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Abstract. In order to understand the large between-subject variability
observed in brain organization and assess factor risks of brain diseases,
massive efforts have been made in the last few years to acquire high-
dimensional neuroimaging and genetic data on large cohorts of subjects.
The statistical analysis of such high-dimensional and complex data is car-
ried out with increasingly sophisticated techniques and represents a great
computational challenge. To be fully exploited, the concurrent increase
of computational power then requires designing new parallel algorithms.
The MapReduce framework coupled with efficient algorithms permits to
deliver a scalable analysis tool that deals with high-dimensional data
and hundreds of permutations in a few hours. On a real functional MRI
dataset, this tool shows promising results.
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1 Introduction

Using genetics information in conjunction with brain imaging data is expected
to significantly improve our understanding of both normal and pathological vari-
ability of brain organization. It should lead to the development of biomarkers and
in the future personalized medicine. Among other important steps, this endeavor
requires the development of adapted statistical methods to detect significant as-
sociations between the highly heterogeneous variables provided by genotyping
and brain imaging, and the development of the software components that will
permit large-scale computation to be done.

In current settings, neuroimaging-genetic datasets consist of a set of i) geno-
typing measurements at given genetic loci, such as Single Nucleotide Polymor-
phisms (SNPs) that represent a large amount of the genetic between-subject
variability, on the one hand, and ii) quantitative measurements at given loca-
tions (voxels) in three-dimensional images, that represent e.g. either the amount
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of functional activation in response to a certain task or an anatomical feature,
such as the density of grey matter in the corresponding brain region.

Most of the efforts so far have been focused on designing association mod-
els, and the computational procedures used to run these models on actual ar-
chitectures have not been considered carefully. For instance, permutation tests
of simple linear association models have been deemed as inefficient in some of
these studies, e.g. [11]; however, they can be replaced by analytical tests only
in very specific cases and under restrictive assumptions. Gains in sensitivity
might be provided by multivariate models in which the joint variability of sev-
eral genetic variables is considered simultaneously. Such models are thought to
be more powerful [13, 1, 5, 7], because they can express more complex relation-
ships than simple pairwise association models. The cost of unitary fit is high due
to high-dimensional, potentially non-smooth optimization problems and various
cross-validation loops needed to optimize the parameters; moreover, permuta-
tion testing is necessary to assess the statistical significance of the results of such
procedures in the absence of analytical tests. Multivariate statistical methods re-
quire thus many efforts to be tractable in this problem on both the algorithmic
and implementation side, including the design of adapted dimension reduction
schemes. In this work we will consider the simplest approach, ridge regression
[5], that is powerful for detecting multivariate associations between large variable
sets, but does not enforce sparsity in the solution.

Working in a distributed context is necessary to deal with the memory and
computational loads, and yields specific optimization strategies. Once the uni-
tary fit cost has been minimized, the main task when implementing such natural
data parallel applications is to choose how to split the problem into smaller sub-
problems to minimize computation, memory consumption and communication
overhead. For the first time, we propose an efficient framework that can manage
ridge regression with numerous phenotypes and permutations.

In Section 2, we present our sequential algorithm, then we describe our frame-
work to distribute efficiently the computation on large infrastructures. Experi-
mental results on simulated and real data are presented in Section 3.

2 Methods : the computational framework

Ridge regression of neuroimaging genetics data is clearly an embarrassingly par-
allel problem, which can be easily split into smaller tasks. Our computational
framework relies on an adapted workflow summarized in Fig. 1, in which sub-
tasks are optimized for the sake of efficiency. To simplify the presentation we
first describe the core algorithm and then the workflow.

2.1 Optimizing the ridge regression algorithm

The map step, i.e. the scoring of ridge classifiers, is the most demanding in
computation time (< 99.9% in our final implementation) and thus has to be
optimized in priority. The computational burden mostly depends on the ridge
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regression step. Our algorithm performs Ridge Regression for multiple targets
and multiple individual penalty values. It solves the following problem:

β̂ij = argminβ‖yi −Xβ‖22 + λij‖β‖
2
2, i ∈ [1, p], j ∈ [1, J ]

where X ∈ R
n×p is the gene data matrix, yi ∈ R

n is a variable extracted from
brain images, β̂ij ∈ R

p is the estimated coefficient vector, and λij > 0 is the
penalty term where j indexes J different penalties for the target yi. We obtain
the solution using the singular value decomposition (SVD) of X, which we write
X = USV T , truncated to non-zero singular values. In the full rank case and for
p > n we have U ∈ R

n×n and V T ∈ R
n×p, while S is a diagonal matrix with

entries sk, 1 ≤ k ≤ n. For one β̂ij we have

β̂ij = V diagk

(

sk

s2k + λij

)

UT yi

All β̂ij are calculated with the same SVD, it is reused (and cached). For all i,
UT yi is pre-calculated, which is conveniently and effectively done by multiplying
the matrices UT and Y where the columns of Y are the yi. Since for a given j

every target i potentially has a different penalty associated, the shrinkage oper-
ation sk

s2
k
+λij

is not writable as a matrix multiplication against UTY . However, it

is a linear operation on matrices, and by defining Σ ∈ R
n×p with Σki =

sk
s2
k
+λij

for a fixed j, it can be written as the pointwise matrix product

β̂ = V (Σ ◦ UTY ).

These are the operations implemented by our algorithm for the J different sets
of penalties, using J different matrices Σ. With a pre-calculated SVD and UTY ,
the cost of this operation is O(npN), where N is the number of target variables.

Care was taken of computational/hardware sources of optimization, like CPU
cache issues. For instance, matrix-based operations are used instead of vector-
based operations to optimize the use of advanced vector extensions instructions
set in new CPU. Our Python code uses the Numpy/Scipy/Scikit-learn scientific
libraries, which rely on standard and optimized linear algebra libraries (Atlas or
MKL) that are several order of magnitude faster than naive code. Next, we need
to consider evaluation and parameter setting procedures:

– the power of the procedure is measured by the ratio of explained variance,
computed within a shuffle-split loop that leaves 20% of the data as a test
set at each of the ten iterations;

– to select the optimal shrinkage parameters, J = 5 values are tested first,
then a grid refinement is performed where five other parameters are tested ;

– each shrinkage parameter of the ridge regression is evaluated using an inner
5-folds cross validation loop.

This setting thus needs approximately 500 ridge regressions for one phenotype
and one permutation.



4 B. Da Mota et al.

Fig. 1. Overview of the Map-reduce framework for the application of Ridge Regression
in neuroimaging-genetics. Permutation ID is 0 for not permuted data.

2.2 The distributed algorithm

The MapReduce framework [2, 3] seems the most natural approach to handle
this problem and can easily harness large grids. The Map step yields explained
variance for an image phenotype and for each permutation, while the reduce step
consists in collecting all results to compute statistic distribution and corrected p-
values. Sub-tasks are created in a way that minimizes inputs/outputs (I/O). By
essence, permutations imply computations on the same data after shuffling. The
permutation procedure is thus embedded in the mapper, so that all permutations
loops are run on the same node for a given dataset and the problem is split in
the direction of the brain data. Figure 1 gives an overview of our framework.

Shared cache is a crucial feature since the Map step is dominated by costly
SVDs. For instance, with 1,000 phenotypes and 1,000 permutations, each SVD
in the inner CV loop is required 2 millions times and costs few tens of second. A
shared cache on NFS, provided by the Joblib Python library [12], coupled with
system cache saves many computations.

3 Results

We present three types of results. First, we present the performances of our dis-
tributed framework. Then, we illustrate the interest of our approach on simulated
data with known ground truth. Finally, we present results on a real dataset.

3.1 Performance evaluation of the procedure

To illustrate the scalability of our Map-Reduce procedure, we execute the whole
framework on a cluster of 20 nodes; each one is a 2 × Intel(R) Xeon(R) CPU
X5650 (6 cores) @ 2.67GHz with 48GB of memory, connected with Gigabit
Ethernet LAN; all files were written on the NFS storage file-system; our mapper
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Nb of parcels : 1,000
Nb of SNPs : 31,790
Nb of samples : 1,229
Nb of permutations : 200
Nb of tasks : 1, 000 + 1
Theoretical sequential time : 359h 33min
Total time : 1h 48min
Max cores : 240
Speed-up : 200

Fig. 2. Setting and execution of the MapReduce algorithm on the cluster

runs with the Enthought Python Distribution (EPD 7.2-2-rh5 64 bits) with
scikits-learn 0.11 [8] and with the MKL as linear algebra library with OpenMP
parallelization disabled; the workflow is described and submitted with the soma-
workflow software [6]. This framework makes it possible i) to describe a set of
independent tasks that are executed following an execution graph and ii) to
execute the code by submitting the graph to classical queuing systems operating
on the cluster. We report in Fig. 2 the result of an execution with almost all
the 240 cores available during all the run. The workflow is composed by 1,000
mappers and 1 reducer tasks. The mappers represent 99.9% of the total of serial
computation time. Once the SVD are cached, the execution time of a map task
is around 20 minutes. We can see in Fig. 2 that after 88 minutes, we use only
few cores, but all the unused cores are available for other users. This comes from
the number of tasks: on 240 cores, after 4 batches of 240 tasks, only 40 are left.
To improve the global speedup, we could split the problem into smaller pieces to
decrease the time of the mappers or we could choose a more optimal splitting.
We have not explored these possibilities yet.

3.2 Simulated Data

We simulate functional Magnetic Resonance Images (fMRI) from real genetic
data obtained from the Imagen database [10]. We use the number of minor alleles
for each SNP and we assume an additive genetic model. We use only the first
chromosome in which ten random SNPs produce an effect in a spherical brain
region, centered at a random position in the standard space, then intersected
with the support of grey matter using a mask computed for the Imagen dataset
(see below). We add i.i.d. Gaussian noise, smoothed spatially with a Gaussian
kernel (σ = 3mm), to model other variability sources. The effect size and the
Signal-to-Noise Ratio (SNR) can vary across simulations. Then 1,000 imaging
phenotypes are obtained by computing the mean signal in brain parcels that
were created using a Ward Agglomeration clustering.

To assess our approach, ten different datasets were generated and were run
on our framework with P=200 permutations to estimate the distribution of the
maximum explained variance under the null hypothesis. Results are given in
Table 1 and show that our method detects 8 effects among 10 simulations with
a p-value p < .05. The results do not give evidence of the influence of the SNR
simulation nor of the volume of the effect on the test sensitivity.
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Simul. Volume Average Best Parcel
# (mm

3) SNR explained variance p-value

1 3375 0.19 0.022 0.005
2 3348 0.66 0.042 0.005
3 2457 0.30 0.056 0.005
4 2754 0.54 0.033 0.005
5 3213 0.22 0.007 0.35
6 3348 1.50 0.027 0.005
7 1431 0.55 0.031 0.005
8 1890 0.66 0.005 0.5
9 3375 0.19 0.036 0.005

10 3132 0.41 0.026 0.005

Table 1. Results on the simulated datasets p-value the p-value corresponding to the
given ratio of explained variance, obtained by 200 permutations)

3.3 Results on a real dataset

We used data from Imagen, a large multi-centric and multi-modal neuroimaging
database [10] containing functional magnetic resonance images (fMRI) associated
with 99 different contrast images in more than 1,500 subjects. The dataset is built
on the first batch of subjects of the study. Regarding the fMRI data, the protocol
in [9] was used, which yields the [angry faces - neutral] functional contrast (i.e.
the difference between watching angry faces or neutral faces).

Imaging phenotype. Standard preprocessing, including slice timing correction,
spike and motion correction, temporal detrending (functional data), and spatial
normalization (anatomical and functional data), were performed using the SPM8
software and its default parameters; functional images were resampled at 3mm
resolution. Obvious outliers detected using simple rules such as large registration
or segmentation errors or very large motion parameters were removed after this
step. The [angry faces - neutral] contrast was obtained using a standard linear
model, based on the convolution of the time course of the experimental condi-
tions with the canonical hemodynamic response function, together with standard
high-pass filtering procedure and temporally auto-regressive noise model. The
estimation of the model parameters was carried out using the SPM8 software. A
mask of the grey matter was built by averaging and thresholding the individual
grey matter probability maps. Subjects with too many missing data (imaging or
genetic) or not marked as good in the quality check were discarded. An outliers
detection [4] was run and 10% of the most outlier subjects were eliminated.

Genotype. We keep only SNPs in the first chromosome with less than 2% missing
data. All the remaining missing data were replaced by the median over the
subjects for the corresponding variable. The age, the sex and the acquisition
center were taken as confounding variables.

The final dataset contains 1,229 subjects, 1,000 brain parcels, 31,790 SNPs
and 10 confounding variables. Our Map-Reduce framework was run with P=1,000
permutations to assess statistical significance. The workflow takes approximately
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Fig. 3. Location of the brain parcel with a significant explained variance ratio (exp.
var. = 0.019, p ≃ 0.048, corrected for multiple comparisons) on the real dataset.

9 hours on the previously described 240 cores cluster, for a theoretical serial time
around 75 days (i.e. a speed-up of approximately 200). Only one parcel is de-
tected with a corrected p-value ≤ 0.05. A view of the location of the detected
parcel is reported in Fig. 3.

4 Conclusion

Penalized linear models represent an important step in the detection of asso-
ciations between brain image phenotypes and genetic data, which faces a dire
sensitivity issue. Such approaches require cross validation loops to set the hyper-
parameters and for performance evaluation. Permutations have to be used to as-
sess the statistical significance of the results, this yielding prohibitively expensive
analyses. In this paper, we present an efficient and scalable framework that can
deal with such a computational burden and that we used to provide a realistic
assessment of the statistical power of our approach on simulations. Our results
on simulated data highlight the potential of our method and we provide promis-
ing preliminary results on real data, including one multivariate association that
reaches significance. To the best of our knowledge, this is the first result of that
kind in a brain-wide chromosome-wide association study, although it needs to
be reproduced to be considered as meaningful.
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