Efficient computation of condition estimates for linear least squares problems

Abstract : Linear least squares (LLS) is a classical linear algebra problem in scientific computing, arising for instance in many parameter estimation problems. In addition to computing efficiently LLS solutions, an important issue is to assess the numerical quality of the computed solution. The notion of conditioning provides a theoretical framework that can be used to measure the numerical sensitivity of a problem solution to perturbations in its data. We recall some results for least squares conditioning and we derive a statistical estimate for the conditioning of an LLS solution. We present numerical experiments to compare exact values and statistical estimates. We also propose performance results using new routines on top of the multicore-GPU library MAGMA. This set of routines is based on an efficient computation of the variance-covariance matrix for which, to our knowledge, there is no implementation in current public domain libraries LAPACK and ScaLAPACK.
Type de document :
[Research Report] RR-8065, INRIA. 2012, pp.15
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

Contributeur : Marc Baboulin <>
Soumis le : jeudi 13 septembre 2012 - 22:04:46
Dernière modification le : mercredi 12 septembre 2018 - 17:46:04
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 13:02:46


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00731136, version 2


Marc Baboulin, Serge Gratton, Rémi Lacroix, Alan J. Laub. Efficient computation of condition estimates for linear least squares problems. [Research Report] RR-8065, INRIA. 2012, pp.15. 〈hal-00731136v2〉



Consultations de la notice


Téléchargements de fichiers