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Abstract

This paper presents a method for the computation

of polar harmonic transforms that is fast and efficient.

The method is based on the inherent recurrence relations

among harmonic functions that are used in the definitions

of the radial and angular kernels of the transforms. The

employment of these relations leads to recursive strategies

for fast computation of harmonic function-based kernels.

Polar harmonic transforms were recently proposed and

have shown nice properties for image representation and

pattern recognition. The proposed method is 10-time

faster than direct computation and five-time faster than

fast computation of Zernike moments.

1. Introduction

Image moments extracted from a unit disk region are

usually used in invariant pattern recognition problems as

rotation-invariant descriptors [13]. Let f be the image

function, its moments Hnm over the unit disk region are

computed as

Hnm =

∫∫

x2+y2≤1

f(x, y)V ∗
nm(x, y) dxdy

=

∫ 2π

0

∫ 1

0

f(r, θ)V ∗
nm(r, θ)r drdθ,

where Vnm are the decomposing kernel functions and

the asterisk denotes the complex conjugate. As shown in

[2], the “invariance in form” preference on the computed

moments Hnm leads to the following condition on Vnm:

Vnm(r, θ) = Rn(r)Am(θ),

with Am(θ) = eimθ and Rn(r) could be of any form. For

example, rotational moments (RM) [14] and complex mo-

ments (CM) [1] are defined by using Rn(r) = rn; angu-

lar radial transform (ART) [3] uses Rn(r) = 2 cos(πnr).
However, the obtained kernels Vnm of RM, CM, and

ART are not orthogonal and, as a result, information re-

dundancy exists in the moments Hnm, leading to difficul-

ties in image reconstruction and low accuracy in pattern

recognition. Undoubtedly, orthogonality between ker-

nels Vnm comes as a natural solution to these problems.

Orthogonality between the kernels means

〈Vnm, Vn′m′〉 = δnn′δmm′

=

∫ 1

0

Rn(r)R
∗
n′(r)r dr

∫ 2π

0

Am(θ)A∗
m′(θ) dθ.

From the orthogonality between the angular kernels:
∫ 2π

0

Am(θ)A∗
m′(θ) dθ = 2πδmm′ ,

the remaining condition for the radial kernels is
∫ 1

0

Rn(r)R
∗
n′(r)r dr =

1

2π
δnn′ .

The above equation is the regulating condition for the

definition of a set of radial kernels Rn in order to have or-

thogonality between kernels Vnm. There exists a number

of methods that satisfies the above condition. One direc-

tion is to employ polynomials of the variable r for Rn,

which turn out to be special cases of the Jacobi polyno-

mials [10]. Popular methods are Zernike moments (ZM)

[9], pseudo-Zernike moments (PZM) [14], orthogonal

Fourier–Mellin moments (OFMM) [12] (a comprehen-

sive survey could be found in [6, Section 6.3]). This class

of orthogonal moments, despite its popularity, involves

the computation of factorial terms, resulting in high com-

putational complexity and numerical instability, which

often limit their practical usefulness.

Another direction is to use harmonic functions for Rn

as in [11] by defining

Rn(r) =



















√

1
r
, n = 0

√

2
r
sin(π(n+ 1)r), n odd

√

2
r
cos(πnr), n even > 0

(1)

for radial harmonic Fourier moments (RFHM) or as in

[15] by defining Rn(r) = ei2πnr
2

for polar harmonic

transforms (PCET). The radial kernels of RFHM in Eq.

(1) are actually equivalent to Rn(r) =
1√
r
ei2πnr in terms

of image description, similar to the equivalence between

different forms of Fourier series (i.e., trigonometric or

complex exponential). This insight has led to the proposal

of generic polar harmonic transform (GPCET) in [7] by

generalizing the radial kernels of RFHM and PCET using

a parameter s as Rns(r) =
√

srs−2

2π ei2πnr
s

. GPCET has

been shown to have some beneficial properties for image



representation and pattern recognition, leading to compa-

rable results with Zernike moments in these tasks. This is

due to the ability of GPCET to control the distribution of

the zeros of Rns in the interval 0 ≤ r ≤ 1. It is thus an-

ticipated that GCPET could be a promising replacement

of Jacobi polynomial-based methods in image analysis

and pattern recognition tasks in the coming years.

This paper describes a method for fast computation

of GPCET’s radial kernels in order to further support

GPCET in terms of computation complexity. The method

is based on the inherent recurrence relations among har-

monic functions that are used in the definitions of the

radial and angular kernels of GPCET. The employment of

these relations leads to recursive strategies for fast com-

putation of harmonic function-based kernels. Since there

exists no fast computation method for these newly devel-

oped transforms, the proposed method has been compared

with direct computation and, in terms of kernel computa-

tion time, the best strategy is, on average, 10-time faster.

In addition, when compared with the best strategy for

recursive computation of Zernike moment’s kernels, the

proposed strategy is five-time faster.

The remainder of this paper is organized as follows.

Section 2 represents the recurrence relations among har-

monic functions and then proposes the recursive strategies

for their fast computation. Experimental results are given

in Section 3, and conclusions are drawn in Section 4.

2. Recursive computation of exponentiation

In GPCET, both the radial and angular kernels are

defined based on complex exponential functions. Direct

computation of exponentiation is time-consuming and

often constitutes the dominant part of algorithms due to

its O(log2n) complexity, where n refers to the number of

precision digits at which the function is to be evaluated

[4]. The overall complexity may become excessively high

when a large number of moments is needed, or the image

has high resolution, or a high-precision computation is

required. Since these requirements are common in real

applications, the existence of strategies for fast compu-

tation of kernels is vital for the applicability of GPCET.

Fortunately, due to the following recursive definition of

exponentiation:

base case: ei0α = 1,

inductive clause: eikα = ei(k−1)α eiα, k, α ∈ Z,

the complex exponential functions in the definitions of

GPCET radial and angular kernels can be computed re-

cursively as

ei2πnr
s

= ei2π(n−1)rsei2πr
s

,

eimθ = ei(m−1)θ eiθ,

with the base cases ei2π0r
s

= 1 and ei0θ = 1.

Figure 1: Recursive computation of GPCET radial kernels

Rns and angular kernels Am.

Assuming

{

√

srs−2

2π , ei2πr
s

, eiθ
}

has been pre-

computed and stored for polar coordinates (r, θ) of all the

mapped pixel regions’ centers, the following recurrence

relations of Rns and Am:

Rns(r) =

√

srs−2

2π
ei2πnr

s

= R(n−1)s(r) e
i2πrs , (2)

Am(θ) = eimθ = Am−1(θ) e
iθ, (3)

lead to their recursive computation with the base cases

R0s(r) =
√

srs−2

2π and A0(θ) = 1 respectively. Ob-

viously, computing Rns from R(n−1)s and Am from

Am−1 each requires only one multiplication, which is

very fast when compared to exponentiation, leading to

fast computation of Vnms. Moreover, these forms of

recurrence relations are simpler than those that were

discovered for Jacobi polynomial-based radial kernels

[5]. By using Eq. (2), only one recursive computational

thread is sufficient to reach every GPCET radial kernels

whereas many threads would be required to cover all

Jacobi polynomial-based radial kernels. The computa-

tion flows of the GPCET radial kernels Rns and angular

kernels Am are illustrated in Fig. 1. It is evident that

the method proposed here is much faster than the one

mentioned in [15] where exponentiation is required to

compute complex exponential radial and angular kernels.

The above proposed recursive computation of GPCET

radial and angular kernels could be employed for ex-

tremely fast computation of GPCET moments when the

order set S composes a square region in Z
2 and takes the

origin as its center:

S = {(n,m) : n,m ∈ Z
2, |n|, |m| ≤ K},

where K is a constant positive integer. By using the com-

putational flow depicted in Fig. 2a, computing a GPCET

moment thus requires only three multiplications, two for

getting Vnms and one for multiplying Vnms by f , fol-

lowed by a discrete sum of the obtained results over all

the pixels lying entirely inside the unit disk.

In practice, to further boost the computation speed,

instead of conducting the computational flow to visit all

(n,m) ∈ S in four quadrants in the Cartesian space, it is

sufficient to visit only (n,m) ∈ S in only one quadrant

(n,m > 0) as illustrated in Fig. 2b. This is possible due

to the following observations:

R−ns(r) = R∗
ns(r), A−m(θ) = A∗

m(θ).



(a) Four quadrants (b) One quadrant

Figure 2: Computation flows of GPCET kernels.

Thus, whenever Rns and Am are available, computing

the four related GPCET kernels as

Vnms(x, y) = Rns(r)Am(θ),

V−nms(x, y) = R∗
ns(r)Am(θ),

V−n−ms(x, y) = V ∗
nms(x, y),

Vn−ms(x, y) = V ∗
−nms(x, y),

for which eight multiplications should be needed if the

computational flow in Fig. 2a is used, requires only two

multiplications and three conjugations, leading to a 8
3 -

time reduction in the number of multiplications.

3. Experimental results

The computational complexity is evaluated in terms

of the elapsed time taken to compute the kernels of com-

parison methods from an image of size 128× 128, which

contains 12596 pixels lying entirely inside the unit disk.

The experiments are carried out on a PC with a 2.33GHz

CPU, 4GB RAM running Linux kernel 2.6.38; MATLAB

version 7.7 (R2008b) is used as the programming envi-

ronment. Let K be some integer constant, all the kernels

of orders (n,m) satisfying the conditions in Table 1 are

computed and the averaged elapsed time over all fea-

sible orders is taken as the kernel computation time at

that value of K. The value of K is varied in the range

0 ≤ K ≤ 20 in all experiments on computational com-

plexity in order to study the trends in the dependance of

kernel computation time on kernel orders. In addition, for

more reliable results, all the running times indicated in

this subsection are the averaged values over 100 trials.

Fig. 3 provides the computation time per kernel in

milliseconds of GPCET, ZM, PZM, and OFMM. The ker-

nels of these comparison methods are computed directly

from their corresponding definition, no recursive strategy

is used. It is observed from the figure that ZM, PZM,

and OFMM have kernel computation time that increases

almost linearly with the increase in K, meaning that a

longer time is needed to compute kernels of a higher order.

This is because of the evaluation of factorials of larger

integers and the computation of more additive terms in

Table 1: The constraints on the moment orders (n,m).

Moment Order range

ZM |m| ≤ n ≤ K, n− |m| = even

PZM |m| ≤ n ≤ K

OFMM 0 ≤ |m|, n ≤ K

GPCET |m|, |n| ≤ K

the final summation. Among these methods, OFMM has

the highest complexity while ZM has the lowest. This

relative complexity ranking of these methods is consistent

with the ranking in the number of multiplications required

to compute their radial kernels.

In contrast with Jacobi polynomial-based methods

(ZM, PZM, and OFMM), GPCET requires almost a con-

stant time to compute its kernels of different orders. This

is due to the fact that a change in the kernel orders corre-

sponds only to a change in the input to the complex ex-

ponential function and, as a result, this order change has

almost no effect on the kernel computation time. From

these observations, it can be concluded that the simple and

resembling definition of harmonic function-based kernels

has resulted in a fixed kernel computation time, regardless

of the kernel orders. This makes a strong contrast with

Jacobi polynomial-based methods where a higher order

means a longer kernel computation time.

The proposed recursive strategies for fast computation

of GPCET kernels are also evaluated and compared with

those for fast computation of ZM kernels. The reason

for comparison only to ZM is twofold: the lack of bench-

marks on fast computational strategies for other methods

and the popularity of recursive strategies for ZM kernels

in the literature. In this comparison, ZM kernels are

computed using the current state-of-the-art q-recursive

strategy [5]. The comparison results are given in Fig. 4

where the legends recursiveFour and recursiveOne de-

note recursive computation of GPCET kernels using the

computational flows in Figs. 2a and 2b respectively. It is

observed that ZM kernel computation time by q-recursive

increases in the range K < 5 and gradually decreases

when K > 5. This is because the q-recursive strategy,

which requires the pre-computation of the radial kernels

Rnn and Rnn−2 for each order n, is applicable only when

K ≥ 4 and is profitable when K ≥ 6. Moreover, with

the increase in n, more radial kernels Rnm are to be com-

puted by recursion, leading to a decrease in the proportion

of directly computed radial kernels, meaning a decrease

in the averaged computation time of radial kernels.

On the other hand, using recursiveFour and recur-

siveOne to compute GPCET kernels leads to almost a

constant computation time where recursiveOne is almost

two-time faster than recursiveFour. The only exception
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Figure 3: Direct computation.
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Figure 4: Recursive computation.

is at K = 1 where the computation time is suddenly

lower. This is because MATLAB optimizes by simply

copying the pre-computed values of eiθ into A1(θ) since

A0(θ) = 1, instead of the more complex multiplication.

Constant computation time is due to the fact that the re-

currence relations in Eqs. (2) and (3) do not depend on the

kernel orders and there is no need for the pre-computation

of GPCET radial kernels of any order as in the ZM’s q-

recursive strategy. The “pure” recursive computation of

radial and angular kernels is a distinct characteristic of

harmonic function-based methods.

Taking recursiveOne as the selected strategy for re-

cursive fast computation of GPCET kernels, recursive

computation of GPCET kernels is, on average, approxi-

mately 10-time faster than direct computation of GPCET

kernels and five-time faster than recursive computation

of ZM kernels by q-recursive. This observation leads

to a conclusion that GPCET is a promising replacement

of ZM in image analysis applications where low com-

putational complexity is an important method-selection

criteria.

4. Conclusions

This paper has presented a method for the computa-

tion of polar harmonic transforms that is fast and efficient.

Recursive computation strategies have been proposed by

exploiting the recurrence relations among harmonic func-

tions, leading to a method that is approximately 10-time

faster than direct computation. Moreover, when com-

pared with the current state-of-the-art strategy for fast

computation of ZM kernels, the proposed method is also

approximately five-time faster. Future work will investi-

gate the combination of the proposed recursive strategies

with the strategy based on geometrical symmetry [8] to

multiply the computational gain obtained individually by

each strategy.
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