Improved hierarchical optimization-based classification of hyperspectral images using shape analysis

Abstract : A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.
Type de document :
Communication dans un congrès
IEEE IGARSS - International Geoscience and Remote Sensing Symposium, Jul 2012, Munich, Germany. 2012
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00729038
Contributeur : Yuliya Tarabalka <>
Soumis le : vendredi 7 septembre 2012 - 12:09:20
Dernière modification le : jeudi 11 janvier 2018 - 16:49:01
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 10:50:18

Fichier

2012_IGARSS_tarabalka_HS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00729038, version 1

Collections

Citation

Yuliya Tarabalka, James Tilton. Improved hierarchical optimization-based classification of hyperspectral images using shape analysis. IEEE IGARSS - International Geoscience and Remote Sensing Symposium, Jul 2012, Munich, Germany. 2012. 〈hal-00729038〉

Partager

Métriques

Consultations de la notice

245

Téléchargements de fichiers

128