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ABSTRACT

A new spectral-spatial method for hyperspectral data classifi-

cation is proposed. For a given hyperspectral image, proba-

bilistic pixelwise classification is first applied. Then, hierar-

chical step-wise optimization algorithm is performed, by iter-

atively merging neighboring regions with the smallest Dis-

similarity Criterion (DC) and recomputing class labels for

new regions. The DC is computed by comparing region mean

vectors, class labels and a number of pixels in the two re-

gions under consideration. The algorithm is converged when

all the pixels get involved in the region merging procedure.

Experimental results are presented on two hyperspectral re-

mote sensing images acquired by the AVIRIS and ROSIS sen-

sors. The proposed approach improves classification accu-

racies and provides maps with more homogeneous regions,

when compared to previously proposed classification tech-

niques.

Index Terms— Hyperspectral imaging, hierarchical seg-

mentation, classification, support vector machines.

1. INTRODUCTION

In hyperspectral imagery, each pixel is represented by a de-

tailed spectrum of the received light. Since different sub-

stances exhibit different spectral signature, hyperspectral im-

agery is a well-suited technology for accurate image classifi-

cation. However, a large number of spectral channels presents

challenges to image analysis.

An extensive literature is available on classification of hy-

perspectral images [1, 2]. Recent studies have shown the

advantage of considering the correlations between spatially

adjacent pixels for accurate image classification, i.e., apply-

ing spectral-spatial classification [3, 4]. One of the recently

proposed approaches consists in performing image segmen-

tation (partitioning of the image into homogeneous regions)

and then using the identified regions as adaptive neighbor-

hoods for all the pixels within these regions [5]. However,

the accuracy of segmentation results strongly depends on the

chosen criterion of region homogeneity. In order to mitigate

this dependence, we recently proposed to perform probabilis-

tic classification for selecting the most reliably classified pix-

els as markers, or region seeds, for region growing [4]. This

technique led to a significant improvement of classification

accuracies when compared to previously proposed methods.

The drawback of this method is that the selection of markers

strongly depends on the performance of the initial classifier:

non-marked regions disappear in the final classification map,

while if a marker is classified to the wrong class, the whole

region grown from this marker risks to be wrongly classified.

In this work, we propose to use a Hierarchical Step-Wise

Optimization (HSWO) method for including spatial depen-

dencies into a classification procedure. HSWO is a segmen-

tation approach, which iteratively merges pairs of the most

similar spatially adjacent regions, and generates at its output

a hierarchical set of image segmentations [6]. We propose to

use supervised classification results for computing more ac-

curately a sequence of region merges and for defining a con-

vergence criterion, leading to a single spectral-spatial classifi-

cation map. Thus, a new Classification and Hierarchical Op-

timization (CaHO) method for hyperspectral images is pro-

posed. First, probabilistic pixelwise classification of the input

image is performed. Then, at each iteration two neighbor-

ing regions with the smallest Dissimilarity Criterion (DC) are

merged, and a class label for a new region is computed. The

DC between regions is defined as a function of region statisti-

cal features, a number of pixels in the considered regions and

their class labels. When all image pixels get involved in re-

gion merging, the algorithm converges, resulting in a spectral-

spatial classification map.

The paper is organized as follows. The next section

presents a new CaHO method. Experimental results are pre-

sented and discussed in Section 3 . Finally, conclusions are

drawn in Section 4.

2. PROPOSED METHOD

On the input a B-band hyperspectral image is given, which

can be considered as a set of n pixel vectors X = {xj ∈
R

B , j = 1, 2, ..., n}. The objective is to compute a classifi-

cation map L = {Lj , j = 1, 2, ..., n}, where each pixel xj

is assigned to one of K thematic classes (i.e., has a class la-

bel Lj). The proposed CaHO method, illustrated in Fig. 1, is

composed of two main steps:
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Fig. 1. Flowchart of the proposed CaHO approach. “DC”

means Dissimilarity Criterion.

2.1. Probabilistic pixelwise classification

The aim of the first step is to compute a classification map

L = {Lj , j = 1, 2, ..., n} for a given hyperspectral image,

where each pixel has a unique class label, and class proba-

bilities for each pixel {P (Lj = k|xj), k = 1, ...,K}, j =
1, 2, ..., n. We propose to perform probabilistic Support Vec-

tor Machines (SVM) classification for this purpose, which is

extremely well suited for classifying hyperspectral data [1].

We refer the reader to [1] and [7] for details on the SVM

method, and to [4] for details on how class probabilities are

estimated using pairwise coupling of binary probability esti-

mates.

2.2. Hierarchical optimization

At this step, regularization of the classification map obtained

at the previous step is performed, by applying a new hierar-

chical optimization approach as follows:

1) Initialize the optimization by labeling each image pixel

as a separate region. Each one-pixel region Ri has a class

label L(Ri) and a K-dimensional vector of class probabilities

{Pk(Ri) = P (L(Ri) = k|Ri), k = 1, ...,K}.

2) Compute the DC between all pairs of neighboring re-

gions, using an eight-connectivity neighborhood. A DC be-

tween two regions Ri and Rj DC(Ri, Rj) is calculated using

the following algorithm:

• Compute the dissimilarity measure DCspectral(Ri, Rj)
between two regions by comparing spectral values

of the pixels within these regions. We investigated

the use of two dissimilarity measures for this pur-

pose. The Spectral Angle Mapper (SAM) between

the region mean vectors ui = (ui1, ..., uiB)
T and

uj = (uj1, ..., ujB)
T is defined as the angle between

them:

SAM(ui, uj) = arccos

(

∑B
b=1

uibujb

[
∑B

b=1
u2

ib]
1/2[

∑B
b=1

u2

jb]
1/2

)

.

(1)

The Square root of band sum Mean Squared Error

(MSE) measure is based on minimizing the increase of

MSE between the region mean vector and the original

image data and is computed as

MSE(ui, uj) =

[

ninj

(ni + nj)

B
∑

b=1

(uib − ujb)
2

]1/2

, (2)

where ni and nj is a number of pixels in the regions Ri

and Rj , respectively.

• If the regions have equal class labels L(Ri) = L(Rj),
the DC between these regions

DC(Ri, Rj) = DCspectral(Ri, Rj). (3)

• If the regions have different class labels L(Ri) �=
L(Rj), the DC between them is found as:

a) If ni > M and nj > M , DC(Ri, Rj) = ∞
(the upper maximum value of float). This means

that if a two large regions are classified to differ-

ent classes, they cannot be merged together. This

condition is included for favoring merging small

regions. We propose to set M = 20.

b) Otherwise,

DC(Ri, Rj) = W ·DCspectral(Ri, Rj), (4)

where W > 1. This means that if two regions

have different class labels, the DC between them

is penalized by a constant W .

3) Find the smallest DC value DCmin.

4) Merge all pairs of neighboring regions satisfying

DC = DCmin. For each new region Rnew created by

merging two regions Ri and Rj , recalculate:

• Class probabilities as

Pk(Rnew) =
Pk(Ri)ni + Pk(Rj)nj

nnew
, (5)

k = 1, ...,K, where nnew = ni + nj .



Table 1. Information Classes, Number of Labeled Samples (No. of Samp.) and Classification Accuracies in Percentage for the

Indian Pines Image.
No. of Samp.

SVM ECHO
SVM HSEG CaHO (W = 1.5)

DCspectral Train Test MSF +MV SAM MSE

Overall Accuracy - - 78.17 82.64 88.41 90.86 88.87 89.15

Average Accuracy - - 85.97 83.75 91.57 93.96 93.75 93.82

Corn-no till 50 1384 78.18 83.45 90.97 90.46 95.38 94.22

Corn-min till 50 784 69.64 75.13 69.52 83.04 80.36 79.21

Corn 50 184 91.85 92.39 95.65 95.65 97.28 96.20

Soybeans-no till 50 918 82.03 90.10 98.04 92.06 97.28 94.99

Soybeans-min till 50 2418 58.95 64.14 81.97 84.04 73.53 74.52

Soybeans-clean till 50 564 87.94 89.89 85.99 95.39 89.89 94.86

Alfalfa 15 39 74.36 48.72 94.87 92.31 97.44 94.87

Grass/pasture 50 447 92.17 94.18 94.63 94.41 93.96 97.32

Grass/trees 50 697 91.68 96.27 92.40 97.56 97.70 97.56

Grass/pasture-mowed 15 11 100 36.36 100 100 100 100

Hay-windrowed 50 439 97.72 97.72 99.77 99.54 99.54 99.32

Oats 15 5 100 100 100 100 100 100

Wheat 50 162 98.77 98.15 99.38 98.15 99.38 99.38

Woods 50 1244 93.01 94.21 97.59 98.63 98.63 99.04

Bldg-Grass-Tree-Drives 50 330 61.52 81.52 68.79 82.12 79.70 81.82

Stone-steel towers 50 45 97.78 97.78 95.56 100 100 97.78

• Class label as

L(Rnew) = argmax
k

{Pk(Rnew)}. (6)

5) Stop if each image pixel has been involved at least once

in the region merging procedure. Otherwise, recalculate the

DC values for the new regions and all regions spatially adja-

cent to them, and return to step 3.

The proposed convergence criterion assumes that the im-

age does not contain one-pixel regions of interest. If such

regions may exist, the algorithm must be converged earlier.

The convergence criterion in this case can for instance com-

pare class probabilities of next candidates for merging, and

stop the procedure when these candidates belong to different

classes with probabilities higher than the defined threshold.

Another, simpler criterion consists in stopping the algorithm

when [(1−P )n] pixels get involved in region merging, where

P (0 < P < 1) is a probability of occurrence of one-pixel re-

gions in the considered image. Since the images used for our

experiments do not contain one-pixel regions of interest, we

use the convergence criterion proposed in step 5.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We applied the proposed CaHO method to two hyperspectral

airborne images described in the following:

1) The Indian Pines image was recorded by the AVIRIS

sensor over the vegetation area. It is of 145 by 145 pixels,

with a spatial resolution of 20 m/pixel and 200 spectral chan-

nels. Sixteen information classes are considered, which are

detailed in Table 1, with the number of training and test sam-

ples for each class. Training samples were randomly selected

Table 2. CaHO Overall and Average Classification Accura-

cies (OA and AA, respectively) for the Indian Pines Image

for Different Values of the Parameter W .
DC W 1.0 1.25 1.5 1.75 2.0 3.0

SAM
OA 87.34 88.61 88.87 88.42 88.44 86.80

AA 91.74 93.72 93.75 93.04 93.49 92.81

MSE
OA 88.93 88.34 89.15 87.81 88.08 87.26

AA 87.48 92.65 93.82 93.23 93.32 93.27

Table 3. Classification Accuracies in Percentage for the Cen-

ter of Pavia Image.

SVM
SVM HSEG CaHO (W = 1.5)

DCspectral MSF +MV SAM MSE

Overall Acc. 94.96 91.31 96.67 96.58 96.51

Average Acc. 92.56 92.64 95.41 95.61 95.60

from the reference data. The remaining samples composed

the test set.

2) The Center of Pavia image was acquired by the ROSIS

sensor over the urban area of Pavia, Italy. The image is of 785

by 300 pixels, with a spatial resolution of 1.3 m/pixel, 102

spectral channels and nine classes of interest. Thirty samples

for each class were randomly chosen from the reference data

as training samples. The remaining samples were used as the

test set. More information about the image, with the used

training-test set can be found in [8].

For both images, the probabilistic one-versus-one SVM

classification with the Gaussian Radial Basis Function (RBF)

kernel was performed. The optimal parameters C (penalty

during the SVM optimization) and γ (spread of the RBF ker-



(a) (b)

Fig. 2. Indian Pines image. (a) SVM classification map. (b)

CaHO classification map (MSE DCspectral, W = 1.5).

nel) were selected by fivefold cross validation. Then, the pro-

posed hierarchical optimization was applied using the SAM

and the MSE spectral dissimilarity measures (the algorithm

was implemented using the Hierarchical Segmentation soft-

ware [9]). Table 2 gathers overall and average (i.e., average

over the classes) accuracies of the CaHO method for the In-

dian Pines image for different values of the parameter W . It

can be seen from the table that the method is robust to the

choice of W , and quite a wide range of values of W leads

to high classification accuracies for both SAM and MSE dis-

similarity measures. The best accuracies are achieved with

W = 1.5.

Table 1 summarizes global [4] and class-specific accu-

racies of the pixelwise SVM classification and the proposed

CaHO technique with W = 1.5 for the Indian Pines image.

In order to compare the results of the proposed method with

other advanced techniques, we have included results of the

ECHO classification [10], a classification using the construc-

tion of a minimum spanning forest from the SVM-derived

markers (SVMMSF) [4] and a classification by majority

voting within neighborhoods defined by HSEG segmenta-

tion (HSEG+MV, with Swght = 0.0, which is equivalent

to HSWO, and the SAM DC) [5]. Table 3 gives global

accuracies of the SVM, SVMMSF, HSEG+MV and CaHO

classification methods for the Center of Pavia image. As

can be seen from the tables, the HSEG+MV and the CaHO

methods yield the best global and most of the class-specific

accuracies (the average accuracies of these approaches are

non-significantly different). However, in the HSEG+MV

method a segmentation map was chosen interactively from

the segmentation hierarchy, while the CaHO method is au-

tomatic. Fig. 2(b) shows the CaHO classification map (with

the MSE DCspectral, W = 1.5), which is less noisy when

compared to the SVM map (see Fig. 2(a)).

4. CONCLUSIONS

In this paper, a new CaHO method for spectral-spatial clas-

sification of hyperspectral images is proposed. The method

consists in performing a probabilistic pixelwise classification,

followed by a hierarchical optimization, where at each step

two “closest” neighboring regions are merged, and a clas-

sification map is recomputed. Experimental results demon-

strate that the proposed method improves classification accu-

racies, when compared to previously proposed classification

schemes, and is sufficiently robust for classifying different

kinds of images.
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