋃⌈|V |/size⌉

i=1 Ei = E ′.

Claim.wG(E
∗)≤ 2 ·∑

⌈|V |/size⌉
i=1 wG(Ei)

Let s, t be a pair of vertices such that hG(s, t)> hG[E∗](s, t) and E∗(s, t) be the set of shortcuts on

an arbitrary hop-minimal shortest s-t-path in G[E∗]. As shortest paths in G are unique, hG(s, t)−
hG[E∗](s, t) equals the sum of the hop-distances between the endpoints of the shortcuts in E∗(s, t)
minus |E∗(s, t)|. Furthermore, for each e∗ in E∗, hG(e

∗)−1≤ 2 · |D(e∗)| and thus,

hG(s, t)−hG[E∗](s, t) = ∑
e∗∈E∗(s,t)

(hG(e
∗)−1)≤ 2 · ∑

e∗∈E∗(s,t)

|D(e∗)|

21



For e∗ ∈ E∗(s, t), the sets D(e∗) are disjoint, as the respective shortcuts e∗ lie on different parts of

the chosen s-t-path. Therefore,

2 · ∑
e∗∈E∗(s,t)

|D(e∗)|= 2 · |{e ∈ E ′ | ∃e∗ ∈ E∗(s, t) with e ∈ D(e∗)}|

≤ 2 ·
⌈|V |/size⌉

∑
i=1

|{e ∈ Ei | ∃e
∗ ∈ E∗(s, t) with e ∈ D(e∗)}|

We say that two shortcuts (vi1 ,vi2) and (v j1 ,v j2) overlap on a path v1, . . . ,vr if neither i2 ≤ j1 nor

j2 ≤ i1, see Figure 4b. The shortcuts in Ei that are the result of dividing non-overlapping shortcuts

on the shortest s-t-path are pairwise non-overlapping, thus

2 ·
⌈|V |/size⌉

∑
i=1

|{e ∈ Ei | ∃e
∗ ∈ E∗(s, t) with e ∈ D(e∗)}| ≤ 2 ·

⌈|V |/size⌉

∑
i=1

hG(s, t)−hG[Ei](s, t)

Hence, it is

wG(E
∗) = ∑

s,t∈V

hG(s, t)−hG[E∗](s, t)≤ 2 · ∑
s,t∈V

⌈|V |/size⌉

∑
i=1

hG(s, t)−hG[Ei](s, t) = 2 ·
⌈|V |/size⌉

∑
i=1

wG(Ei)

Let B be the maximum degree of a node in G and S′ be the solution computed by PARTITION.

For each i, two cases may occur:

– if |Ei| ≤ c, since S′ = argmax{wG(S̃i) | i = 1,2, . . . ,⌈|V |/size⌉}, then wG(Ei)≤ wG(S
′).

– If |Ei|> c, then we can group the shortcuts in Si into sets of size c. Since S′= argmax{wG(S̃i) | i=
1,2, . . . ,⌈|V |/size⌉}, each set of shortcuts of size c gives a decrease in overall hop length on

shortest paths that is smaller than wG(S
′) and hence wG(Ei)≤ wG(S

′) |Ei|
c
≤ wG(S

′) size2B2

c
.

It follows that,

w(S∗)≤ 2

⌈|V |/size⌉

∑
i=1

w(S′)max

{
1,

size2 ·B2

c

}
≤ 2

⌈
|V |

size

⌉
w(S′)max

{
1,

size2 ·B2

c

}

Hence, the approximation ratio can be bound as follows.

w(S∗)

w(S′)
≤ 2

⌈
|V |

size

⌉
max

{
1,

size2 ·B2

c

}
= O

(
|V |

size
max

{
1,

size2

c

})

= O

(
|V |

c
√
|V |ε

max

{
1,

c
√
|V |2ε

c

})
= O

(
max

{
|V |1−

ε
c ,

1

c
· |V |1+

ε
c

})
.

Discussion of Approximation Bounds. In this section, we compare PARTITION and GREEDY against

each other and against trivial guarantees on some example configurations. Let G = (V,E, len) be a

weighted, directed, SP-unique graph in which the degree of each vertex is bounded by a constant.

The latter assumption is not necessary for the statements concerning the greedy algorithm, its ap-

proximation guarantee of c holds for arbitrary degree distributions. We distinguish examplarily

four settings for the parameter c:
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c GREEDY PARTITION Trivial bound

O(1) O(1) Ω(|V |) Θ(|V |3)

Θ (log |V |) Θ (log |V |) Θ(|V |) Θ
(
|V |3

log |V |

)

Θ(|V |) Θ(|V |) Θ(|V |) Θ(|V |2)

Θ (|V | · log |V |) Θ (|V | · log |V |) Θ(|V |) Θ(
|V |2

log |V | )

Table 3: Comparison of approximation bounds for sample configurations

– c ∈ O(1): In this case, as stated in Section 3, the problem is polynomially solvable by a brute-

force algorithm. However, the runtime of this approach is exponential in c, while the runtime

of the greedy algorithm has only a linear dependence on c and its approximation guarantee is

constant. The guarantee given by the partitioning approach is in ω(|V |).

– c∈Θ(log(|V |)): Let x> 0 be a constant, then |V |
1− ε

x·log(|V |) = |V | ·2−
ε
x and 1

log(|V |) · |V |
1+ ε

x·log |V | =
1

log(|V |) · |V | ·2
ε
x . Hence, the guarantee given for PARTITION is in Θ(|V |), which is worse than

the bound of the greedy algorithm.

– c ∈Θ(|V |): It is |V | ≥ |V |
1− ε

x·|V | ≥ |V |
1− ε

x·log(|V |) . Thus, analoguous to the last case, the approxi-

mation guarantee of PARTITION is in Θ(|V |), which matches the bound given for GREEDY.

– c ∈Θ(|V | · log(|V |)): The guarantee of the partitioning algorithm stays in Θ(|V |), which is

better than the guarantee of the greedy algorithm. Note that this guarantee is much tighter than

the trivial bound of
|V |2

log(|V |) given in Section 3.

A summary of these configurations is given in Table 3.

7 Evaluation of the Measure Function

To evaluate the gain of a given shortcut assignment, a straightforward algorithm requires comput-

ing all-pairs shortest-paths. Since this computation is expensive, we provide a probabilistic method

to quickly assess the quality of a shortcut assignment E ′. This approach can be used for networks

where the computation of all-pairs shortest-paths is prohibitive, such as big road networks. For

the sake of simplicity we state the approach for the evaluation of µ(E ′) := ∑s,t∈V hG[E ′](s, t), the

adaption to the SHORTCUT PROBLEM is straightforward. More concrete, we apply the sampling

technique to obtain an unbiased estimate for µ(E ′) and apply Hoeffding’s Bound [18] to get a con-

fidence intervall for the outcome. As an auxiliary result we propose algorithms that approximate

the maximum hop-distance in a graph.

Theorem 6 (Hoeffding’s Bound). If X1,X2, . . . ,XK are real valued independent random variables

with ai ≤ Xi ≤ bi and expected mean µ =E[∑Xi/K], then

P

{∣∣∣∣
∑

K
i=1 Xi

K
−µ

∣∣∣∣≥ ξ

}
≤ 2e−2K2ξ 2/∑

K
i=1(bi−ai)

2

for each ξ > 0.

We now model the assessment of a shortcut assignment E ′ of a graph G in terms of Hoeffding’s

Bound. Let X1, . . . ,XK be the family of random variables such that Xi is defined by

Xi := |V |∑
t∈V

hG[E ′](si, t)
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where si ∈V is a vertex chosen uniformly at random. We estimate µ(E ′) by

µ̂ :=
K

∑
i=1

Xi/K .

Because of

E(µ̂) =E

(
K

∑
i=1

Xi

K

)
=

K

∑
i=1

E(Xi)

K
=E(X1) =

1

|V | ∑s∈V

|V |∑
t∈V

hG[E ′](s, t) = µ(E ′)

we can apply Hoeffding’s Bound if we know lower and upper bounds for the variables Xi. The

values 0 and |V |3 are trivial such bounds. We introduce the notion of shortest-paths diameter to

obtain stronger upper bounds.

Definition. The shortest path diameter spDiam(G) of a graph G is the maximum hop-distance

from any node to any other node in G.

Applying Hoeffding’s Bound with 0≤ Xi ≤ |V |
2 spDiam(G) yields

P
{∣∣µ̂−µ(E ′)

∣∣≥ ξ
}
≤ 2e−2Kξ 2/(|V |4·spDiam(G)2)

and with lrel := ξ/µ̂ we have

P

{∣∣∣∣
µ̂−µ(E ′)

µ̂

∣∣∣∣≥ lrel

}
≤ 2e−2K(µ̂·lrel)

2/(|V |4·spDiam(G)2)

where the parameter lrel states the relative size of the confidence intervall. The values of the vari-

ables Xi are chosen by randomly choosing values from the finite population c1, . . . ,c|V | with re-

placement where ci := |V |∑t∈V hG[E ′](vi, t) and V = {v1, . . .v|V |}. In [18] it is reported that Ho-

effding’s Bound stays correct if, when sampling from a finite population, the samples are being

chosen without replacement. Algorithm 5 is an approximation algorithm that exploits the above

inequality and that samples without replacement.

Algorithm 5: STOCHASTICALLY ASSESS SHORTCUT ASSIGNMENT

input : graph G = (V,E ∪E ′, len),
size of confidence intervall lrel , significance level α

output: approximation µ̂ for µ = ∑s,t∈V hG(s, t)

1 compute random order v1,v2, . . . ,vn of V

2 compute upper bound spDiam(G) for shortest-paths diameter

3 i← 0; sum← 0; µ̂ ← 0

4 while not (i = |V | or 2 · exp(−2i(µ̂ · lrel)
2/(|V |4spDiam(G)2))≤ α) do

5 i← i+1

6 T ← grow shortest-paths tree rooted at vi (favor edge-minimal shortest paths)

7 sum← sum+|V | ·∑t∈V h′G(vi, t)
8 µ̂ ← sum/i

9 output µ̂
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Approximating the Shortest-Paths Diameter. A straightforward approach to compute the exact

shortest path diameter requires computing all-pairs shortest-paths. This is reasonable when work-

ing with mid-size graphs that allow the computation of all-pairs shortest-paths at least once and

for which a large number of shortcut assignments is to be evaluated. In case the computation of

all-pairs shortest-paths is prohibitive one can also use upper bounds for the shortest path diameter.

We obtain an upper bound the following way:

First we compute an upper bound diam(G) for the diameter of G. To do so we choose a set

of nodes s1,s2, . . . ,sl uniformly at random. We denote by εG(v) = max{distG(v, t) | t ∈ V} the

eccentricity of node v in graph G = (V,E, len). For each node si, the value ε←−
G
(si)+ εG(si) is an

upper bound for the diameter of G: Let u,v ∈V be such that dist(u,v) = diam(G). Then

diam(G) = dist(u,v)≤ dist(u,si)+dist(si,v)≤ ε←−
G
(si)+ εG(si) .

We set diam(G) to be the minimum of these values over all si. The bound diam(G) is a 2-

approximation for the exact diameter diam(G) of G (already for l = 1) as there are u,v ∈ V and

si ∈V such that

diam(G) = dist(u,si)+dist(si,v)≤ diam(G)+diam(G) = 2 ·diam(G).

Let lenmax and lenmin denote the lengths of a longest and a shortest edge in G, respectively. The

value diam(G)/ lenmin is an upper bound for spDiam(G): Let P be an edge-minimal shortest path

in G with |P|= spDiam(G) edges. Then

spDiam(G) = |P| ≤
len(P)

lenmin

≤
diam(G)

lenmin

≤
diam(G)

lenmin

.

Further, diam(G)/ lenmin is a 2 ·lenmax / lenmin-approximation for spDiam(G) as with spDiam(G)≥
diam(G)/ lenmax follows that

diam(G)

lenmin

≤
2diam(G)

lenmin

≤
2lenmax ·spDiam(G)

lenmin

.

A more expensive approach works as follows, pseudocode is given as Algorithm 6: After comput-

ing diam(G), we choose a tuning parameter η . Then we grow, for each node s in G, a shortest-

paths tree whose construction is stopped directly before one vertex with distance greater than

diam(G)/η is settled. When breaking ties between different shortest paths we favor edge-minimal

shortest paths. We denote by τmax the maximum number of edges of the shortest paths on any

of the trees grown plus one. Then spDiam(G) := τmax ·η is an upper bound for the shortest path

diameter of G: Let P = (v1, . . . ,vn) be an arbitrary edge-minimal shortest path in G. We can split

P in sub-paths

P1 = (v1, . . . ,vk1
), P2 = (vk1

, . . . ,vk2
), . . . , Pℓ = (vkℓ−1

, . . . ,vkℓ)

such that

dist(vki
,vki+1

)> diam(G)/η and dist(vki
,vki+1−1)≤ diam(G)/η .

The number ℓ of these subpaths is at most η as ℓ > η would imply that

len(P)>
diam(G)

η
(ℓ−1)≥ diam(G).
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Algorithm 6: COMPUTE UPPER BOUND FOR SHORTEST-PATHS DIAMETER

input : graph G = (V,E, len), tuning parameter l, tuning parameter η
output: upper bound spDiam(G) for the shortest-paths diameter of G

1 diam(G)← ∞; τ ← 0;

2 for i = 1, . . . , l do /* compute diam(G) */

3 s← choose node uniformly at random

4 grow shortest-paths tree rooted at s

5 grow shortest-paths tree rooted at s on the reverse graph
←−
G

6 diam(G)←min{diam(G),maxv∈V {dist(s,v)}+maxv∈V {dist(v,s)}}

7 for s ∈V do /* compute spDiam(G) */

8

T ← grow partial shortest-paths tree rooted at s

(favoring edge-minimal shortest paths). Stop growing the tree directly

before the first node with dist(s,v)> diam(G)/η is settled.

τmax ← max{τmax,1+maximal number of edges of a path in T }

9 output spDiam(G) := τmax ·η

It is |Pi| ≤ τmax which yields |P| ≤ τmax ·η . As P was arbitrary we have that spDiam(G)≤ τmax ·η .

Further τmax ·η is a 2η-approximation and an η(1+1/(τmax−1))-approximation of spDiam(G)
: With τmax−1≤ spDiam(G) follows that

τmax ·η

spDiam(G)
≤

(spDiam(G)+1)η

spDiam(G)
= η(1+

1

spDiam(G)
)≤ η(1+

1

τmax−1
)≤ 2 ·η .

Obviously, the whole proceeding only makes sense for graphs for which the shortest path

diameter is much smaller than the number of nodes. This holds for a wide range of real-world

graphs, in particular for road networks. For example, the road network of Luxembourg provided

by the PTV AG [22] consists of 30733 nodes and has a shortest path diameter of only 429. The

road network of the Netherlands consists of 946.632 nodes and has a shortest-paths diameter of

1503.

8 Conclusion

Summary. In this work we studied two problems. The SHORTCUT PROBLEM is the problem of

how to insert c shortcuts in G such that the expected number of edges that are contained in an

edge-minimal shortest path from a random node s to a random node t is minimal. The REVERSE

SHORTCUT PROBLEM is the variant of the SHORTCUT PROBLEM where one has to insert a min-

imal number of shortcuts to reach a desired expected number of edges on edge-minimal shortest

paths.

We proved that both problems are NP-hard and that there is no polynomial-time constant-factor

approximation algorithm for the REVERSE SHORTCUT PROBLEM, unless P = NP. Furthermore,

no polynomial-time algorithm exists that approximates the SHORTCUT PROBLEM up to an addi-

tive constant unless P = NP.

The algorithmic contribution focused on the SHORTCUT PROBLEM. We proposed two ILP-

based approaches to exactly solve the SHORTCUT PROBLEM: A straightforward formulation that

incorporates O(|V |4) variables and constraints and a more sophisticated flow-like formulation that

requires O(|V |3) variables and constraints.

We considered two approximation strategies. A straightforward greedy approach computes a

c-approximation of the optimal solution if the input graph is such that shortest paths are unique.
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We further presented a dynamic program that performs a greedy step in time O(|V |3) which yields

an overall runtime in O(c · |V |3). The main idea of the second approach is to partition the set

of nodes. It computes an O
(

max
{
|V |1−

ε
c , 1

c
· |V |1+

ε
c

})
approximation of the optimal solution if

shortest paths in the input graph are unique and the maximum degree is bounded by a constant. If

ε is a constant, this algorithm is polynomial.

Finally, we proposed a probabilistic method to quickly evaluate the measure function of the

SHORTCUT PROBLEM. This can be used for large input networks where an exact evaluation is

prohibitive.

Future Work. A wide range of possible future work exists for the SHORTCUT PROBLEM. From

a theoretical point of view the probably most interesting open field is the approximability of the

SHORTCUT PROBLEM. It is still unknown if it is in APX. Furthermore, it would be helpful to

identify graph classes for which the SHORTCUT PROBLEM or the REVERSE SHORTCUT PROB-

LEM becomes tractable. FPT-algorithms are also desirable. From an experimental point of view it

would be interesting to develop heuristics that find good shortcuts for large real-world inputs. In

particular, evolutionary algorithms and local search algorithms seem promising.

Finally, we pose the question if the given ILP-approaches can be used for the design of ap-

proximation algorithms. We do not see good chances for rounding-based methods. However, other

techniques like primal-dual arguments might work.
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