Impact of Neuron Models and Network Structure on Evolving Modular Robot Neural Network Controllers

Léo Cazenille 1, 2 Nicolas Bredeche 1, 2, * Heiko Hamann 3 Jürgen Stradner 3
* Auteur correspondant
2 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : This paper investigates the properties required to evolve Artificial Neural Networks for distributed control in mod- ular robotics, which typically involves non-linear dynamics and complex interactions in the sensori-motor space. We in- vestigate the relation between macro-scale properties (such as modularity and regularity) and micro-scale properties in Neural Network controllers. We show how neurons capable of multiplicative-like arithmetic operations may increase the performance of controllers in several ways whenever chal- lenging control problems with non-linear dynamics are in- volved. This paper provides evidence that performance and robustness of evolved controllers can be improved by a com- bination of carefully chosen micro- and macro-scale neural network properties.
Type de document :
Communication dans un congrès
GECCO - Genetic and Evolutionary Computation Conference, 2012, Philadelphia, United States. pp.89-96, 2012
Liste complète des métadonnées

https://hal.inria.fr/hal-00731411
Contributeur : Nicolas Bredeche <>
Soumis le : mercredi 12 septembre 2012 - 16:43:20
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 12:36:29

Fichier

2012-GECCO-multipole.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00731411, version 1

Collections

Citation

Léo Cazenille, Nicolas Bredeche, Heiko Hamann, Jürgen Stradner. Impact of Neuron Models and Network Structure on Evolving Modular Robot Neural Network Controllers. GECCO - Genetic and Evolutionary Computation Conference, 2012, Philadelphia, United States. pp.89-96, 2012. 〈hal-00731411〉

Partager

Métriques

Consultations de la notice

698

Téléchargements de fichiers

300