Decoding Visual Percepts Induced by Word Reading with fMRI

Abstract : Word reading involves multiple cognitive processes. To infer which word is being visualized, the brain first processes the visual percept, deciphers the letters, bigrams, and activates different words based on context or prior expectation like word frequency. In this contribution, we use supervised machine learning techniques to decode the first step of this processing stream using functional Magnetic Resonance Images (fMRI). We build a decoder that predicts the visual percept formed by four letter words, allowing us to identify words that were not present in the training data. To do so, we cast the learning problem as multiple classification problems after describing words with multiple binary attributes. This work goes beyond the identification or reconstruction of single letters or simple geometrical shapes and addresses a challenging estimation problem, that is the prediction of multiple variables from a single observation, hence facing the problem of learning multiple predictors from correlated inputs.
Type de document :
Communication dans un congrès
Pattern Recognition in NeuroImaging (PRNI), 2012 International Workshop on, Jul 2012, Londres, United Kingdom. pp.13-16, 2012, <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6295916&tag=1>. <10.1109/PRNI.2012.20>
Liste complète des métadonnées


https://hal.inria.fr/hal-00730768
Contributeur : Alexandre Gramfort <>
Soumis le : mardi 11 septembre 2012 - 09:54:28
Dernière modification le : vendredi 17 février 2017 - 14:30:24
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 12:10:50

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexandre Gramfort, Christophe Pallier, Gaël Varoquaux, Bertrand Thirion. Decoding Visual Percepts Induced by Word Reading with fMRI. Pattern Recognition in NeuroImaging (PRNI), 2012 International Workshop on, Jul 2012, Londres, United Kingdom. pp.13-16, 2012, <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6295916&tag=1>. <10.1109/PRNI.2012.20>. <hal-00730768>

Partager

Métriques

Consultations de
la notice

1787

Téléchargements du document

219