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Abstract. In this paper, adopting the translation validation approach,
we present a formal verification process to prove the correctness of com-
piler transformations on systems of polychronous equations. We encode
the source programs and the transformations with polynomial dynam-
ical systems and prove that the transformations preserve the abstract
clocks and clock relations of the source programs. In order to carry out
the correctness proof, an appropriate relation called refinement and an
automated proof method are presented. Each individual transformation
or optimization step of the compiler is followed by our validation process
which proves the correctness of this running. The compiler will continue
its work if and only if the correctness is proved positively. In this paper,
the highly optimizing, industrial compiler from the synchronous language
SIGNAL to C is addressed.

Keywords: Formal Verification, Translation Validation, Validated
Compiler, Multi-clocked Synchronous Programs, Polychronous Model.

1 Introduction

In the synchronous approaches, synchronous data-flow languages such as LUS-
TRE [9], SIGNAL [7] have been introduced and used successfully for the design
and implementation of embedded and critical real-time systems. For the critical,
high-assurance systems, the design and realization highly require an efficient and
reliable implementation. Thus the systems must be verified using formal methods
(e.g. model checking, etc). We want that when the compiler does not claim bugs
in the formally verified source code, the generated executable code behaves as
abstract clock relations semantics of the source program. However, compilation is
complex and compilers involve many phases where they perform transformations
over the data structures of the source program. Some transformations might be
optimizations based on static analyses to eliminate inefficiencies, subexpressions
in the code. Thus, bugs in the compilers can happen, making wrong executable
code to be generated from correct source programs. The software industry is
aware of these issues and applies many techniques to deal with them, such as
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manual reviews of the generated code, or testing. These techniques are not fully
automated, and are expensive in terms of time and performance. An automated
formal approach is applied to verify the compiler in order to prove that the
semantic of the source program is preserved during the compilation is needed.

In this paper, adopting the translation validation approach in [I5], we present
an automated verification process to prove the correctness of a multi-clocked
synchronous language compiler. As a part of the VERISYNC project [18], due
to the very important role of abstract clock and clock relations, we are interested
in proving that abstract clocks and clock relations semantics of source programs
are preserved during the compilation phases of the compiler. Each individual
transformation or optimization step of the compiler is followed by our verifi-
cation process which proves the correctness of this running. The compiler will
continue its work if and only if the correctness is proved positively. This ap-
proach avoids the disadvantage of proving in advance that the compiler always
do correctly since every small change to the compiler requires reproving. Our ver-
ification framework uses polynomial dynamical systems (PDS) over a finite field,
as common semantics for both source and compiled programs and a syntactic
simulation-based proof which automatically proves the semantic preservation.
This automated proof is implemented within the existing model checker SIGALI
in the Polychronly toolset [12].

The remainder of this paper is organized as follows. Section 2] introduces the
formal model of synchronous program behaviors and the automatic translation
from a SIGNAL program to its formal model. In Section Bl we present our ap-
proaches to formally verify the compilation and formalize the notion of “correct
translation” by means of a refinement relation between PDSs. Section [ ad-
dresses the application of our verification approaches to the highly optimizing,
industrial compiler from the synchronous language SIGNAL with the implemen-
tation which is integrated in the Polychrony toolset. Section [ describes some
related works, concludes our work and describes future work.

2 An Equational Model of Synchronous Programs

2.1 An Equational Model of the Synchronous Program Behavior

We denote by Z/pZ[Z] the set of polynomials over variables Z = {z1, ..., 21}
whose coefficients range over Z/pZ, where Z/pZ is the finite field modulo p, with
p prime. For a polynomial P € Z/pZ[Z], the solutions of the polynomial equation
P(Z) = 0 is denoted by Sol(P). We say that P, = P, whenever Sol(P;) =
Sol(P,). And the representative of Sol(P) of each =-equivalence class is called
the canonical generator. In the following, we shall use some notations:

P 21— Pr~L Thus (Z/pZ)*\Sol(P) = Sol(P)
PoP = (Plp71 + Pfﬁl)pfl
Po= P, 2{Zc(Z/pZ)F|P(Z)=0= P(Z) =0} =P x P,
2P 2 Ply—1 % Plyco %o x Plo,—p
VziP 2 Pl,c1®Pl,,—2®...OP

Zi=p
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where P|,,—, is P obtained by instantiating any occurrence of variable z; by
value v. The manipulations of polynomials over the finite field modulo p, with p
prime can be found in [2].

Synchronous data-flow languages (e.g. LUSTRE, SIGNAL) represent data
as an infinite sequence of values called stream, and each data stream is com-
bined with an associated abstract clock as a means of discrete time. Streams
and stream relations, abstract clocks and clock relations are called functional
constraints and temporal constraints, respectively. The structure of synchronous
programs is usually described as a series of equational definitions, the whole
system is represented as systems of equations. This original structure makes
that it is natural to represent the program behaviors in terms of systems of
equations. The compilers of these languages, such as that we consider here, are
composed of a sequence of code transformations. The transformations and op-
timizations that rewrite or translate source code to eliminate inefficiencies of
functional constraints and temporal constraints. Some of the transformations
are non-optimizing translations from a synchronous language or its intermediate
language to another, lower-level language (e.g. C, Java code). Abstract clocks
and clock relations are used to represent all the control parts (e.g. activation
events) and interaction between different components in system. The control
flow resulting from the analysis of abstract clocks and clock relations is used
to derive an optimized data-flow following the transformations of the compiler.
Therefore, the correctness of clock analysis in synchronous language compilation
strongly impacts the quality of the compiled program. And as we have mentioned
above, we would like to cope with the semantics of abstract clocks and clock con-
straints. In other words, our aim is to build formal models which represent the
behaviors of synchronous data-flow programs in terms of the presence, absence
of values in a stream (abstract clock) and the clock relations. The principle is to
encode the status of a value in a stream with two possible values: absence and
presence. We will use the finite field modulo p = 3,7Z/3Z, i.e. integers modulo
3:{-1,0,1} to encode the states of values in a data stream. For the Boolean
data stream =z, three possible states of z at an instant time are encoded as:
present A true — 1;present A\ false — —1;absent — 0. For the non-boolean
data streams, it only encodes the fact that the value is present or absent (the
clock value of the data stream is true or false): present — +1;absent — 0. And
the clock of a data stream is the square z2 : 1 if present, 0 if absent. Thus,
two synchronous data streams (they have the same clock) = and y satisfy the
constraint equation: 22 = y2. It is obvious that the abstract clocks and clock
relations of a synchronous data-flow program can be modeled efficiently with
PDSs with coefficients ranging over Z/3Z.

Definition 1. A PDS is a system of equations which is organized into three
subsystems of polynomial equations of the form:

QX.Y) = 0
X' =PX)Y)
Qo(X) = 0
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where:

- X is a set of n variables, called state variables, represented by a vector in
(Z/3Z)";

- Y is a set of m variables, called event variables, represented by a vector in
(Z./3Z2)™;

- X' = P(X,Y) is the evolution equation of the system. It can be considered
as a vectorial function [Py, ..., P,] from (Z/3Z)" ™ to (Z/37)";

- Q(X,Y) =0 is the constraint equation of the system. It is a vectorial equa-

tion [Q1, ..., Qil;

- Qo(X) = 0 is the initialization equation of the system. It is a vectorial
equation [Qo,, ..., Qo,, -

Synchronous data-flow languages use some operators requiring memorization of
past value of a data stream, that is done by introducing the state variables. The
vector values (21, ...,xy), (2], ..., 2),) store respectively the past values and the
current values of the data streams that are involved in the memorizing operators
(e.g. SIGNAL delay operator). Systems of polynomial equations characterize sets
of solutions, which are states and events of programs. A system of equation based
method consists in manipulating the equation systems instead of the solution
sets, avoiding the enumeration of the state space [2]. There is no terminal state
since a synchronous data-flow program takes the input data streams that are
infinite flows of values, for every state of its PDS there exist always the events
to produce the next state.

2.2 Overview of the SIGNAL Language Features

In SIGNAL language [§], a signal noted as z, is a sequence of values with the
same type x(t;)ieNn, which are present at some instants. The set of instants
(or time tags) where a signal is present is the clock of the signal, noted &. A
particular type of signal called event is characterized only by its presence, and
always has the value true. The constructs of the language use an equational
style to specify the relations between signals in the form R(z1, ..., k), where the
values of signals and the abstract clocks of signals 1, ...,z are the functional
constraint and temporal constraint, respectively. Systems of equations on signals
are built using a composition construct which defines a process. A whole SIGNAL
program is a process which runs infinitely taking parameters, input signals for
computing the output signals to react to the environment. The language is based
on seven different types of equations to construct primitive processes or equations
specifying computations over signals. We will present each equation along with
its semantic meaning and the implicit relationships between the clocks of the
input and output signals.

— Equation on Data: The equation y := f(x1,...,2,) where f is an n-ary
relation over numerical or boolean data types, defines a process whose output
y(t) for tag ¢t € ¢ is y(t) = f(x1(t),...,xn(t)). The clock constraint of the
input and output signals is §y = &1 = ... = &,
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— Delay: The equation y := x$1 init a defines a process whose output y(¢;) = a
if t; is the initial time tag, and for every other tag, y(t;) = x(¢t;—1). The clock
constraint of the input and output signals is § = 2.

— Merge: The merge equation y := x default z defines a process whose output
at time tag t is y(t) = x(t) when ¢t € & and y(t) = z(t) if t T At € §. The
clock constraint of the merge equation is § = & U 2.

— Sampling: The sampling equation y := = when b defines a process whose
output signal y(¢) has value z:(t) when the signal « is present and the boolean
signal b is present with the value true. The clock constraint of input and
output signals is § = & N [b] where [b] = {t € b|b(t) = true}.

— Composition: P £ p | P, where P, and P, are processes. P consists of
the composition of the systems of equations. The composition operator is
commutative and associative.

— Restriction: P £ P, where x, where P; and z are a process and a signal,
respectively. It enables local declarations in the process Pj, and leads to the
same constraints as P;.

— Equation on clocks: The SIGNAL language allows clock constraints to be
defined explicitly by equations. The signal’s clock is represented in SIGNAL
by a special signal of type event which carries only a single value true. It
specifies the presence of the signal, denoted z. Thus, equations on clocks
over signals are equations over their corresponding event signals. They are:
(i) the synchronization relation 2= y £ = =", (i) clock union relationship
™+ y = xr default’y, (iii) clock intersection relationship z* y £ x when%.

Furthermore, the unary form of the sampling operation when b returns an event
signal representing the clock of [b]. The special event signal 0 denotes the null
clock (the clock that is never present).

2.3 PDS Model of SIGNAL Programs

In order to model SIGNAL programs behaviors, their processes are translated
into systems of polynomial equations over Z/3Z. Each individual SIGNAL equa-
tion is translated into a polynomial equation. The language uses some primitive
equations to construct programs. Thus, we only need to define the translation of
these primitive equations to polynomial equations over the finite field (Z/3Z)".
The composition equation type is simply translated as the combination of the
polynomial equations in the same equation system. For the equations on clocks
they are derived directly from the primitive equations. Table [[] shows the trans-
lation of the primitive equations of the SIGNAL language. The delay operator $
requires memorizing the past value of the signal, that is done by introducing the
state variable £, where £ stores the previous value of the signal and &’ stores the
current value of the signal. For example the simple SIGNAL program shown in
Table 2] that specifies the alternative presence between the input signals A and
B is translated in the PDS model with variables a, b, z and zzx corresponding to
the events A, B and boolean signals X and ZX and a state variable £ for the
delay operator. In particular, SIGNAL allows one to explicitly manipulate clocks
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through some derived con- structs that can be rewritten in terms of primitive
ones. For instance, y := when b is equivalent to y := b when b.

Table 1. Translation of the primitive equations

Boolean signals Non-boolean signals
y:=not x y=—x y:=f(x1,..,xn) | Y =21=..=1x°
z:=zandy ;Q_Zng(xy r-y—1)
z:=xory 22 :x?‘ZQ(l e )
zi=xdefaulty | z=z+ (1 — 2%y z := x default y 22 =a® +y? — 2%y’
z:= x when y z=a(—y— vy z:= x when y 22 = 2% (—y —y?)

& =x+ (1-29)¢ y := x$1 init yo y? =2
y:=x$linit yo | y= %€
§o = Yo
Table 2. Program altern and its PDS model
process altern =
( ? event A, B;
1) initial equations:
(] X := not ZX E=-1
| ZX := X$ 1 evolution equations:
| A "= when X f=ax+(1—2a?)x¢
| B "= when ZX constraint equations:
D) T =—zx,zx =Exa?,
where a? = —x — 2%, 0% = —zz — 22
boolean X, ZX init false;
end ;

3 Formally Verified Compilation Approaches

3.1 Definition of Correct Translation: Refinement

Given a PDS model L over the finite field Z/3Z, it can be viewed as an inten-
sional Labeled Transition System (iLTS) [I0] as defined in Definition 2t

Definition 2. An intensional Labeled Transition System is a structure L =
(Q,Y,Z,T), where Q is a set of states, Y is a set of m variables Y1,...,Yn,, T is
a set of initial states, and T C Q X ZL/3Z[Y] x Q is the transition relation. FEach
transition is labeled by a polynomial over the set Y.

The iLTS representation of a PDS can be obtained directly from the set of state
variables, event variables, systems of initial equations, evolution equations, and
constraint equations as follows:
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- @ = Dx, where Dx = ][] Dz, = (Z/3Z)" as the domain of a set of
1€[1,n]
variables X = (z1,...,2y)
~Y=Y,Dy= [] D, = (%/3Z)"
i€[1,m]

— I = Sol(Qu(X))

~ (¢, Py(Y),q') € T where Py(Y) = Q(¢,Y) & (P(¢,Y) — ¢')
We write ¢ LM, q’ (or for short g R q'), instead of (¢, P(Y),q') € T. Then
iLTSs can be viewed as an “intensional” representation of classical LTSs, where
the labels are tuples in (Z/3Z)™: each arrow of the iLTS labeled by P(Y) in-
tensionally represents as many arrows labeled by some y € Sol(P(Y)). We will
call Ext(L) the corresponding “extensional” LTS.

Definition 3. Let L = (Q,Y,Z,T) an iLTS. The infinite sequence o = qo, Yo, 41,
Y1,42, Y2, ..., where q; € Q,y; € Dy for each i € N, is an execution of L if it
satisfies the following requirements:

- q €.
— there exists a polynomial P(Y') such that (q;, P(Y), giv1) € T Ay; € Sol(P(Y))
for each i € N.

We denote by o4t = Yo, Y1, Y2, -... is an action-based execution, ||L|, ||L||qct the
sets of executions and action-based executions of the iLTS L, respectively.

Consider the two iLTSs A = (Q2,Y,Z,T2) and C = (Q1,Y,Z1,T1), to which
we refer respectively as a source program and a compiled program produced
by a synchronous data-flow compiler. We assume that they have the same set
of event variables. In case the set of event variables of the compiled model is
different from the set of event variables of the source model, we consider only
the common event variable and the different event variables are considered as
hiding events [14]. Our aim is to prove that the desired behaviors of the source
program are preserved during the compilation. In our case, the set of action-
based executions models the desired behaviors of the program. The behaviors
reflect the states of data streams and the data stream clocks constraints of the
program. The strongest notion of behavior preservation during compilation is
that the source program A and its compiled program C' have exactly the same
desired behaviors:

vo'u,ct' (Uact S ||C||act < Oqct S ||A||act> (1)

Requirement (1) is too strong in general to be in practical for synchronous data-
flow languages. The source language is usually non-deterministic, compilers are
allowed to select one of the possible behaviors of the source program. In this
case, the compiled program C will have fewer behaviors than the source pro-
gram A. Additionally, compilers do transformations, optimizations for removing
or eliminating some wrong behaviors of the source program (e.g. eliminating
subexpressions, trivial clock constraints). To address these issues, we relax the
requirement (1) as follows:

vo—u,ct'(o'u,ct € ||C||act = Oqct S ||A||act> (2)
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Requirement (2) says that all action-based executions of C' are acceptable ex-
ecutions of A. And we say that C refines A w.r.t action-based executions. We
write C' C A to denote the fact that C refines A. In the next section we present
a method to establish the refinement between the two given models C and A.

3.2 Proving Refinement by Simulation

We now discuss an approach to automatically reason that a compiler preserves
semantics of the source program during its compilation, in the sense of refinement
relation. Given two iLTSs A and C, we propose a symbolic simulation for the two
iLTSs to establish that C' © A. The symbolic simulation satisfies the property
that if there exists a symbolic simulation for (C, A) then C C A.

Definition 4. Let C = (Q1,Y,Z1,T1) and A = (Q2,Y,Zs,T2) be two iLTSs. A
symbolic simulation for (C, A) is a binary relation R C Q1 X Q2 which satisfies
the following properties:

- (A) Va1 € Th,3q2 € In, (41, 42) € R.
— (B) for any (q1,q2) € R it holds that: if ¢1 R q} there exists a finite set of

transitions (qo EAN qb)ier (where I is a set of indexes) with
e (P=1][P)=0 and
iel
o (dah) eRViel.

(P = [] P;) = 0 denotes that the polynomial (P = [ P;) is equivalent to
i€l i€l
the zero polynomial, which means that Sol((P = [[ B;)) = Sol(0) = (Z/3Z)™
i€l
or Sol(P) C Sol(]] F;). Condition (A) asserts that every initial state of C is
il

related to an initial state of A. According to condition (B), for every transition
of the state ¢; which is labeled by the set of events (or actions) represented by
Sol(P(Y)), there exist some transitions of the state g2 which are labeled by the
same set of events. And it states that every outgoing transition from g; must
be matched by outgoing transitions from go. Thus, Definition [ captures exactly
classic action-based simulation definition of standard LTSs. Since symbolic sim-
ulation is closed under arbitrary unions, there is a greatest symbolic simulation.
In the following parts, when we talking about symbolic simulation, we imply
talk about the greatest symbolic simulation.

C' is simulated by A (or, equivalently, A simulates C), denoted C' < A, if
there exists a symbolic simulation for (C, A). Given two states ¢; € @1 and
g2 € @2, the state ¢ is simulated by g2, denoted g1 = g2, if there exists a
symbolic simulation R for (C, A) with (¢1,¢2) € R. In that case, we say that the
two states ”¢q; and ¢o are similar”.

Definition 5. Let C = (Q1,Y,Z1,7T1) and A = (Q2,Y,Zs,T2) be two iLTSs. We
define a family of binary relations <;C Q1 x Q2 by induction over j € N.

- =02 Q1 X Q.
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~ q1 2(j+1) @2 iff for all (q1, P,q)) € Th, there exists a finite set of transitions
(g2, Pi, ¢4)icr with (P = ILic1P;) = 0Aqy =j ¢ for all i € I, where I is a
set of indezes.

Based on the above definition, we can now have the following theorem which
gives us a method to compute the greatest symbolic simulation for two iLTSs.

Theorem 1. Let C = (Q1,Y,Z1,T1) and A = (Q2,Y,Z2,T2) be two iLTSs.

1. There ezists a symbolic simulation for (C,A) if and only if there exists a
simulation for (Ext(C), Ext(A)).

2. Then for all 1 € Q1 and q¢2 € Q2,91 = q2 iff ql(ﬂnE]N =n)q2, where
(ﬂnE]N jn) == N =1 N...N =

Proof. (1) The proof can be found in [10].

(2) Since the number of state variables, event variables and the value domain of
a PDS are finite then its iLTS is finite. Symbolic simulation over a finite iLTS
(therefore finitely branching) is the limit of nested projective equivalences. Thus
we can use the same proof method as in [16] for strong simulation. We omit the
proof here.

The use of a symbolic simulation as a proof method to establish the refinement
between the two given models C' and A is stated in the following theorem.

Theorem 2. Let C = (Q1,Y,Z1,T1) and A = (Q2,Y, T, T2) be two iLTSs. If
there exists a symbolic simulation for (C,A), then C C A.

Proof. The proof of Theorem ] is trivial with following Lemma [l

Lemma 1. Let C and A be iLTSs, R is a symbolic simulation for (C,A), and
(¢1,92) € R. Then for each infinite (or finite) execution o1 = qo.1,%0,1,91,1,Y1,1,
42,1, Y2,1, ... starting in qo,1 = q1 there exists an execution o2 = qo,2,Y0,2,q1,2, Y1,2,
42,1, Y2,2, ... from state qo 2 = qa of the same length such that (gj1,¢;2) € R and

Yi1 = Y2 for all j.
Proof. Due to the lack of space, we omit the proof here.

With an unverified compiler of synchronous data-flow language, each compila-
tion phase is followed by our refinement verification process to provide formal
guarantees as strong as those provided by a formally verified compiler. Indeed,
consider the following process:

Cp'(A) = if Cp(A) is
Error — Error
| OK(C) — if C C A then OK(C) else Error

where C'p(A) is the compilation of A to either compiled code (written as Cp(A) =
OK(C)) or compilation errors (written as Cp(A) = Error).
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3.3 Composition of Compilation Phases

Compilation is always decomposed into several phases of transformations, opti-
mizations through intermediate representations. It is better to decompose the
verification process too. Fortunately, our verification process can be decomposed
well thanks to the transitive property of symbolic simulation. Let A, I and C
are three iLTSs, if I < A and C < I then C < A (the proof is trivial based on
the definition of symbolic simulation). We assume that there are two compila-
tion stages Cp; and Cpsy from source program A to I and I to C, respectively.
Consider the composition compilation as follows:

Cp(A) = if Cp1(4) is
Error — Error
| OK(I)— if I C A then Cpy(I) else Error

It is obvious to see that the compilation Cp(A) is formally verified from A to C.

4 Proving the SIGNAL Compiler

4.1 Implementation of Symbolic Simulation with SIGALI

In this section, we discuss how to implement the proof method with symbolic
simulation for the two iLTSs of a source program and its compiled form using
the companion model-checker of the Polychrony toolset, SIGALI. Symbolic sim-
ulation can be implemented as an extended library of SIGALI, we represent a
PDS as an iLTS in the more specific form L = (X, X', Y,Z,T), where:

— X, X',Y are the sets of state and event variables as in the PDS,

— Z(X) = Qo(X) is the polynomial representing the set of initial states, Sol(I),

- T(X, 7, X)=Q(X,Y)® (P(X,Y)— X') is the polynomial representing the
set of transitions.

In SIGALI, polynomials are internally represented as ternary decision diagrams
(TDD) [5] which are an extension of binary decision diagrams (BDD) [1]. They
are convenient for an efficient manipulation the polynomial equation systems.
Theorem [ gives us an iterative algorithm to compute the greatest symbolic
simulation for (C, A). It can be obtained by computing the convergence of the
sequence (R;)jen as in Algorithm [I] which can be efficiently implemented with
the fixed-point computation of the SIGALI kernel (see Appendix B). The cor-
rectness of Algorithm [l is proved by the following proposition.

Proposition 1. For all j € N, R;(z1,2z2) = 0 if and only if x1 =X; x2.

Proof. =) We use an induction proving method over j. It holds obviously with
J = 0. Assume that we have Rjy1(z1,22) = 0 and let x4 L, x} be a transition
in C. It is clear that P(Y) = T1(z1,Y,2}). We define the polynomial Q(Y) =
b To(z2, Y, 25) @ Rj(zh, z5), R, being computed in Algorithm [ above. This
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Algorithm 1. Compute symbolic simulation R(X7, X2)

Require: C = (X1, X1,Y,71,T1), A = (X2, X5,Y, T2, T2)
Ensure: R(X1, X2)

1: Ro(Xl,Xz) =0

2: while R;(X1, X2) is not convergent do

3: Rij+1(X1, X2) is the canonical generator of the =-class of:
4: Rj(Xl, XQ)@

5. VXIVY[(Ti(X1,Y, X1) = 3X5(T2(X2,Y, X3) ® R; (X1, X3))]
6: end while

7 if VXl[(Il(Xl) = HXQ(IQ(XQ) (&) R(Xl,XQ))} then

8:

9: return R(X1, X2)

10: else

11: return R(Xi,X2) =1
12: end if

polynomial captures the set {y|3x2 EiR zb, Pi(y) = 0 Az} <; b}, By the defini-
tion of R;j41, the y value is in Sol(Ty(x1,Y, 2)), thus Sol(P(Y)) C |, Sol(F;),
which means z; =(+1) T2

<) We can apply again an induction method over j similar to the proof of the
Theorem [Il Thus we omit it here.

Proposition 2. Algorithm [ terminates and at the end, R(z1,22) = 0 if and
only if xr1 =< za.

Proof. Termination is guaranteed by the fact that relations R; are finite and
nested. The second statement is a corollary of Proposition [[land Theorem [

4.2 Proving the Compiler Transformations

The compiler of the SIGNAL language [3] that we consider is composed of a
sequence of code transformations. Some transformations are optimizations that
rewrite the code to eliminate subexpressions, inefficiencies. The compilation pro-
cess may be seen as a sequence of morphisms rewriting SIGNAL programs to
SIGNAL programs. And the final steps (C or Java code generation) are simple
morphisms over the ultimately transformed SIGNAL program. For convenience,
the transformations of the compiler are classed into three stages:

Mouse_TRA. Mouse_BOOL_TRA Mouse_SEQ_TRA. C/C++ or

Mouse.SIG — SIG SIG siG Java

|[=——  The front-end } The op {=— The back-end —=|

Fig. 1. Scheme of the SIGNAL compiler
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— The front-end: non-optimizing translations from the source program in SIG-
NAL language to a program in SIGNAL language. The clock information of
all signals in the source program is calculated, which is called clock calculus.

— The optimizer: the synchronization and precedence relations of all signals
and clocks are represented in a directed labeled graph structure called the
Data Control Graph (DCG); it is composed of a Clock Hierarchy (CH) and
a Conditioned Precedence Graph (CPG). A node of this CPG is a primitive
equation or, in a hierarchical organization, a composite SIGNAL process con-
taining its own DCG. Then the optimizations are performed on the output
of the front-end stage based on the DCG.

— The back-end: translations from the optimized final SIGNAL program to
executable code (C/C++ or Java).

For instance, consider a source program called Mouse.SIG (example program
available in the online examples of the Polychrony toolset), the transformations
of the stages front-end, optimizer, back-end are Mouse_TRA.SIG, Mouse_BOOL_
TRA.SIG, and Mouse_SEQ_TRA.SIG, respectively.

The optimized final program Mouse_SEQ_TRA.SIG is translated directly to
executable code. We are interested in the first two stages of the compiler: the
non-optimizing translations and the optimizations. The intermediate forms in the
transformations of the compiler may be expressed in the SIGNAL language itself.
Moreover the Polychrony toolset provides a function to translate a SIGNAL
program into a PDS over the finite field Z/3Z. Then the correctness of the
compiler is proved in each transformation of the two first stages. For instance,
we consider the compilation of Mouse.SIG program, the verification asserts that
Mouse_.SEQ_TRA.SIG < Mouse_. BOOL_TRA.SIG =< Mouse.TRA.SIG <
Mouse.SIG along the transformations of the SIGNAL compiler.

Experimental Results. We here provide some experimental results verify-
ing the transformations of the SIGNAL compiler with a simulation based proof
method. The experimental results deal with the complexity of the symbolic sim-
ulation computation. All the examples here are available in the online examples
of the Polychrony toolset. In the X, Y, ’Correct’ columns, we write the numbers
of state variables, event variables and the correctness of the compiler transforma-
tions, respectively (hence, the transition relation 7(X,Y, X’) will have 2X +Y
variables). We measure description complexity of the symbolic simulation by the
size of fix point computation in Algorithm [ (in terms of the number of TDD
nodes that we need to represent the manipulation of polynomial equation sys-
tems). The number of TDD nodes is showed in SIGALI model checker only when
it is big enough, so for the tests whose numbers of TDD nodes are not showed
we write ”Small”. We denote R1(X1, X2), Ra(X1, X2), R3(X1, X2) are symbolic
simulations for (A-TRA.z3z, A.23z),(A.BOOL.TRA.z3z, ATRA.23z%), and (A-
SEQTRA.z3z2, A\ BOOL_TRA.23z), respectively, for the compilation of the
SIGNAL program, called A.
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Table 3. Experimental results

Ri1(X1, X2)|Ra(X1, X2)|R3 (X1, Xo

Name XY TD(D nodei TD(D nodei T D(D nodei Correct
MOUSE.23z 215

MOUSE-BO0L. A2 o[ 6| Sman | sman | Small | Yes
MOUSE_SEQ-TRA.23z 216

RAILROADCROSSING.z3z 2 140

RRCROSSINGTRA.z3z 2 40 Small Small Small Yes
RRCROSSING_BOOL_TRA.23z 2139

RRCROSSING_SEQ_TRA.z3z 2139

CHRONOMETER.232 6 (33

CHRONOMETERTRA.23z 6 (33 Small Small Small Ves
CHRONOMETER_-BOOL_TRA.z3z|| 6 |37

CHRONOMETER_SEQ_TRA.z3z || 6|37

ALARM .23z 19|45

ALARM _TRA.23z 19145

ALARM.-BOOL TRA. 235 19053 3775163 3810301 4721454 Yes
ALARM_SEQ_TRA.z3z 19153

5 Related Work and Conclusions

The notion of translation validation was introduced in [I5] by A. Pnueli et al. to
verify the code generator of SIGNAL. In this work, the authors define a language
of symbolic models to represent both the source and target programs called
Synchronous Transition Systems (STS). A STS is a set of logic formulas which
describe the functional and temporal constraints of the whole SIGNAL program
and its generated C code. Then they use BDD representations to implement
the symbolic models ST'Ss, and their proof method uses a SAT-solver to reason
on the signals and clock constraints of STSs. It amounts to the mapping for
selected states, consisting of the values of input-output-memory variables, for
the source and the target code. The drawback of this approach is that in some
cases, the code generator eliminates the use of a local register variable in the
generated code and then, the mapping cannot be established. Additionally, for
a large SIGNAL program, the logic formula is asked to SAT-solver to solve is
very large that makes some inefficiency. Another related work is the approach
of J. C. Peralta et al. [13] in a similar approach as the work of A. Pnueli et
al. In particular, they translate both the SIGNAL (multi-clocked) specifications
given in SIGNAL language and its generated code C/C++ or Java simulator into
LTSs. Then, an appropriate pre-order test on both LTSs can be interpreted as
a refinement between a generated code implementation and its source SIGNAL
specification. The refinement they propose is a bisimulation relation and they
use the existing tools to generate the greatest bisimulation relation for the source
SIGNAL specification and the target generated code in C/C++. In case there is
no bisimulation relation, counterexamples are generated automatically. However,
this approach has not been fully automated.
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This paper presents the correctness proof of the transformations, optimiza-
tions of the multi-clocked synchronous programming language compiler and ap-
plies this approach to the highly industrial synchronous data-flow language SIG-
NAL’s compiler. We are interested in proving that abstract clocks and clock
relations semantics of source programs are preserved during the compilation
phases of the compiler. The desired behaviors of a given source program and
its compiled program are represented as PDSs over the finite field of integers
modulo p = 3. A refinement relation between the source program and its com-
piled form is used to express the preservation. A proof by simulation is presented
to establish the refinement relation. Each compilation stage is followed by our
refinement verification process to provide formal guarantees as strong as those
provided by a formally verified compiler. If the compilation task from the source
program to the compiled form applies without compilation errors, and the com-
piled form refines the source program, then the compiled form is produced as
output else the compiler terminates with an error.

We have implemented and integrated our verification process within the Poly-
chrony toolset by extending the functionality of the existing model checker SI-
GALI to prove the correctness of the front-end and optimizations phases of the
optimizing SIGNAL compiler.

As future work, given a synchronous data-flow program and the correspond-
ing generated C/C++ code, we would like to formally verify that the generated
code correctly implements the source program. As we have shown, the verifica-
tion process can be decomposed into several stages as the decomposition of the
compilation task, thanks to the transitive property of symbolic simulation. Thus
we only need to prove that there exists a symbolic simulation for the generated
C/C++ code and the optimized final program given that the optimized final
program refines the source program. In order to do that, we could first translate
the asynchronous C/C++ code into the synchronous language SIGNAL. One of
the methods is to represent C/C++ code in the Static Single Assignment (SSA)
intermediate form and then translate the SSA intermediate form into SIGNAL
[4]. The rest of work is the same as the verification process we have presented in
this paper.
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