
HAL Id: hal-00731411
https://inria.hal.science/hal-00731411

Submitted on 12 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of Neuron Models and Network Structure on
Evolving Modular Robot Neural Network Controllers

Léo Cazenille, Nicolas Bredeche, Heiko Hamann, Jürgen Stradner

To cite this version:
Léo Cazenille, Nicolas Bredeche, Heiko Hamann, Jürgen Stradner. Impact of Neuron Models and
Network Structure on Evolving Modular Robot Neural Network Controllers. GECCO - Genetic and
Evolutionary Computation Conference, 2012, Philadelphia, United States. pp.89-96. �hal-00731411�

https://inria.hal.science/hal-00731411
https://hal.archives-ouvertes.fr

Impact of Neuron Models and Network Structure on
Evolving Modular Robot Neural Network Controllers

Leo Cazenille
TAO/LRI

Univ. Paris-Sud, CNRS, INRIA
F-91405 Orsay, France

leo.cazenille@lri.fr

Nicolas Bredeche
TAO/LRI

Univ. Paris-Sud, CNRS, INRIA
F-91405 Orsay, France
nicolas.bredeche@lri.fr

Heiko Hamann
Art. Life Lab, Zoology,

Karl-Franzens University Graz
8010 Graz, Austria

heiko.hamann@uni-graz.at

Jürgen Stradner
Art. Life Lab, Zoology,

Karl-Franzens University Graz
8010 Graz, Austria

juergen.stradner@uni-graz.at

ABSTRACT
This paper investigates the properties required to evolve
Artificial Neural Networks for distributed control in mod-
ular robotics, which typically involves non-linear dynamics
and complex interactions in the sensori-motor space. We in-
vestigate the relation between macro-scale properties (such
as modularity and regularity) and micro-scale properties in
Neural Network controllers. We show how neurons capable
of multiplicative-like arithmetic operations may increase the
performance of controllers in several ways whenever chal-
lenging control problems with non-linear dynamics are in-
volved. This paper provides evidence that performance and
robustness of evolved controllers can be improved by a com-
bination of carefully chosen micro- and macro-scale neural
network properties.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms
Experimentations, Algorithms, Reliability

Keywords
Evolutionary Robotics, Artificial Neural Networks, Evolu-
tionary Algorithms, Modular Robotics

1. INTRODUCTION
Evolving Artificial Neural Networks (ANN) for robotic

control offers many interesting properties: ANN are easy to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7-11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

implement, easy to compute on-board, robust to noise, ex-
pressive and evolvable. In the recent years, several methods
have been proposed to evolve ANN, through direct or indi-
rect encodings, and with various macro-scale properties (e.g.
regularity, modularity and hierarchy), either hand-crafted or
obtained through spontaneous evolution (see next section for
references).

However, properties at the level of a single neuron have
been largely overlooked and most models proposed so far
are based on variations of the seminal McCulloch and Pitts
summing unit neuron (e.g. weighted sum of inputs, with a
sigmoidal activation function). However, this original model
is but a very basic interpretation of what can be observed
in nature. Evidence from biology shows many cases of non-
linear interactions between sensory inputs, which are ad-
dressed by unit (single neuron or population of neurons) per-
forming multiplicative operations [12]. Multiplicative mod-
els have been introduced in Machine Learning [16, 4], and
their benefits in term of expressivity have been thouroughly
studied [17].

This is particularly relevant with modular robotics where
non-linear interactions in the feature space are an impor-
tant part of the problem of designing distributed controllers.
This paper is related to our on-going research on this topic,
where control is decentralized among autonomous robotic
units assembled together into a larger robot, as illustrated
in figure 1. In this setup, each robotic unit communicates
with its direct neighbors and cooperation must be achieved
so that the whole organism can address a given task [13].

This paper explores the benefits of macro-scale proper-
ties on network structure (regularity and modularity) and
micro-scale properties at the level of a single neuron (sum-
ming vs. multiplicative operations) with respect to an evolu-
tionary robotics problem involving non-linear dynamics and
complex interactions between autonomous units. We con-
sider an existing benchmark that is designed to match the
properties of distributed control in modular robotics and we
investigate the impact of several properties on control per-
formance and robustness to generalization. We show that
while modularity and regularity are important features for
neural networks controllers, as advocated in other works,
properties at the level of the neuron can also lead to an

Figure 1: Five modules connected together to form
a larger organism in the Symbrion project. Each
module embeds its own controller and communicates
with its neighbors.

increase in performance, generalization and speed of conver-
gence, under certain conditions.

The paper is organized as follows: the next Section pro-
vides some background regarding both micro-scale proper-
ties and macro-scale Neural Networks properties. Then Sec-
tion 3 describes the task and the Neural Networks models
under scrutiny. Results and Analysis are presented in Sec-
tion 4. Then, the last Section concludes and sketches future
directions.

2. BACKGROUND
This section provides background information on micro-

scale (neuron models) and macro-scale properties (network
structures).

2.1 Neuron Models
In this review, we exclusively consider discrete time neu-

ral networks, due to the ease of implementation within on-
board micro-controller with limited computational power
and memory (e.g. spiking neurons offer original computa-
tional properties but also require additional computational
resource which can be a problem when low-cost hardware is
considered).

In this context, the classic summing unit is the most com-
monly used neuron model in Artificial Neural Networks. It
is expressed as:

ai = f(

N∑
j=1

wji ∗ xj + w0), (1)

where ai is the activation of a given neuron, which re-
sults from the application of an activation function f on
the weighted sum of signals from incoming neurons xj (with
wji ∈ R), plus bias. Depending on the nature of f , this may
corresponds to the classic threshold, sigmoidal or Radial Ba-
sis Function neuron models.

Most published works in Neuro-Evolution rely on this
summing unit model as being the standard for neuron com-
putation. Some few exceptions exists, in particular with
respect to periodic functions, such as Karl Sims complex
function for locomotion [18] or Compositional Pattern Pro-

ducing Networks [19] (CPPN), which is not restricted to any
particular kind of function.

While the original motivation for the summing unit model
is based on its relevance to early biological data, as the orig-
inal McCulloch and Pitts model suggests, other models have
been explored, both in Biology and Computer Science. Mul-
tiplicative operations have been observed in various animals
and experimental evidence has been found both at the level
of population of neurons and single neurons [12].

In Computer Science, various multiplicative unit mod-
els have been introduced: the Sigma-Pi model [16], the
Pi-Sigma model and the more general Product-Unit model
(PUNN). The PUNN model [4] can be described as follows:

ai = f(

N∏
j=1

x
wji

j) (2)

Notations are similar as before, including wji ∈ R, which
is of utmost importance as negative exponents enable divi-
sion operations. The number of exponents to multiply gives
the order of the unit, hence the general term Higher-Order
Neural Networks (HONN). Figure 2 shows a classical HONN
topology where the hidden layer uses HONN units while the
read-outs are summing units.

■�✁✂✄☎ ❖✂✄✁✂✄☎▼✂✆✄✝✁✆✝✞✟✄✝✠✡ ☛✝☞☞✡� ✌✡✂✍✎�☎

Σ

Σ

Σ

Π

Π

Π

Π

Figure 2: Example of Higher-Order Neural Net-
work. The hidden layer embeds product units while
the read-out neurons are summing units (possibly
with sigmoid activation function).

Such models offer an increased computatioanal power as
they can address non-linear interactions among sensory in-
puts. While multiplication and division can be accomplished
using summing units, it would require much more neurons
and layers just to match what a single multiplicative unit
can do, in particular when real numbers and calculus preci-
sion are considered [17].

2.2 Network Structure
Several authors have highlighted the importance of topo-

logical structure for neuro-evolution [14, 9]. The main de-
sired properties are modularity, regularity and hierarchy.
These terms are defined as follow:

• Modularity: clearly identified localization of a specific
element, either functional or structural;
• Regularity: repetitions of one or several patterns ob-

served in the description;
• Hierarchy: recursive composition of a structure and/or

function.

These properties have been studied both with respect to
their functional relevance and possible spontaneous emer-

gence during the evolutionary process. For example, early
works with Cellular Encoding implemented regularity through
recursive decomposition, and was successfully applied to a
six-legged robot locomotion problem [5]. Recent works fo-
cused on how such properties emerge during evolution, ei-
ther with direct encoding [11, 2] or indirect encoding ap-
proaches [22]. The trade-off between capturing regularity
and irregularities with indirect encoding methods has also
been studied [3].

Another important property is related to feature space
design, that is how sensory inputs are processed within the
neural network. On the one hand, independent features with
few interactions may be processed through different path-
ways and recombined in the last step (e.g. weighted aggrega-
tion). On the other hand, features may be strongly interact-
ing and higher-level feature construction may be required to
capture the information needed for the decision process. In
Machine Learning, this is sometimes addressed as feature ex-
traction [6], through feature decomposition (non-correlated
features are treated separately) or construction (new fea-
tures are constructed as combination of previous features).
The challenge is to come up with a well-balanced trade-off
between expressiveness and complexity (size of the feature
space). As with other properties, feature space decomposi-
tion may or may not be relevant depending on the problem
at hand. In the following, modularity is defined to enforce
feature space decomposition (i.e. each module gets only part
of the feature space as input).

3. METHOD
This section introduces the robotic task and representa-

tion formalisms considered to model the control architec-
ture, each with specific micro- and macro-scale properties.
Evolutionary setups and parameters are also presented.

3.1 The Robotic Task
The Coupled Inverted Pendulums benchmark introduced

in [7] (and termed “multipole benchmark” in the following)
extends the standard inverted pendulum scenario with non-
linear dynamics. The goal of the multipole benchmark is to
provide a challenge that is close to what one would expect
from modular robotics scenarios, with interactions between
autonomous parts and non-linear dynamics.

In this benchmark, pendulums are started in lower posi-
tions, hence, the non-linear upswinging phase is included,
and the cart track length is restricted. In combination with
a limited acceleration of the cart motor the upswinging can-
not be managed by just moving back and forth once. In
addition sampling rates of all sensors are limited, which is
documented by the relation between the pre-defined cycle
length τ of the controller and the maximal angular velocity
of 0.05π[1/τ] = 9◦[1/τ] (pendulum motion of up to 9◦ be-
tween two calls of the controller). The sensors do not deliver
actual angles and positions directly, but instead partition the
original values onto several intervals and sensors (a total of
10 sensors). The controllers have two outputs, left actua-
tor A0 and right actuator A1 and the acceleration control of
the cart is determined by their difference. Therefore, there
is a total of 10 sensory inputs and 2 motor outputs. For
each ANN model, there are two additional inputs and out-
puts to enable communication between controllers of con-
nected, neighboring carts. These communication channels
corresponds to additional inputs/outputs in the controller

Figure 3: Coupled inverted pendulum benchmark
with two carts, pendulums are free to move full 360◦

mounted on the carts that move in one dimension
(left/right) bounded by walls (track ends) and other
carts. Marked angle is pendulum angle φ.

for setups with more than one cart (the one-cart version
has, of course, no communication).

In addition to the original definition of the benchmark,
referred to as multipole-velocity from now, we consider an
additional setup where the sensors for cart velocities and
pendulum angular velocities are removed. This will be re-
ferred to as the multipole-no-velocity benchmark and it of-
fers an increased challenge as velocities may be required,
and thus reconstructed, to completely address the balanc-
ing problem. Due to the removal of velocity sensors, the
multipole-no-velocity benchmark provides 6 (+2 for commu-
nication) sensory inputs instead of 10 (+2). An important
fact is that when coupled carts are considered, it is theoreti-
cally possible to obtain memory-based behaviors even if the
controllers are not capable of memorization as information
can be transmitted back and forth between controllers of the
carts.

The coupling of carts by chains is the most important
difference to the standard inverted pendulum. Carts can
move independently as long as they do not pull a chain or
run into each other. Hence, each cart has to avoid other carts
and walls (cart track ends) and has to balance its pendulum
at the same time. In the following investigations, the cart
number is increased without changing the track length so as
to model problems of growing difficulty.

The fitness function is basically the percentage of time
steps that all pendulums spent in the upper equilibrium po-
sition (φ = 0) – the higher the fitness, the better the be-
havior. Deviations from φ = 0 are linearly scaled, that is,
φ = 0.5π, for example, is evaluated as ‘50% in upper posi-
tion’. If any constraint is violated (e.g., cart runs into other
cart, cart runs into chain, cart runs into wall, pendulum ve-
locity too high, etc.) an evaluation run is aborted and the
fitness is reduced proportionally to the elapsed time. An
extensive description can be found in [8].

3.2 The Controllers
Each pole is controlled by an Artificial Neural Networks,

which can communicate with its direct neighbors. As with
homogeneous distributed control in modular robotics, only
one neural algorithm is evolved for control, which is consid-
ered as a template and duplicated within each cart. As a
consequence, each cart will behave differently depending on
its initial position, sensory inputs and past experience.

Controllers have been designed so that it can be possible

to evaluate the relevance of specific properties, both at the
level of the network structure and neuron model. In partic-
ular, we aim to address the following questions: Is there a
benefit in modularity in processing specific inputs through
well identified group of neurons? Is there a benefit in regu-
larity as evolving few patterns (i.e. groups of neurons with
a given structure and weights), duplicated to form a final,
larger, network? What is the benefit of using multiplicative
neurons compared to summing units? The following models
are devised to address these questions:

HONN and MLP: Higher-Order Neural Networks (HONN)
and Multi-Layered Perceptron (MLP) are similarly defined
as Multi-Layered Neural Networks: the input and output
layers are fully connected to the hidden layer, and neurons
for the output layer use a summing unit model with a sig-
moidal activation function. They differ only in that MLP
gets only one hidden layer of sigmoidal summing units while
the HONN gets one hidden layer of multiplicative units.

C-MLP and C-HONN (i.e. with compartment):
The notion of “compartment” (i.e. a structural module)
refers to dedicated groups of neurons that are connected
to only one input and one output. Figure 4 illustrates the
structure of a Compartment Artificial Neural Networks. For
C-MLP, a compartment is an MLP with one input, a hid-
den layer of sigmoid summing units, and one output with
linear activation function. A C-HONN is similarly defined,
except that there are two hidden layers, the first with mul-
tiplicative units, and the second with summing units, and a
multiplicative unit as output (sigmoid activation functions
are used for all neurons). In both cases, read-out neurons
for the whole network are summing units with linear acti-
vation function. The number of compartments is fixed a
priori, but the connection to one specific input and output
is evolved, as well as the weights within each compartment.
Weights connecting each compartment to its selected input
and selected read-out neurons are also evolved. To some ex-
tent, this is an extreme case of feature space decomposition
where the whole network may be considered as a mixture
of experts, each expert specialized for processing a specific
feature.

C-MLP-WP and C-HONN-WP (i.e. with pat-
tern(s)): As previously, the neural network structure is
organized into compartments with one input and one out-
put. All compartments, however, may be identically defined
as an instance of a reference evolved pattern. A pattern is
defined as a compartment template, i.e. a neural network
with one input, one output and one (MLP) or two (HONN)
hidden layers. The motivation is to explore the impact of
regularity in the network. In the extreme case, only one
pattern may be evolved, and cloned during the actual con-
struction of the neural network. As previously, weights con-
necting each compartment to its selected input and output
are evolved.

In addition, we considered several well established neuro-
evolution methods from the literature: Echo State Networks [10]
(ESN), NEAT [21] and HyperNEAT [20] (used to generate
an ANN which is then used for control). It should be noted
that the original HyperNeat implementation used for this
experiment has been shown to produce sub-optimal solu-
tions whenever regularity is required [3]. Hence, different
results may be obtained with further extensions of this al-
gorithm that are able to deal with regularity [22]. However,
we highlight that the goal here is to provide a baseline with

well-known algorithms from the literature, so as to advocate
for the relevance (or not) of micro- and macro-scale proper-
ties in various experimental setups.

We also considered the Artificial Homeostatic Hormone
Systems (AHHS), initially used for the multipole-velocity
version of the benchmark, and which provides the best solu-
tion so far (compared to NEAT) on performance and gener-
alization. To some extent, AHHS also models several prop-
erties evoked earlier: feature space is decomposed as each
feature is processed separately by specialized “rules” and
multiplicative operations can be computed through virtual
“hormones”, that are used to transmit information in the
system. An extensive description can be found in [8].

❍�✁✁

❍�✁✁

❍�✁✁
✳✳✳

■✂✄☎✆✝ ❈✞✟✄✠✡✆✟☛✂✆✝ ❘☛✠☞�☎✆✝

✳✳✳

wi
1

wi
3

wi
2 wr

3

wr
2

wr
1

Π Σ Π

Figure 4: Structural description of a C-HONN. A
C-MLP is described in a similar fashion by replac-
ing the embedded HONN networks by MLP net-
works with one hidden layer. Similarly, C-HONN-
WP, resp. C-MLP-WP, accept the same description,
with embedded HONN, resp. MLP, as copies of a
specific reference template (i.e. an evolved pattern).

3.3 Evolutionary Optimization
All models (except Neat, HyperNEAT and AHHS) are

optimized using the state-of-the-art CMA-ES [1] algorithm.
The official rtNeat and HyperNEAT-C++ implementations
are used for the corresponding models. The original AHHS
implementation is used [7].

A fixed budget of 20,000 (resp. 50,000) evaluations is
set for the multipole-velocity (resp. multipole-no-velocity)
benchmarks. 30 independent runs have been performed for
each setup (NN model, cart number, with/without velocity
information). In the next section, all claims consider sta-
tistically significant measure based on Wilcoxon tests (i.e.
with p-value < 0.05).

A large number of preliminary experiments were performed
to find operational experimental parameters for each ap-
proach. Table 5 summarizes parameters for each approach,
as well as comments on robustness of parameters and genome
size for each setup (except for Neat and HyperNEAT, which
use variable-length genomes). Genome sizes vary to a large
extent, depending on the structure of the controllers, but the
evaluation budget remains the same to provide fair compar-
ison. Note that the source code for running all the experi-
ments is freely available1.

4. RESULTS
Figure 7 show the results from experiments on the multipole-

velocity and multipole-no-velocity benchmarks, using a sin-

1http://pages.isir.upmc.fr/evorob db/

Method Parameters Comments Genome sizes

MLP 20 hidden neurons (with bias) 262, 344, 182, 264
NEAT Parameters as in [23] n/a

HyperNEAT HyperNEAT-C++ default parameters, recurrence
and self-recurrence enabled

n/a

ESN reservoir size=100, density=0.5, damping=0.88 robust to density (values of
0.1, 0.2, 1.0 provide similar
results)

200, 400, 200, 400

AHHS Parameters as in [7]. 2 compartments per
controller, 30 rules, 1 (multipole-velocity) to 3
(multipole-no-velocity) hormones

363, 369, 363, 369

C-MLP 30 compartments, each compartment is an
MLP(1:20:1) (i.e. 1 input, 20 hidden neurons, 1
output)

bias is not mandatory 1320,1320,1320,1320

C-MLP-WP 30 compartments, each compartment is an
MLP(1:20:1) (same as previous), 1 pattern

increasing the number of
patterns up to 60 does not
make any difference, bias is
not mandatory

190, 190, 190, 190

HONN multipole-velocity: 1 layer of 20 hidden multi-
plicative neurons ; multipole-no-velocity: 1 layer
of 100 hidden multiplicative neurons, no bias

multipole-no-velocity re-
quires larger networks

160, 240, 800, 1200

C-HONN 30 Compartments of HONN(1:4:4:1) (i.e. 1 input,
4 multiplicative units, 4 summing units, 1 multi-
plicative unit as output)

two hidden layers is manda-
tory

840, 840, 840, 840

C-HONN-WP 30 Compartments of HONN(1:4:4:1) (same as pre-
vious), 5 patterns

requires 5 (or more) patterns 270, 270, 270, 270

Figure 5: Parameters for all the models. The third column gives genome size for (a) multipole-velocity with
1 cart; (b) multipole-velocity with > 1 carts; (c) multipole-no-velocity with 1 cart; (d) multipole-no-velocity
with > 1 carts

gle cart, and then 3 and 5 coupled carts. Boxplots aggregate
the best results from each run obtained from each mod-
els and setups (i.e. a total of 1800 runs - i.e. 30 runs,
10 models, 6 setups). The one-cart versions of the bench-
mark roughly corresponds to the traditional inverted pen-
dulum benchmark while the 3- and 5-carts versions feature
both non-linear dynamics and complex interactions between
carts.

(a) (b)

Figure 6: Snapshots of the best behaviors obtained
for 5 carts in the (a) multipole-velocity and (b)
multipole-no-velocity benchmarks.

Results on the multipole-velocity benchmark (see Figs. 7(a),
7(c), 7(e)) show that while well-established neuro-evolutionary
algorithms (MLP, ESN, Neat, HyperNeat) perform extremely
well on the simplest setup (1 cart), performance drops dra-
maticaly whenever more carts are considered. On the other
hand, all other models (except for HONN) remain remark-
ably stable for any number of carts considered. For the
more difficult multipole-velocity with 3 or 5 carts, models
with compartments (incl. AHHS) dominate in term of av-
erage performance. It is even more true for pattern-enabled
models (C-MLP-WP, C-HONN and C-HONN-WP) which

provide the best results whenever more than one cart is in-
volved.

Several observations can be drawn from these results: firstly,
it appears that modularity (using compartments) and reg-
ularity (using duplicated patterns) are key features as dif-
ficulty grows. Secondly, multiplicative units (HONN) ap-
pears as a counter-productive property if used alone, while
they yield to the best scores when combined with modular-
ity (and regularity) on the more complex setups. Also, the
good performance of decomposing the feature space, thanks
to specialized compartments with one input each, may ad-
vocate that the multipole-velocity does not require complex
interactions between inputs to be solved.

The fact that modularity and regularity are relevant prop-
erties is not a new idea and has been claimed elsewhere on
many occasions (cf. section 2.2). However, it is interest-
ing to note that both Neat and HyperNeat are unable to
reach the best performance while they could theoretically
evolve such properties in the controllers: this issue relates
to the trade-off between expressivity and evolvability that
have been addressed elsewhere (e.g. see [22] on enabling
HyperNeat to generate regularity and modularity).

Let us now consider the multipole-no-velocity benchmark.
Results with one cart are roughly the same as previously
except for HONN controllers which go from the worst per-
forming controllers (if velocity information is available) to
the top performing controllers, implying that multiplicative
units can be exploited in the current setup. Another sur-
prising results is achieved with MLP, which successfully suc-
ceeds in balancing the pole. Looking carefully at the evolved
strategies, we found that the one-cart multipole-no-velocity

Velocity No-Velocity

1
ca

rt

(a) (b)

3
ca

rt
s

(c) (d)

5
ca

rt
s

(e) (f)

Figure 7: Performance of all controllers. For a given model and configuration, each boxplot aggregates the
best individuals from 30 independant runs (i.e. 30 values).

can indeed be solved without memory capabilities: using
the distance sensors to the wall, a simple MLP is able to
learn a perfect trajectory from the cart initial position to
the balanced position. While this trick is possible with one
cart, the complex dynamics involved when several carts are
considered did not permit to find such a solution in further
experiments. At this point, an important fact to keep in
mind is that a controller from a cart is able to communicate
with its neighbors. As a consequence, memorizing informa-
tion is possible even when the controller is a feed-forward
neural network as information can be transmitted back and
forth between carts.

Results are quite different when more than one cart is

considered. HONN remains unchallenged, closely followed
by AHHS, C-MLP, C-MLP-WP, C-HONN and C-HONN-
WP when three carts are considered. On the 5-carts version,
AHHS performance drops while C-MLP, ESN and MLP pro-
vide competitive results (still below those of HONN). The
fact that MLP and C-MLP are still well ranked can be ex-
plained by looking at the resulting behaviors. Figure 6 illus-
trates the best behaviors for 5 carts obtained in both bench-
marks. While the multipole-velocity benchmark is solved
by most of the models with a median value > 0.6, no model
achieves the optimal behavior whenever velocity information
is removed. Instead, best behaviors correspond to swinging
poles, accelerating or decelerating depending on the position

(a) MLP (b) ESN (c) AHHS (d) C-MLP

(e) C-MLP-WP (f) HONN (g) C-HONN (h) C-HONN-WP

Figure 8: Generalization capability of the best controllers evolved for three carts, in the multipole-no-velocity
benchmark. Each controller is re-evaluated with 1, 2, 4, and 5 carts to assert its transferability in a different
setup. Neat and HyperNeat are omitted due to poor performance (similar to MLP and ESN).

of the pole with respect to the horizon so as to maximize the
time spent near the equilibrium position while avoiding the
other carts. In the 3-carts multipole-no-velocity, evolved
behaviors are similar with some exceptions for some HONN
and ESN controllers that achieve equilibrium for one cart,
and adopt swinging behaviors for the two other carts.

What makes a significant difference between these ap-
proaches is to be found in their generalization capabilities.
The goal is to evaluate how controllers for each model evolved
for the 3-carts version of the multipole-no-velocity perform
when tested with 1, 2, 4 or 5 carts. Firstly, in the multipole-
velocity benchmark, 3-carts evolved controllers from all ap-
proaches yield similar good results with different number of
carts, except for MLP, ESN, and Neat which completely fail
the generalization test. Secondly, the multipole-no-velocity
provides an increased challenge with respect to generaliza-
tion, as shown in figure 8. The supposedly nearly best re-
sults in performance with HONN (and, to some extent, with
MLP) are strongly counter-balanced by their very bad re-
sults in generalization. Then, only C-MLP and C-HONN
controllers (and to less extent C-MLP-WP and C-HONN-
WP controllers) produce similar perfomance with 1 or 2
carts while still performing quite well with 4 or 5 carts, at
least for some individuals (cf. upper quartiles, maximum
values and outliers).

From the results in performance and generalization, it ap-
pears that both macro-scale properties and micro-scale prop-
erties are relevant to achieve good performance and general-
ization. In the multipole-velocity benchmark, using modu-
larity (i.e. with compartments) or, even better, modularity
combined with regularity (i.e. with patterns) provide the
best results, and using multiplicative unit neurons even in-
creases performance as C-HONN and C-HONN-WP both
improve over the performance of their MLP equivalents. In
the multipole-no-velocity, generalization plays a key role for
comparing the different models: this time, modularity alone
provides the best controllers on performance and general-
ization, and using summing units leads to slightly better
results than using multiplicative units. However, a closer

look at the actual course of the evolutionary process advo-
cates for the benefits of using multiplicative units: figure 9
shows progress throughout the evolutionary process for the
various flavors of additive- and multiplicative-based models
and establish that C-HONN and C-HONN-WP controllers
improves much faster than any other methods on the most
complex versions of the multipole-no-velocity benchmark,
especially with respect to other models capable of general-
ization (results are similar for both the 3 and 5 carts config-
urations). As a matter of fact, C-HONN almost converged
in less than 10,000 evaluations (followed by C-HONN-WP),
while other methods require more than 40,000 evaluations
to reach similar performance.

5. CONCLUSIONS
This work demonstrates the importance of micro-scale

properties in Artificial Neural Networks, in particular with
control problems that are characterized by non-linear dy-
namics and complex interactions between autonomous sys-
tems, as it is often the case in modular robotics. The benefits
of neuron models that enable multiplicative operations have
been demonstrated in combination with other macro-scales
properties, in particular when modularity is involved. The
take-home message advocates for the use of multiplicative
units in neuro-evolutionary algorithms: multiplicative units
used in conjunction with modularity, or modularity with reg-
ularity, always lead to at least similar or better results when
complex dynamics are involved, in much less evaluations.

This work assumed a straight-forward approach to im-
plementing modularity and regularity as explicit features of
neural network controllers. This was justified as the goal was
to evaluate the positive or negative impacts of such proper-
ties. However, and with respect to further use, relaxing this
assumption may lead to more adaptive neuro-evolutionary
algorithms that can exploit results obtained here. For exam-
ple, recent works on spontaneous evolution of such network
properties [2, 22] suggest that the decision to use summing
and/or multiplicative units may be evolved as well, to match
the requirements of the problem at hand.

(a) multipole-velocity, 3 carts (b) multipole-no-velocity, 3 carts

Figure 9: Evolutionary runs: tracking improvements throughout evaluations using medians of the best-ever
individuals from each runs. (a) multipole-velocity, 3 carts ; (b) multipole-no-velocity, 3 carts. Note that
results with 5 carts are similar (not shown due to page limit restriction).

Hierarchy as a macro-scale property has not been dis-
cussed in this paper while it could be combined with the
properties evoked earlier. Indeed, preliminary experiments
yielded limited results, which are mostly due to the difficulty
of defining an explicit encoding allowing for hierarchical or-
ganization of compartments. This also advocates for an in-
direct encoding representation, that is leaving the algorithm
to decide on the structure of the controllers, rather than
enforcing it. To this end, extensions of this work towards
integration of evolving micro-scale properties in Cartesian
GP [15] and/or HyperNeat-like methods are currently un-
der investigation.

We conclude this paper with a last remark on the multi-
pole benchmarks. The no-velocity version remains very chal-
lenging for all approaches as only sub-optimal solutions have
been found whenever there is more than one cart. Moreover,
it offers an interesting environment with regards to gener-
alization because some methods appear to be much more
efficient than others with respect to the transferability of
the controllers. Also the memory issue is addressed because
operations requiring memorization (such as reconstruction
of velocity information) may be achieved through sharing
information between several carts.

Acknowledgments
This work was made possible by the European Union FET Proac-

tive Initiative: Pervasive Adaptation funding the Symbrion project

under grant agreement 216342. Experiments presented in this

paper were carried out using the Grid’5000 experimental testbed,

being developed under the INRIA ALADDIN development action

with support from CNRS, RENATER and several Universities as

well as other funding bodies (see https://www.grid5000.fr). We

also would like to thank Jean-Marc Montanier and Taras Kowaliw

for many helpful scientific and technical discussions.

References
[1] A. Auger and N. Hansen. A restart cma evolution strategy with increasing

population size. In Proc. CEC 2005, pages 1769–1776. IEEE Press, 2005.

[2] J. C. Bongard. Spontaneous evolution of structural modularity in robot
neural network controllers hardware. In GECCO, pages 251–258, 2011.

[3] J. Clune, K. Stanley, R. Pennock, and C. Ofria. On the performance of
indirect encoding across the continuum of regularity. IEEE Transactions on
Ev. Comp, 2011.

[4] R. Durbin and D. Rumelhart. Product units: A computationally powerful
and biologically plausible extension to backpropagation networks. Neural
Computation, 1(1):133–142, 1989.

[5] F. Gruau. Modular genetic neural networks for six-legged locomotion. In
Artificial Evolution, 1995.

[6] I. Guyon. Feature extraction: foundations and applications, volume 207. Springer
Verlag, 2006.

[7] H. Hamann, T. Schmickl, and K. Crailsheim. Coupled inverted pendu-
lums: a benchmark for evolving decentral controllers in modular robotics.
In GECCO, pages 195–202, 2011.

[8] H. Hamann, T. Schmickl, and K. Crailsheim. A hormone-based controller
for evaluation-minimal evolution in decentrally controlled systems. Artificial
Life, 18(2), 2012.

[9] G. Hornby. Measuring, enabling and comparing modularity, regularity and
hierarchy in evolutionary design. In Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 1729–1736. AcM, 2005.

[10] H. Jaeger. Tutorial on training recurrent neural networks, covering bppt,
rtrl, ekf and the echo state network approach. Technical report, Fraunhofer
Institute AIS, 2002. GMD Report 159.

[11] N. Kashtan and U. Alon. Spontaneous evolution of modularity and net-
work motifs. Proceedings of the National Academy of Sciences of the United States of
America, 102(39):13773, 2005.

[12] C. Koch. Biophysics of computation: information processing in single neurons. Ox-
ford University Press, USA, 2005.

[13] P. Levi and S. Kernbach, editors. Symbiotic Multi-Robot Organisms, volume 7
of Cognitive Systems Monographs. Springer Berlin Heidelberg, 2010.

[14] H. Lipson. Principles of modularity, regularity, and hierarchy for scalable
systems. Journal of Biological Physics and Chemistry, 7(4):125, 2007.

[15] J. F. Miller and P. Thomson. Cartesian genetic programming. In Proceedings
of the European Conference on Genetic Programming, pages 121–132, London, UK,
2000. Springer-Verlag.

[16] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general framework for
parallel distributed processing, pages 45–76. MIT Press, Cambridge, MA, USA,
1986.

[17] M. Schmitt. On the complexity of computing and learning with multiplica-
tive neural networks. Neural Computation, 14(2):241–301, 2002.

[18] K. Sims. Evolving virtual creatures. In SIGGRAPH’94, pages 15–22. ACM
Press, July 1994.

[19] K. Stanley. Compositional pattern producing networks: A novel abstrac-
tion of development. Genetic Programming and Evolvable Machines, 8(2):131–162,
2007.

[20] K. Stanley, D. D’Ambrosio, and J. Gauci. A hypercube-based encoding for
evolving large-scale neural networks. Artificial Life, 15(2):185–212, 2009.

[21] K. Stanley and R. Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary Computation, 10(2):99–127, 2002.

[22] P. Verbancsics and K. Stanley. Constraining connectivity to encourage mod-
ularity in hyperneat. In GECCO, pages 1483–1490, 2011.

[23] S. Whiteson and P. Stone. Evolutionary function approximation for rein-
forcement learning. The Journal of Machine Learning Research, 7:877–917, 2006.

