
HAL Id: hal-00734131
https://inria.hal.science/hal-00734131

Submitted on 20 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting Snapshot Algorithms by Refinement-based
Techniques

Manamiary Bruno Andriamiarina, Dominique Méry, Neeraj Kumar Singh

To cite this version:
Manamiary Bruno Andriamiarina, Dominique Méry, Neeraj Kumar Singh. Revisiting Snapshot Al-
gorithms by Refinement-based Techniques. PDCAT 2012 : The Thirteenth International Conference
on Parallel and Distributed Computing, Applications and Technologies, Dec 2012, Beijing, China.
�hal-00734131�

https://inria.hal.science/hal-00734131
https://hal.archives-ouvertes.fr


Revisiting Snapshot Algorithms by Refinement-based Techniques

Manamiary Bruno Andriamiarina

Université de Lorraine, LORIA

Vandœuvre-lès-Nancy, France

Email: manamiary.andriamiarina@loria.fr

Dominique Méry

Université de Lorraine, LORIA

Vandœuvre-lès-Nancy, France

Email: dominique.mery@loria.fr

Neeraj Kumar Singh

University of York

York, UK

Email: neeraj.singh@cs.york.ac.uk

Abstract—The snapshot problem addresses a collection of
important algorithmic issues related to the distributed com-
putations, which are used for debugging or recovering the
distributed programs. Among the existing solutions, Chandy
and Lamport propose a simple distributed algorithm. In
this paper, we explore the correct-by-construction process to
formalize the snapshot algorithms in distributed system. The
formalization process is based on a modeling language Event
B, which supports a refinement-based incremental development
using RODIN platform. These refinement-based techniques
help to derive a correct distributed algorithm. Moreover, we
demonstrate how this class of other distributed algorithms can
be revisited. A consequence is to provide a fully mechanized
proof of the distributed algorithms.

Keywords-Distributed algorithms; correctness by construc-
tion; snapshot; verification

I. INTRODUCTION

The snapshot problem is a fundamental aspect of dis-

tributed computations and distributed applications, since it

produces a global state of a distributed system at a particular

instant. It is a photography of a global state made up of local

states of each process and communication channels. Several

solutions for the snapshot problem have been published,

among them we consider the seminal algorithm of Chandy

and Lamport [9, 21, 23]. The snapshot computation is moti-

vated by several applications as, for instance, the verification

of stable properties like deadlock, successful termination

and debugging of the distributed program using safe con-

figuration. Snapshot algorithms constitute a pertinent col-

lection of case studies for evaluating strengths and weak-

nesses of formal techniques like model-checking [11, 12]

and theorem prover [11, 19, 22]. The correct-by-construction

paradigm [15] offers an alternative approach to prove dis-

tributed algorithms and to derive the correct distributed

algorithms through the reconstruction of a target algorithm

using stepwise refinement and validated methodological

techniques [2, 5]. It appears that the refinement is a key

concept for organizing the re-development of an existing

distributed algorithm [2] to discover a new set of distributed

algorithms [7] by reusing or replaying with the former

development.

In this paper, we focus on the distributed snapshots for

specific problems. The prime objective is to solve a problem

using refinement techniques and to provide an evidence of

correctness of given solutions, which are obtained through

the correct-by-construction process. We are mainly inter-

ested by providing recipes for using the Event B framework

and refinement for developing the distributed algorithms.

Massingill and Chandy[16] introduce archetypes for fa-

cilitating parallel program design; more recently, Chandy

et al [8] propose the refinement of formal archetypes to

produce verified distributed software using the theorem

prover PVS. The conceptual idea of the archetypes is very

close to the design patterns in the software engineering

domain. Refinement plays a central role in the integra-

tion of different archetypes and constitutes the semantical

glue for ensuring the correctness of the resulting process.

This approach is based on the use of PVS, which is

employed to prove the properties of problems modelled

using archetypes. Our recipes are conceptually close to the

notion behind the archetypes and our aims are to use the

Event B framework for developing correct-by-construction

distributed algorithms, and enrich a collection of complex

distributed algorithms (Project RIMEL: http://rimel.loria.fr).

Another objective is to show the power of the correct-

by-construction process and our recipes through the re-

development and derivation of already existing and correct

snapshot algorithms like the Chandy and Lamport algo-

rithm [9], or the algorithm of Lai and Yang [13]. Finally,

the snapshot problem is already considered as a case study

for illustrating the strength of rewriting logic [18] and we

think that our development may help a reader to understand

the behavioral theory of snapshot algorithms.

The paper is organized as follows. Section 2 defines

the snapshot problem in distributed systems. Section 3

introduces notations of Event B and the formal activities

of a global system. Section 4 presents refinement-based de-

velopment of the snapshot algorithm, where we describe the

OBSERVATION model for stating what we have to compute.

Section 5 introduces the computation of a snapshot in the

PROCESS model, which simulates the OBSERVATION model.

The global architecture of the refinement-based design is

similar to the classical distributed algorithms [9, 13]. Section

5 concludes this paper along with the future work.



II. THE SNAPSHOT PROBLEM

This section presents an abstract overview of the snapshot

problem, which helps to understand our proposed solution.

We consider a message passing model which formulates

a distributed algorithm using a finite set of processes and

channels. A direct channel connects each pair of nodes and

a list of transformations is attached to each node, which

performs either local actions or communications actions. The

communication mechanism is supposed to be reliable, which

guarantees that the channel does not lose any data packets.

For each node (process), a set of events (send, receive

and internal events) is defined. A partial ordering called

local causal order (denoted <p for a process (p)), induced

by the local sequentiality of each process is defined. The

following relationship ei <p ej , between two events ei and

ej of a process (p), indicates that ei occurs before ej . A cut

C of a local set of events is a subset of events satisfying the

relationship : ∀p ∈ P, e, f ∈ C · f ∈ L ∧ e <p f ⇒ e ∈ C.

P is a set of processes and L is a set of pre-shot events

(happening before the cut C).

Another ordering called causal order (denoted <) is

defined as well. It is the smallest relation containing the local

causal orders (<p) and satisfying the send/receive ordering

between processes. The relationship em < en, between two

events em and en of a distributed system, means that em
occurs before en :

1) If em and en are local to a process (p), then em <p en.

2) If em represents the sending of a message, then en
formulates the receiving of the message.

3) There exists another event ek, such that em < ek and

ek < en.

A consistent cut C of a set of events of a distributed

algorithm is a subset of events, which satisfies the following

relationship : ∀e, f ∈ C · f ∈ L ∧ e < f ⇒ e ∈ C.

A snapshot S is a global state of a distributed system,

which is defined by a set of local states of nodes, and a

set of channels states, produced by either internal actions or

communication actions. The snapshot S is meaningful and

feasible, if there exists an execution producing the global

state, and a set of messages is successfully passed through

each channel (p 7→ q) of the distributed system, where a

set of messages is sent by the node (p) and the sending

messages are received by the node (q).

The following theorem [21] relates the notions of cut and

snapshot :

Theorem 1 A snapshot S induced by a cut C is meaningful

if, and only if, C is consistent if, and only if, S is meaningful.

The aim of the snapshot algorithm is to compute a global

state of the system from the local states or equivalently a

consistent cut. We investigate different steps for deriving two

well-known snapshot algorithms [9, 13] using proof-assisted

stepwise development.

III. STEPWISE DESIGN OF DISTRIBUTED ALGORITHMS

The correct-by-construction paradigm promotes the devel-

opment of algorithms using a progressive and incremental

approach. The key concept is the refinement which pro-

vides linking between discrete models by preserving safety

properties. The Event B modeling language designed by

Abrial [1] borrows features from formal modeling languages

like UNITY [10], TLA+ [14], action systems [3, 4]; those

modeling languages share common aspects and especially

the refinement concepts. The Event B is supported by an

open environment RODIN integrating formal features for

developing discrete logico-mathematical models. The Event

B provides structures for expressing the reactive systems

as a set of actions called events and maintaining a list

of assertions called (inductive) invariants. These invariants

formulate safety properties. We express our design for

modeling the distributed algorithms in the Event B using

correct-by-construction approach, which is also our primary

objective of this work. We recall basic concepts of the Event

B modeling language [1] and a formal development tool

called RODIN [20].

A. Modelling actions over states

The event-driven approach [1] is based on the B notation.

It extends the methodological scope of basic concepts in

order to take into account the idea of formal models. A

formal model is characterized by a (finite) list x of state

variables possibly modified by a (finite) list of events; an

invariant I(x) states properties that must always be satisfied

by the variables x and maintained by the activation of the

events. Here, we briefly recall definitions and principles of

formal models and explain how they can be managed by

tools [20].

Modifications over state variables are stated by events. An

event has two main parts: a guard, which is a predicate built

on the state variables, and an action, which is a generalized

substitution. An event can take one of the three normal

forms described in figure 1 and is associated with a before-

after predicate BA(x, x′), which describes the event as a

logical predicate expressing the relationship between values

of the state variables just before (x) and just after (x′) the

“execution” of the event (see Fig. 1).

Proof obligations (INV 1 and INV 2) are produced by

the tool RODIN [20] from events in order to state that an

invariant condition I(x) is preserved. Their general form

follows immediately from the definition of the before-after

predicate, BA(e)(x, x′), of each event e (see Table 1). Note

that it follows from the two guarded forms of the events and

this obligation can be trivially discharged in case of false

condition of the guard. When this is the case, the event is

said to be disabled. The proof obligation FIS expresses the

feasibility of the event e with respect to the invariant I .

2



Figure 1. Events and proof obligations

B. Describing the network and its activities

A network of processes is simply defined by a set of

processes P , a set of channels between processes, namely C.

CONTEXT NETWORK

SETS
P,M, PStates

CONSTANTS
C . . .

AXIOMS
axm1 : C ⊆ (P × P ) \ id
. . .

END

We assume that M is a set

of messages that can transit

along channels. Each process

may have a local state and a

set of local states is PStates.

The communication network is

modelled by a structure called

NETWORK. The network is sup-

posed to be fixed (channels are

not modified or created or deleted) and connected.

C. Describing the current system

The snapshot algorithm captures a set of actions modify-

ing a set of variables, through the observation of the current

distributed system. Hence, our modeling process states that

the existing system simulates a new set of modifications in

the current state. A model SYSTEM describes the general

activities of the distributed system.

These activities are a) internal and b) external (inter-

actions between nodes) operations modelled by the fol-

lowing events: Internal-local: to modify a local state

of a process (p); Internal-message: to modify a lo-

cal set of messages using a process (p); Sending:

a process (p) sends a message to a process (q);

MACHINE SYSTEM

. . .
EVENT Internal-local . . .
EVENT Internal-Message . . .
EVENT Sending . . .
EVENT Receiving . . .
. . .
END

Receiving: a process (q) re-

ceives a message from a process

(p). After each operation, the

time-stamp (o(p)) of a process

(p) is incremented, and a trace

of activities (either internal/local

or external) is added to history

(h(p)) of the process (p).

A new step expresses the ob-

servation of the current system by another process which

is defined by a refinement of the current model. In the

next section, we define the refinement and apply it for the

observation.

IV. INCREMENTAL PROOF-BASED DEVELOPMENT

A. Model Refinement

The refinement of a formal model allows us to enrich a

model in an incremental way which is the foundation of the

correct-by-construction [15] approach. Refinement provides

a way to strengthen invariants and to add details to a model.

It is also used to transform an abstract model in a more

concrete version by modifying the state description. This

is done by extending the list of state variables (possibly

suppressing some of them), by refining each abstract event

into a corresponding concrete version, and by adding new

events. The abstract state variables, x, and the concrete

ones, y, are linked together by means of a, so-called,

gluing invariant J(x, y). A number of proof obligations

ensure that (1) each abstract event is correctly refined by its

corresponding concrete version, (2) each new event refines

skip, (3) no new event takes control for ever, and (4) relative

deadlock-freeness is preserved. Details of the formulation of

these proofs follows.

We suppose that an abstract model AM with variables x

and invariant I(x) is refined by a concrete model CM with

variables y and gluing invariant J(x, y). If BA(e)(x, x′)
and BA(f)(y, y′) are respectively the abstract and concrete

before-after predicates of the same event, respectively e and

f , we have to prove the following statement, corresponding

to proof obligation (1):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ ∃x′ · (BA(e)(x, x′) ∧ J(x′, y′))

Now, proof obligation (2) states that BA(f)(y, y′) must

refine skip (x′ = x), generating the following simple

statement to prove (2):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ J(x, y′)

For the third proof obligation, we must formalize the

notion of the system advancing in its execution; a standard

technique is to introduce a variant V (y) that is decreased

by each new event (to guarantee that an abstract step may

occur). This leads to the following simple statement to prove

(3):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ V (y′) < V (y)

Finally, to prove that the concrete model does not intro-

duce additional deadlocks, we give formalisms for reasoning

about the event guards in the concrete and abstract models:

grds(AM) represents the disjunction of the guards of the

events of the abstract model, and grds(CM) represents the

3



disjunction of the guards of the events of the concrete model.

Relative deadlock freeness is now easily formalized as the

following proof obligation (4):

I(x) ∧ J(x, y) ∧ grds(AM) ⇒ grds(CM)

When one refines a model, one can either refine an

existing event by strengthening the guard and/or the before-

after predicate (effectively reducing the degree of non-

determinism), or add a new event in order to refine the

skip event. The feasibility condition is crucial for avoiding

possible states which have no successor; for instance, the

division by zero. Furthermore, such refinement guarantees

that a set of traces of the refined model contains (up to stut-

tering) traces of the resulting model. The basic foundations

of the Event B modeling language along with several case

studies are availbale in [1, 6]. The language of generalized

substitutions is very rich and allows us to express any

relation between states in a set-theoretical context. The

expressive power of the language leads to require helps for

writing relational specifications and this is why we should

provide proof-based patterns for assisting the development

of Event B models.

B. General Schema for Refinement

The correct-by-construction approach is based on the use

of refinement and to introduce new features in the formal

models. The methodology is simply described by the follow-

ing diagram, which advocates different steps for producing

a distributed algorithm using the correct-by-construction

approach.

• The context C states properties of graphs.

• The machine M0 expresses the problem to solve by

a set of events stating a relation between initial and

final states, for instance, the computation of a correct

snapshot.

• The refinement of M0 into M1 expresses that the

machine M1 expresses the inductive property allowing

to express the computation of the snapshot by each

node.

• The refinement of M1 by IM prepares the localisation

phase and may require more than one refinement step.

• The next refinement of IM is a refinement for produc-

ing a set of events corresponding to the localisation of

information.

• DA is derived from the M2 ; mapping checks that

M2 can be translated into a distributed programming

language.

However, we consider a more general schema for devel-

oping the snapshot problem, since the snapshot problem is

solved by an algorithm which is able to compute the cur-

rent distributed state. Next subsection starts the refinement

process by introducing the first refinement related to the

observation of the snapshot.

C. Introducing the OBSERVATION model

The OBSERVATION model refines the SYSTEM model

and introduces the functionality, which is required by the

snapshot problem: to compute a snapshot. It does not

explain how to compute it but what it should compute.

The event

snapshot states

that a consistent

cut (obtained in

one-shot), namely

acut, is assigned

to cut: a moving

message is not

allowed to be part

of the snapshot,

if origin of the message is outside of the cut and its

destination is inside of the cut. The event expresses

the intention to specify the required solution. Further

refinements are necessary for introducing the inductive

process leading to a consistent cut. Others events are related

to the previous models, which are indicated by dots. Due

to space limitations, we have given sketch of the modeling.

A detailed formal development is available1.

V. ARCHITECTURE OF THE DESIGN

Figure 2 presents the complete formal development, which

starts from SYSTEM and NETWORK and progressively leads

to the OBSERVATION and PROCESS. We describe the model

PROCESS which provides the underlying computing process

to produce a consistent snapshot.

Figure 2. General Architecture of the Design

1http://www.loria.fr/~andriami/snapshot-pdf/project.html

4



A. Computing a snapshot

The PROCESS model (see Fig.3) refines the OBSERVA-

TION model, and presents the construction of a correct

snapshot (pcut) step-by-step. A control message (marker)

is introduced along with events to separate pre and post-

snapshot messages for describing the development steps of

the snapshot algorithm :

Figure 3. The PROCESS Machine

• StartingSnapshot: A node (special) starts to build of

the snapshot. The node (special) saves its local state. It

begins to record the incoming messages (marker) and

finally, this node (special) sends a message (marker)

to all of its neighbouring nodes.

• ProgressingSnapshot: A node (i) receives a message

(marker) from the neighbouring node and it begins

to record all the incoming messages. If the node (i)

receives all the messages before sending the message

(marker), it records the local state and transmits the

message (marker) to its neighbours.

• Snapshot: All the nodes have received a message

(marker). For all the nodes, the messages sent to

them before a message (marker), have been received.

Finally, the global state of the distributed system is

saved.

The model also introduces a set of properties for describ-

ing the consistency of the cut:

(A) If a message m is sent by a process (p) at a time (i),

and received by a process (q) at a time (j) before the

snapshot, then the time (i) belongs to the past of the

cut.

(B) If a message m is sent by a process (p) (which has

already performed a local cut) at the time (i), received

by a process (q) (which has not yet performed a local

cut) at a time (j), then the time (i) belongs to the past

of the cut.

(C) If a message m has been sent by a process (p) to process

(q) at a time (i) (before the receiving of a message

(marker) by the process (p)), then the time (i) belongs

to the past of the cut.

The events Sending and Receiving are refined to distin-

guish pre-snapshot messages and/or activities from their

post-snapshot counterparts:

• SendingPreSnapshot: This event describes the send-

ing of a message (m) by a process (p), before the local

cut of the process (p).

• SendingPostSnapshot: This event presents the send-

ing of the message (m) by the process (p), which

follows the local cut of the process (p). The message

(m) is marked as being sent after the local cut of the

process(p).

• ReceivingPreSnapshotMessages: This event

demonstrates the receiving of the message (m) (sent

by the process (p) before the local cut of the process

(p)) by a process (q), after receiving a message

(marker) by the process (q). The incoming message

(m) is recorded by the process (q).

• ReceivingPostSnapshotMessages: This event

shows the receiving of a message (m) (sent by a

process (p) after the local cut of the process (p)) by a

process (q), after the process (q) has performed a local

cut.

• ReceivingBeforeTheSnapshot: This event describes

the receiving of a message (m) (sent by a process (p)

before the local cut of the process (p)) by a process (q),

before the process (q) performs a local cut.

B. Deriving Snapshot Algorithms

1) The Lai and Yang Algorithm: The Lai and Yang

algorithm [13] is a two-phases protocol: either (A) one

special process (called initiator) initiates the snapshot, or

(B) another process among non-initiator processes extends

the snapshot. Due to their similarities, we will focus on

phase (A), depicted by the following steps:

process (initiator) :

step 1: record local state;

step 2: snapshot := 1;

step 3: begin to record incoming pre-snapshot messages;

step 4: to send a message : <message, snapshot>;

5



Details of the two possible phases are described by the

model PROCESS, an abstract model of the Lai and Yang

algorithm [13]: channels between processes are represented

by sets of messages; however a message (m) is extended by

a bit, which determines either if the message is pre or post-

snapshot. The bit is 1, when the predicate m ∈ mark(c)
holds. The model LOC-PROCESS, refining PROCESS, local-

izes informations and describes a model for the Lai and Yang

algorithm. We can identify, in the LOC-PROCESS model,

events representing the phases (A) and (B) of the Lai and

Yang algorithm:

EVENT StartingSnapshot REFINES StartingSnapshot
ANY

nsm
ncstate
nm

WHERE

grd1 : initiator /∈ dom(pcut)
grd2 : ncstate ∈ C 7→ P(M)
grd3 : ncstate = cstate ∪ {d 7→ ∅|d ∈ C ∧ prj2(d) = initiator}
grd4 : nsm ⊆ C
grd5 : nm ∈ C 7→ P(M)
grd6 : nsm = send_mark ∪ {d|d ∈ C ∧ prj1(d) = initiator}
grd7 : nm = {d 7→ ∅|d ∈ nsm}

THEN

act1 : pstate(initiator) := l(initiator)
act2 : pcut(initiator) := o(initiator)
act3 : cstate := ncstate
act4 : send_mark := nsm
act5 : mark := nm

The actions of this event can be associated with the steps of

phase (A) :

• act1 models step 1: the process (initiator) records

its local state.

• act2 represents step 2: the process (initiator) takes

a local snapshot.

• act3 indicates that the process (initiator) will record

all pre-snapshot incoming messages (step 3).

• Finally, act4 and act5 match step 4: the process

(initiator) indicates that all outgoing messages will

be labelled with the bit 1.

We can see that the two phases (A) and (B) are modelled,

respectively, by the events StartingSnapshot and Pro-

gressingSnapshot. The other events do not describe parts

of the Lai and Yang algorithm; they depict activities of the

processes and the network (communications, computations,

etc.).

2) The Chandy and Lamport Algorithm: The Chandy

and Lamport algorithm [9] uses a mechanism of coloring

and propagation of a red color from a white one. A white

message occurs before a snapshot and a red message occurs

after the snapshot. We split the two kinds of messages

using a variable mark, indicating, whether or not messages

(marker) have been sent by processes. The abstract model

FIFO-PROCESS of this algorithm refines the model PROCESS:

it is an abstract model of the Lai and Yang algorithm.

Behaviours of the model FIFO-PROCESS correspond to

behaviours of the model PROCESS, thanks to refinement.

However, the FIFO-PROCESS introduces new features: the

separation between the pre and post-snapshot messages is

implemented by a FIFO communication mechanism. Chan-

nels between nodes are transformed from sets of messages

to FIFO queues. Because of the clear distinction between the

pre and post-snapshot phases, the bit of membership defined

in the Lai and Yang algorithm can be removed; which

means that the messages are less complex. However, we

can observe that a strong constraint is added: in the Chandy

and Lamport algorithm, FIFO communication channels are

mandatory. The LOC-FIFO-PROCESS model refines the FIFO-

PROCESS model: the LOC-FIFO-PROCESS model localizes

events and is producing the algorithmic form of the Chandy

and Lamport algorithm.

VI. DISCUSSION, CONCLUSION AND FUTURE WORK

The snapshot algorithm identifies global states in a dis-

tributed system. The result of our works on the snapshot

problem is the discovery of a generic architecture which

allows the derivation of various algorithms. The model SYS-

TEM describes a distributed system and the activities of its

processes (computations, communications, etc.). This model

is generic: computations, activities, etc. can be made more

specific, according to the peculiarities of studied systems.

The model SYSTEM is refined by a model OBSERVATION,

which introduces the notion of snapshot: an event models the

global snapshot of the distributed system. The development

of the snapshot is organised from the model called PROCESS,

which expresses the underlying computation process and can

be refined into several other algorithms. The key idea is to

separate the pre-shots and the post-shots and the solution

depends on assumptions on channels and messages: the

mark variable is either a marker for a bit or a marker

for fifo channels. The complexity of the development is

measured by the number of proof obligations which are

automatically/manually discharged (see table VI). The main

difficulty of the development was the expression of a con-

sistent snapshot in the machine PROCESS, therefore the

establishment of the refinement relation between PROCESS

and the machine OBSERVATION. A set of invariants (A,B,C)

of the machine PROCESS (Fig.3) were the keys of the

development, where the generated proof obligations were

quite difficult to discharge. Moreover, the snapshot algo-

rithm is supposed to work while another process SYSTEM

is working; SYSTEM is a model for another distributed

system and the snapshot algorithm is an implementation

of the observation of the current system. Contrary to the

verification by theorem provers [18], our work provides

an architecture for developing the snapshot algorithm using

essential safety properties together with a formal proof that

asserts its correctness.

6



Model Total Auto Interactive

NETWORK 10 10 100% 0 0%

SYSTEM 42 36 85.71% 6 14.29%

OBSERVATION 35 18 51.43% 17 48.57%

PROCESS 95 44 46.32% 51 53.68%

Total 182 108 59.34% 74 40.66%

Table I
SUMMARY OF PROOF OBLIGATIONS

In this paper, we have experimented on fixed networks.

As a part of our future efforts we consider the global family

of snapshot algorithms to give a very precise description

of different solutions and to link between these algorithms,

as we notice that the algorithm of Chandy and Lamport is

obtained from the algorithm of Lai and Yang by adding

a FIFO communication. Moreover, we plan to integrate the

snapshot algorithm with complex distributed systems like

mobile networks.

REFERENCES

[1] J.-R. Abrial. Modeling in Event-B: System and Software
Engineering. Cambridge University Press, 2010.

[2] J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved
and incremental development of ieee 1394 tree identify pro-
tocol. Formal Asp. Comput., 14(3):215–227, 2003.

[3] R.-J. Back and R. Kurki-Suonio. Distributed cooperation with
action systems. ACM Trans. Program. Lang. Syst., 10(4):513–
554, 1988.

[4] R.-J. Back and R. Kurki-Suonio. Decentralization of pro-
cess nets with centralized control. Distributed Computing,
3(2):73–87, 1989.

[5] R.-J. Back and K. Sere. Stepwise refinement of action
systems. Structured Programming, 12(1):17–30, 1991.

[6] D. Bjorner and M. C. Henson, editors. Logics of Specification
Languages. EATCS Textbook in Computer Science. Springer,
2007.

[7] D. Cansell and D. Méry. Designing old and new distributed
algorithms by replaying an incremental proof-based devel-
opment. In J.-R. Abrial and U. Glässer, editors, Rigorous
Methods for Software Construction and Analysis, volume
5115 of Lecture Notes in Computer Science, pages 17–32.
Springer, 2009.

[8] K. M. Chandy, B. Go, S. Mitra, and J. White. Towards verified
distributed software through refinement of formal archetypes.
In IFIP Working Conference on Verified Software: Workshop
on Experiments, October 2008.

[9] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63–75, 1985.

[10] K. M. Chandy and J. Misra. Parallel Program Design A
Foundation. Addison-Wesley Publishing Company, 1988.
ISBN 0-201-05866-9.

[11] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. The
TLA+ proof system: Building a heterogeneous verification
platform. In A. Cavalcanti, D. Déharbe, M.-C. Gaudel, and
J. Woodcock, editors, International Conference on Theoret-
ical Aspects of Computing - ICTAC 2010, volume 6255 of
Lecture Notes in Computer Science, page 44, Brazil Natal,
2010. Springer. The original publication is available at
www.springerlink.com.

[12] E.M.Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, december 1999. ISBN 0-262-03270-8.

[13] T.-H. Lai and T. H. Yang. On distributed snapshots. Inf.
Process. Lett., 25(3):153–158, 1987.

[14] L. Lamport. Specifying Systems: The TLA+
+ Language

and Tools for Hardware and Software Engineers. Addison-
Wesley, 2002.

[15] G. T. Leavens, J.-R. Abrial, D. S. Batory, M. J. Butler,
A. Coglio, K. Fisler, E. C. R. Hehner, C. B. Jones, D. Miller,
S. L. P. Jones, M. Sitaraman, D. R. Smith, and A. Stump.
Roadmap for enhanced languages and methods to aid verifi-
cation. In S. Jarzabek, D. C. Schmidt, and T. L. Veldhuizen,
editors, GPCE, pages 221–236. ACM, 2006.

[16] B. L. Massingill and K. M. Chandy. Parallel program
archetypes. In In Proceedings of the Scalable Parallel Library
Conference, pages 1–9, 1997.

[17] O. A. Mohamed, C. Muñoz, and S. Tahar, editors. Theorem
Proving in Higher Order Logics, 21st International Confer-
ence, TPHOLs 2008, Montreal, Canada, August 18-21, 2008.
Proceedings, volume 5170 of Lecture Notes in Computer
Science. Springer, 2008.

[18] K. Ogata and P. T. T. Huyen. Specification and model check-
ing of the chandy & lamport distributed snapshot algorithm
in rewriting logic. In ICFEM 2012, 2012.

[19] S. Owre and N. Shankar. A brief overview of pvs. In
Mohamed et al. [17], pages 22–27.

[20] Project RODIN. Rigorous open development environment for
complex systems. http://www.eventb.org/, 2004-2010.

[21] G. Tel. Introduction to Distributed Algorithms. Cambridge
Unversity Press, 1994.

[22] M. Wenzel, L. C. Paulson, and T. Nipkow. The isabelle
framework. In Mohamed et al. [17], pages 33–38.

[23] Z. Yang and T. A. Marsland. Global snapshots for distributed
debugging: An overview. Technical report, Computing Sci-
ence Department, University of Alberta, 1992.

7


