
HAL Id: hal-00735828
https://hal.inria.fr/hal-00735828

Submitted on 26 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Position Discovery for a System of Bouncing Robots
Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, Evangelos Kranakis,

Oscar Morales Ponce, Eduardo Pacheco

To cite this version:
Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, Evangelos Kranakis, Oscar Morales Ponce, et
al.. Position Discovery for a System of Bouncing Robots. DISC - 26th International Symposium on
Distributed Computing, 2012, Salvador, Brazil. pp.341-355, 2012, <10.1007/978-3-642-33651-5_24>.
<hal-00735828>

https://hal.inria.fr/hal-00735828
https://hal.archives-ouvertes.fr

Position Discovery for a System of Bouncing Robots

Jurek Czyzowicz∗ Leszek Gąsieniec† Adrian Kosowski‡

Evangelos Kranakis§ Oscar Morales Ponce§ Eduardo Pacheco§

September 26, 2012

Abstract

A collection of n anonymous mobile robots is deployed on a unit-perimeter ring or
a unit-length line segment. Every robot starts moving at constant speed, and bounces
each time it meets any other robot or segment endpoint, changing its walk direction.
We study the problem of position discovery, in which the task of each robot is to
detect the presence and the initial positions of all other robots. The robots cannot
communicate or perceive information about the environment in any way other than by
bouncing. Each robot has a clock allowing it to observe the times of its bounces. The
robots have no control on their walks, which are determined by their initial positions
and the starting directions. Each robot executes the same position detection algorithm,
which receives input data in real-time about the times of the bounces, and terminates
when the robot is assured about the existence and the positions of all the robots.

Some initial configuration of robots are shown to be infeasible — no position de-
tection algorithm exists for them. We give complete characterizations of all infeasible
initial configurations for both the ring and the segment, and we design optimal posi-
tion detection algorithms for all feasible configurations. For the case of the ring, we
show that all robot configurations in which not all the robots have the same initial
direction are feasible. We give a position detection algorithm working for all feasible
configurations. The cost of our algorithm depends on the number of robots starting
their movement in each direction. If the less frequently used initial direction is given
to k ≤ n/2 robots, the time until completion of the algorithm by the last robot is
1
2dnk e. We prove that this time is optimal. By contrast to the case of the ring, for
the unit segment we show that the family of infeasible configurations is exactly the set
of so-called symmetric configurations. We give a position detection algorithm which
works for all feasible configurations on the segment in time 2, and this algorithm is
also proven to be optimal.

∗Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada.
†University of Liverpool, Liverpool L69 3BX, UK.
‡INRIA Bordeaux Sud-Ouest, LaBRI, 33400 Talence, France.
§Carleton University, Ottawa, Ontario K1S 5B6, Canada.

1

1 Introduction

A mobile robot is an autonomous entity with the capabilities of sensing, i.e. ability to
perceive some parameters of the environment, communication - ability to receive/transmit
information to other robots, mobility - ability to move within the environment, and com-
putation - ability to process the obtained data. Mobile robots usually act in a distributed
way, i.e. a collection of mobile robots is deployed across the territory and they collabo-
rate in order to achieve a common goal by moving, collecting and exchanging the data of
the environment. The typical applications are mobile software agents (e.g. moving around
and updating information about a dynamically changing network) or physical mobile robots
(devices, robots or nano-robots, humans).

In many distributed applications, mobile robots operate in large collections of massively
produced, cheap, tiny, primitive entities with very restricted communication, sensing and
computational capabilities, mainly due to the limited production cost, size and battery
power. Such groups of mobile robots, called swarms, often perform exploration or monitor-
ing tasks in hazardous or hard to access environments. The usual swarm robot attributes
assumed for distributed models include anonymity, negligible dimensions, no explicit co-
mmunication, no common coordinate system (cf. [14]). Moreover, some of these models may
assume obliviousness, limited visibility of the surrounding environment and asynchronous
operation. In most situations involving such weak robots the fundamental research question
concerns the feasibility of solving the given task (cf. [7, 11, 14]). When the question of
efficiency is addressed, the cost of the algorithm is most often measured in terms of length of
the robot’s walk or the time needed to complete the task. This is also the case of the present
paper, despite the fact that the robot does not have any control on its walk. In our case,
the goal is to stop the robot’s walk, imposed by the adversary, at the earliest opportunity -
when the collected information (or its absence) is sufficient to produce the required solution.

Although the most frequently studied question for mobile robots is environment explo-
ration, numerous papers related to such weak robots often study more basic tasks, such as
pattern formation ([11, 13, 14, 15]). Gathering or point convergence ([5, 10]) and spreading
(e.g. see [4]) also fall into this category. [14] introduced anonymous, oblivious, asynchronous,
mobile robots which act in a so-called look-compute-move cycle. An important robot sensing
capacity associated with this model permits to perceive the entire ([11, 13, 14]) or partial
([1, 10]) environment.

Contrary to the above model, in our paper, the robot has absolutely no control on
its movement, which is determined by the bumps against its neighbors or the boundary
points of the environment. In [2, 3] the authors introduced population protocols, modeling
wireless sensor networks by extremely limited finite-state computational devices. The agents
of population protocols also move according to some mobility pattern totally out of their
control and they interact randomly in pairs. This is called passive mobility, intended to
model, e.g., some unstable environment, like a flow of water, chemical solution, human
blood, wind or unpredictable mobility of agents’ carriers (e.g. vehicles or flocks of birds).
In the recent work [12], a coordination mechanism based on meetings with neighboring
robots on the ring was considered, also aiming at location discovery. The approach of [12] is
randomized and the robots operate in the discrete environment in synchronous rounds.

Pattern formation is sometimes considered as one of the steps of more complex distributed

2

task. Our involvement in the problem of this paper was motivated by the patrolling problem
[6], where spreading the robots evenly around the environment may result in minimizing
the idleness of patrolling, i.e., the time interval during which environment points remain
unvisited by any robot. Clearly, position discovery discussed in the present paper is helpful
in uniform spreading of the collection. A related problem was studied in [4], where the
convergence rate of uniform spreading in one-dimensional environment in synchronous and
semi-synchronous settings was discussed. Previously, [8] studied the problem of n robots
{0, 1 . . . , n − 1}, initially placed in arbitrary order on the ring. It was shown that the rule
of each robot i moving to the middle point between i− 1 and i + 1 may fail to converge to
equal spreading (it was also shown in [8] that the system would converge if a fair scheduler
activates units sequentially).

The model adopted in our paper assumes robot anonymity, passive mobility (similarly to
that adopted in [2, 3]), restricted local sensing through bounce perception with a neighbor
robot only, no communication between the robots, and continuous time. The only ability of
the robot is the tacit observation of the timing of bounces and the computation and reporting
of robots’ locations. The private clock of each robot turns out to be a very powerful resource
permitting to solve the problem efficiently in most cases.

2 The Model and Our Results

We consider a continuous, connected, one-dimensional universe in which the robots operate,
which is represented either by a unit-perimeter ring or by a unit-length line segment. The
ring is modeled by a real interval [0, 1] with 0 and 1 corresponding to the same point. A set
of n robots r0, r1, . . . , rn−1 is deployed in the environment and start moving at time t = 0
(where the indexing of the robots is used for purposes of analysis, only). The robots are not
aware of the original positions and directions of other robots or the total number of robots
in the collection. The robots move at constant unit speed, each robot starting its movement
in one of the two directions. Each robot knows the perimeter of the ring (or the length of the
segment) and it has a clock permitting to register the time of each of its bounces and store
it in its memory. We assume that the time and distance travelled are commensurable, so
during time t each robot travels distance t. Consequently, in the paper we compare distances
travelled to time intervals.

By ri(t) ∈ [0, 1] we denote the position of robot ri at time t. We suppose that originally
each robot ri occupies point ri(0) of the environment and that 0 ≤ r0(0) < r1(0) < . . . <
rn−1(0) < 1. Each robot is given an initial direction (clockwise or counterclockwise in the
ring and left-to-right or right-to-left on the segment) at which it starts its movement. By
diri we denote the starting direction of robot ri and we set diri = 1 if ri starts its movement
in the counterclockwise direction around the ring or the left-to-right direction along the
segment. By diri = −1 we denote the clockwise starting direction (on the ring) or right-
to-left (on the segment). We call the sequence of pairs (r0(0), dir0), . . . , (rn−1(0), dirn−1) the
initial configuration of robots.

When two robots meet, they bounce, i.e., they reverse the directions of their movements.
We call the trajectory of a robot a bouncing walk. The robots have no control on their
bouncing walks, which depend only on their initial positions and directions, imposed to

3

them by an adversary, and the bounces caused by meeting other robots. Each robot has
to report the coordinates of all robots of the collection, i.e., their initial positions and their
initial directions. The robots cannot communicate in any other way except for observing their
meeting times. Each robot is aware of the type of the environment (ring or segment). All
robots are anonymous, i.e. they have to execute the same algorithm. The only information
available to each robot is the bounce sequence, i.e. the series of time moments t1, t2, . . .,
corresponding to its bounces resulting from the meetings with other robots.

By position detection algorithm we mean a procedure executed by each robot, during
which the robot performs its bouncing walk and uses its bounce sequence as the data of the
procedure, outputting the initial positions and directions of all robots. By the cost CA(n) of
algorithm A we understand the smallest value, such that for any feasible initial configuration
of n robots in the environment, each robot executing A can report the initial configuration
while performing a bouncing walk of total distance CA(n). As in some cases the cost of the
algorithm varies, depending on the robot initial directions, we denote by CA(n, k) the cost of
A for the class of initial configurations such that 1 ≤ k ≤ n/2 robots start in one direction
and n− k start in the opposite one.

Question: Is it possible for each robot to find out, after some time of its movement, what
is the number of robots in the collection and their relative positions in the environment? If
not, what are the configurations of robots’ initial positions and directions for which a position
detection algorithm exists (i.e. it is possible to report the initial configuration after a finite
time)? What is the smallest amount of time after which a robot is assured to identify all
other robots in the collection?

Our goal is to propose an algorithm to be executed by any robot, which computes the
original positions of all other robots of the collection. We say that such an algorithm is
optimal if the time interval after which the robot is assured to have the knowledge of the
positions of all other robots is the smallest possible.

We characterize all the feasible configurations for the ring and the segment. For both cases
we give optimal position detection algorithms for all feasible configurations. Our algorithm
for the segment requires O(n) robot’s memory, while constant size memory is sufficient for
robots bouncing on the ring. [We suppose that in one memory word we may store a real
value representing the robot’s position in segment [0, 1].]

For the case of the ring, we show that all robot configurations with not all robots given
the same initial direction are feasible. We give a position detection algorithm working for
all feasible configurations. The cost of our algorithm is not constant, but it depends on the
number of robots starting their movement in each direction. When k ≤ n/2 is the number
of robots starting their walks in one direction with n − k given the opposite direction we
prove that our algorithm has cost 1

2
dn
k
e. We prove that this algorithm is optimal.

For the case of the segment we prove that no position detection algorithm exists for
symmetric initial configurations. Each symmetric configuration is a configuration of a sub-
set of robots on a subsegment, concatenated alternately with its reflected copy and itself.
We give a position detection algorithm of cost 2 working for all feasible (non-symmetric)
configurations on the segment. This algorithm is proven to be optimal.

In Section 3 we give the position detection algorithm for the ring and prove its correctness
for all feasible configurations. Section 4 analyses the cost of the position detection algorithm
for the ring and proves its optimality. The segment environment is addressed in Section 5.

4

The argument for the segment proceeds by reduction to that for the ring, but the criteria for
a feasible configuration on the segment take a different form, dependent on the symmetry of
the configuration.

3 The Algorithm on the Ring

As there is no system of coordinates on the ring common to all robots, each robot must
compute the relative positions of other robots with respect to its own starting position. We
may then infer that each robot assumes that its starting position is the point 0. We then
suppose that 0 = r0(0) < r1(0) < . . . < rn−1(0) < 1 and it is sufficient to produce the
algorithm for robot r0.

We assume in this paper that all robot indices are taken modulo n. When two robots
meet, they reverse the directions of their movements, so the circular order of the robots
around the ring never changes. When two robots ri and ri+1 meet at time t, we have
ri(t) = ri+1(t), and ri(t) was moving counterclockwise while ri+1(t) was moving clockwise
just before the meeting time t.

We denote by dist(x, y) the distance that x has to traverse in the counterclockwise di-
rection around the ring to reach the position of y (we call it the counterclockwise distance
from x to y. Note that the clockwise distance from x to y equals 1− dist(x, y).

In order to analyze the ring movement of the robots we consider an infinite line L =
(−∞,∞) and for each robot ri, 0 ≤ i ≤ n− 1 we create an infinite number of its copies r(j)i ,
all having the same initial direction, such that their initial positions are r(j)i (0) = j + ri(0)
for all integer values of j ∈ Z (see Fig. 1). We show that, when all copies of robots move
along the infinite line while bouncing at the moments of meeting, all copies r(j)i of a robot
ri bounce and reverse their movements at the same time. More precisely we prove

Lemma 1. For all t ≥ 0, 0 ≤ i ≤ n− 1 and j ∈ Z we have r(j+1)
i (t) = r

(j)
i (t) + 1.

Proof. Since the claim of the lemma holds by construction at time t = 0 and at any bounce
moment all copies of the bouncing robots r(j)b simultaneously reverse their movement, the
claim of the lemma holds by induction on the number of bounces.

We use the concept of a baton, applied recently in [12]. Suppose that each robot initially
has a virtual object (baton), that the robot carries during its movement, but at the moment
of meeting, two robots exchange their batons. By b

(j)
i we denote the baton originally held

by robot r(j)i and by b(j)i (t) we denote the position of this baton on the infinite line at time
t. We can easily show the following lemma.

Lemma 2. For all t ≥ 0, 0 ≤ i ≤ n − 1 and j ∈ Z we have b
(j)
i (t) = b

(j)
i (0) + diri · t =

b
(0)
i (0) + j + diri · t.

Proof. Since the bouncing robots exchange the batons, the batons travel at constant speed 1
in their original directions. Therefore, at time t each baton travelled the distance t so we have
b
(j)
i (t) = b

(j)
i (0) + diri · t. On the other hand, by construction we have b(j+1)

i (0) = b
(j)
i (0) + 1

and both batons b(j)i , b
(j+1)
i travel at unit speed in the same direction. Hence, we have by

induction on j, that b(0)i (t) = b
(j)
i (t) + j. The claim of the lemma follows.

5

0 1 2−1
r
(0)
0r

(−1)
1 r

(1)
2r

(1)
0 r

(2)
3r

(2)
2r

(2)
0r

(0)
1 r

(0)
2 r

(0)
3 r

(2)
1r

(−1)
0 r

(−1)
2 r

(1)
1r

(−1)
3 r

(1)
3

time

t = 2

Figure 1: Example of a bouncing movement of four robots

In Fig. 1 the trajectories of all the batons held originally by the robots going in direction
dir are the lines of slope dir. Each robot ri bounces while its trajectory intersects a trajectory
of some baton, since this baton is then held by one of the robots ri−1, ri+1. For example,
the trajectory of robot r(0)0 , is represented by a fat polyline on Fig. 1, while the trajectories
of its neighbor robots r(−1)3 and r

(0)
1 bouncing at r(0)0 are given by dashed polylines.

Lemma 3. Consider robot ra, which at the time moment t, while traveling in direction
dir, meets some other robot. Suppose that, at the time of this meeting, ra travelled the
total distance d in direction dir (hence the total distance of t − d in direction −dir). Then
there exists a robot rb, which was originally positioned at distance (2d mod 1) in direction
dir on the ring. More precisely, (2d mod 1) = dist(ra, rb) if dir = 1 and (2d mod 1) =
dist(rb, ra) = 1 − dist(ra, rb) if dir = −1. Moreover rb started its movement in direction
−dir.

Proof. Suppose that at time t robot ra traveling in direction dir meets some other robot
traveling in the opposite direction (e.g. see the intersection of the trajectory of r(0)0 with the
trajectory of the baton b

(2)
2 originally held by r(2)2). Suppose that the baton obtained by ra

at the moment of the meeting was originally held by some robot rb. Robot ra travelled the
total distance d in direction dir and the total distance t − d in direction −dir, while the
baton obtained by ra at the moment of the bounce travelled distance t in direction −dir.
Hence during time t−d robot ra and the baton stayed at the same distance and during time
d they were both traveling approaching each other (i.e. jointly covering total distance 2d
while approaching). Therefore, at time t = 0 the distance between robots ra and rb was 2d.
Since rb may be a copy of a robot and all copies of the same robot are at integer distance the
distance of ra to rb on the ring is 2d mod 1. The initial direction of rb equals the direction
of its original baton, i.e. −dir.

6

Algorithm RingBounce (dir : {−1, 1});
1. var left← 0, right← 0 : real;
2. reset clock to 0;
3. while true do
4. do walk in direction dir until
5. ((clock − left ≥ 1/2) and (clock − right ≥ 1/2)) or a
meeting occurs;
6. if (clock − left ≥ 1/2) and (clock − right ≥ 1/2) then
EXIT;
7. if dir = 1 then
8. right← clock − left;
9. if (0 < right < 1/2) then
10. OUTPUT robot at original position 2 · right and
direction −dir;
11. else
12. left← clock − right;
13. if (0 < left < 1/2) then
14. OUTPUT robot at original position 1− 2 · left and
direction dir;
15. dir ← −dir;

Remark 1. The value (2d mod 1) may sometimes be equal to zero which corresponds to ra
meeting the robot currently holding the original baton of ra (e.g. the sixth bounce of r(0)0 on
Fig. 1). On the other hand, some meetings of robots may correspond to the same computed
value of (2d mod 1) (e.g. all odd-numbered bounces of r(0)0 on Fig. 1), so some bounces do
not have a new informative value about other robot positions.

The algorithm RingBounce executed by a robot, which reports initial positions and di-
rections of all other robots on the ring, uses Lemma 3. Each bounce results in the output of
information concerning one robot of the ring. In this way, a robot running such an algorithm
needs only a constant-size memory. An additional test is made in line 10 to avoid outputting
the same robot position more than once.

The robot’s memory consists of two real variables right and left in which the robot
will store the total distance travelled, respectively, in the counterclockwise and clockwise
direction. The robot also accesses its system variable clock which automatically increases
proportionally to the time spent while traveling (i.e. to the distance travelled).

Theorem 1. Suppose that among all robots bouncing on the ring there is at least one robot
having initial clockwise direction and at least one robot with the initial counterclockwise di-
rection. The algorithm RingBounce, executed by any robot of the collection, correctly reports
the initial positions and directions of all robots on the ring with respect to its initial position.

Proof. Suppose w.l.o.g., that the robot executing RingBounce is robot r0. Since there exists
at least one other robot starting in the direction different from dir0, robot r0 will alternately

7

travel in both directions, indefinitely bouncing against its neighbors r1 and rn−1 on the
ring. We show by induction, that at the start of each iteration of the while loop from
line 3, the variable left (resp. right) equals to the total distance travelled by r0 clockwise
(resp. counterclockwise). Suppose, by symmetry, that r0 walks counterclockwise in the i-
th iteration and the inductive hypothesis is true at the start of this iteration. Since, by
inductive hypothesis, variable left keeps the correct value through i-th iteration, variable
right is correctly modified at line 8, as clock value equals the total distance travelled in both
directions. Consequently, the inductive claim is true in the (i+ 1)-th iteration.

We prove now that positions and directions of all robots are correctly reported before
the algorithm ends. Take any robot ri, 1 ≤ i ≤ n − 1. We consider first the case when
the initial direction of ri was clockwise. The trajectory of its original baton b

(0)
i is then a

line of slope 1 (cf. Fig. 1). Observe that robot r0 stays at the same distance from baton bi
when walking in the clockwise direction and approaches it (reducing their counterclockwise
distance dist(r0, bi)) when walking counterclockwise. Since dist(r0, bi) ≤ 1, and r0 and bi
walk towards each other, they approach at speed 2 during the counterclockwise movement
of r0. Consequently, the trajectories of r0 and bi intersect and r0 eventually meets robot
r1 carrying baton bi. Indeed, in line 4 of algorithm RingBounce, robot r0 continues its
movement as long as its total distance travelled in the counterclockwise direction is less than
1/2, which leads to the meeting of r0 and r1 (carrying baton bi), before both robots finish
their executions of the algorithm. Consequently, at the moment of their meeting, r0 outputs
at line 10 the initial distance between r

(0)
0 and r

(0)
i on line L, which equals twice the time

spent while the robots were approaching each other. As r0 may obtain a copy of the same
baton more than once (cf. r0 intersecting several trajectories of batons b(j)2 on Fig. 1), the
condition (0 < right < 1/2) at line 9 permits to report the position of each other robot once
only. Indeed, only r(0)i - the copy of ri at the closest counterclockwise distance to r0 verifies
this condition.

Consider now the case when robot ri, 1 ≤ i ≤ n − 1, starts its walk on the ring in the
counterclockwise direction. Then r0 obtains baton bi while walking clockwise, i.e. at the
moment of some bounce at rn−1, while rn−1 holds baton bi. In this case, robot r0 stays at
the same distance from baton bi when walking in counterclockwise direction and approaches
it (reducing their distance of dist(bi, r0) = 1 − dist(r0, bi)) when walking clockwise. At the
moment when r0 meets rn−1 holding baton bi (whose trajectory originates from segment
[−1, 0] of L) the value of variable left equals half the clockwise distance from r0(0) to ri(0).
Indeed, at the moment of the meeting, half of this distance was covered by r0 walking
clockwise (the value of left) and the other half was covered by the counterclockwise move
of baton bi. Consequently the clockwise distance from the initial position of r0 to the initial
position of ri equals 1− 2 · left, correctly output at line 14.

Observe that, once the original positions and directions of all robots are reported, it
is easy to monitor all further movements of all robots of the collection, i.e. their relative
positions at any moment of time. However, this would require a linear memory of the robot
performing such task.

8

4 The Execution Time of Bouncing on the Ring

As stated in the introduction, we look for the algorithm of the optimal cost, i.e. the smallest
possible total distance travelled, needed to correctly report any initial configuration. We
show that the algorithm RingBounce is the optimal one, i.e. that the time moment, at
which the robot can be sure that the positions of all other robots have been reported, is the
time when the robot stops executing RingBounce. Observe that algorithm RingBounce has
cost at least 1, i.e. a robot executing it must travel at least distance 1. Indeed, the loop
from lines 4-5 continues unless robot’s walk distance in each direction totals at least half the
size of the ring. On the other hand, the example from Fig. 1 shows, that if the number of
robots starting their walks in one direction is different from the number of robots starting
walking in the opposite direction, the total cost of RingBounce may be higher. We have

Theorem 2. Consider a collection of n robots on the ring, such that k of them, 1 ≤ k ≤ n/2,
have one initial direction and the remaining n−k robots have the other initial direction. Then
the cost of RingBounce is CRB(n, k) ≤ 1

2
dn
k
e.

Proof. By Lemma 1, we can translate the collection of robots and start their enumeration
so that any of them is at the point 0 of line L and, w.l.o.g., it is sufficient to consider the
total walk length of r0. By symmetry we assume that r0 starts walking counterclockwise on
the ring.

Consider first the case when n − k robots from the claim of the theorem start walking
counterclockwise and k robots start walking clockwise on the ring, with k ≤ n − k. Note
that r0 alternately changes its direction of walk and, according to lines 4-5 of algorithm
RingBounce, it has to travel a distance of at least 1/2 in each direction. At the conclusion of
each segment of the clockwise walk around the ring (i.e. left walk along line L), r0 bounces
against rn−1, collecting one of the n − k batons traveling counterclockwise. Denote by t2i,
for i = 1, . . . , n − k the sequence of the consecutive time moments of all bounces of r0
against robot rn−1 (recall that time equals the total distance travelled up to that moment).
Suppose that r0 starts executing algorithm RingBounce at time t0 = 0 and denote by t2i+1,
for i = 0, . . . , n − k − 1 the sequence of the consecutive time moments of all bounces of r0
against robot r1. At time t2(n−k), r0 gets originally held baton b0 and the total length of its
clockwise travel becomes exactly 1/2 (i.e. the value of variable left becomes 1/2). Since
t1 < t2 < . . . < t2(n−k), before time t2(n−k) r0 bounced also n− k times against r1, each time
getting a baton, which is traveling clockwise. If k = n/2, there are k = n− k lines of slope 1
originating from segment [0, 1) of L, which are trajectories of k batons traveling clockwise.
Therefore, the loop from lines 4-5 of algorithm RingBounce continues until variable right
equals 1/2 and algorithm finishes through the exit condition at line 6. In this case the total
walk time equals to left+ right = 1 and 1

2
dn
k
e = 1 so the claim of the theorem holds.

In the case k < n/2 there are only k batons traveling clockwise (k < n − k), so some
of them are received more than once by r0 during the bounces at times t1, t3, t2(n−k)−1.
Therefore, only k copies of batons traveling clockwise originate from each integer segment
[i, i+1) on line L. Consequently, r0 obtains batons whose trajectories originate from segments
other than [0, 1) and its total traveling distance in the counterclockwise direction exceeds
1/2. More precisely, the (n−k)-th consecutive copy of a baton traveling clockwise, obtained
at time t2(n−k)−1 must originate from the segment [i∗−1, i∗], where i∗ = dn−k

k
e. The distance

9

from r0(0)- the initial position of r0 and the starting position of baton met at time t2(n−k)−1
does not exceed the value of dn−k

k
e. Since robot r0 has to travel counterclockwise at most

half of this distance (the other half being covered by the moving baton), the total time spend
by r0 in both directions does not exceed

1/2 +
1

2

⌈
n− k
k

⌉
=

1

2

⌈n
k

⌉
Consider now the second case in which n− k robots from the claim of the theorem start

walking clockwise and k robots start walking counterclockwise on the ring, with k < n− k.
As in the previous case we can denote by t1 < t2 < . . . < t2(n−k)−1 the consecutive bounce
times, where ti for odd values of i denote the times of the bounces of r0 against r1 and those
for even values of i denote the times of the bounces against rn−1. By symmetry to the first
case, the bounce at time t2(n−k)−1, when r0 moves counterclockwise, arises when the variable
right does not exceed the value of 1/2 (i.e. the total distance travelled counterclockwise
by r0) and the value of left is already greater than 1/2. At this time moment, robot r0
goes clockwise and after the last bounce at time t2(n−k) continues counterclockwise and exits
algorithm RingBounce where variable right becomes equal to 1/2. Indeed, since only n− k
batons travel clockwise, the next bounce of robot r0 would imply getting a baton whose
trajectory originates at segment [1, 2] of line L, but this would make variable right exceed
first the value of 1/2 and cause the exit in line 6 of RingBounce.

Similarly to the previous case, as k < n−k, at some of the bounces at times t2, t4, . . . , t2(n−k),
robot r0 obtains the same batons. More precisely, during the bounce at time t2(n−k) r0 ob-
tains the baton whose trajectory originates at segment [−dn−k

k
e,−dn−k

k
e+1] of line L. Hence

the total clockwise distance travelled by r0 does not exceed 1
2
dn−k

k
e and the distance travelled

in both directions does not exceed 1/2+ 1
2
dn−k

k
e = 1

2
dn
k
e proving the claim of the theorem.

From Theorem 2 we immediately have the following Corollary, which bounds the worst-
case walking time for a robot.

Corollary 1. Assuming that the collection of n robots admits robots starting their movements
in both directions around the ring, Then the cost of RingBounce is CRB(n) ≤ n−1

2
.

The algorithm RingBounce continues until the total lengths of walks in both directions
reach the values of at least 1/2, since this guarantees that the presence of each robot is
eventually detected. The following theorem proves that the cost of RingBounce algorithm is
optimal even if the (a priori) knowledge of the number of robots is assumed.

Theorem 3. Suppose that there is a collection of n robots on the ring, such that k of them,
1 ≤ k < n/2, have one initial direction and the remaining n− k robots have the other initial
direction. Then for every ε > 0 there exists a distribution of such robots on the ring with
their initial positions 0 ≤ r0 < r1 < . . . < rn−1 < 1, so that a position detection algorithm
terminating at time 1

2
dn
k
e− ε cannot determine the initial positions of all robots on the ring,

even if the values of n and k are known in advance.

Proof. Consider the following collection of n robots r0, r1, . . . , rk−1, rk, . . . , rn−1 on the ring,
where each ri has a counterclockwise starting direction for 0 ≤ i < k and the clockwise

10

starting direction for k ≤ i ≤ n− 1, with the initial positions of the robots

r0 = 0, r1 =
ε

2k−1
, r2 =

ε

2k−2
, . . . , rk−1 =

ε

2
,

rk = 1− ε

2
, . . . , rn−1 = 1− ε

2n−k

Suppose, by contradiction, that a position detection algorithm executed by robot r0 can
determine the positions of all other robots with the total walking distance of r0 at most
1
2
dn
k
e − ε. Robot r0, in order to determine positions of all other robots, has to obtain each

baton b1, . . . , bn−1. Robot r0 gets the clockwise-traveling batons bk, bk+1, . . . , bn−1 in this
order at the moments of its bounces against r1. On the other hand, the remaining batons
are obtained by r0 in order bk−1, bk−2, . . . , b1 at the moments of its bounces against rn−1.
However, since k < n, at least some of the batons bk−1, bk−2, . . . , b1 are obtained repeatedly
(in the same cyclic order) because the left and right bounces are alternated. More precisely,
baton bk−1 is obtained d(n− k)/ke times by b0, hence this sequence of batons is

←−
bk ,
−−→
bk−1,

←−−
bk+1,

−−→
bk−2, . . . ,

←−−
b2k−1,

−→
b0 ,
←−
b2k,
−−→
bk−1,

←−−
b2k+1,

−−→
bk−2, . . . ,

←−−
b3k−1,

−→
b0 , . . . ,

←−−
bn−1,

−→
bf

where f = k(dn/ke+ 1)− (n+ 1) and
←−
bi denotes baton bi traveling clockwise and

−→
bj denotes

baton bj traveling counterclockwise. The copies of the last two batons of this sequence are
the most distant from r0 on line L. The trajectory of baton

←−−
bn−1 origins in segment [0, 1)

of line L and dist(r00(0), b
0
n−1(0)) = 1 − ε

2n−k . On the other hand, the trajectory of baton
−−−−−−−−−−→
bk(dn/ke+1)−(n+1) obtained by b0 starts in the segment [−d(n− k)/ke,−d(n− k)/ke + 1] and
its original distance to b0 is

dist(b
(−d(n−k)/ke)
f (0), b

(0)
0 (0)) > d(n− k)/ke − ε

2

As in order to meet each of these batons, r0 has to travel half of its original distance to each
of them (the other half is covered by the corresponding baton itself) the total travel time by
r0 is bound by

1

2
(1− ε

2n−k
) +

1

2
(d(n− k)/ke − ε

2
) >

1

2
(1 + d(n− k)/ke − ε) > 1

2
(dn/ke)− ε

which contradicts the assumed claim and proves the theorem.

Clearly each configuration of robots with the same initial direction of all robots is in-
feasible, because no robot ever bounces. Consequently from Theorem 2 and Theorem 3
follows

Corollary 2. The family of infeasible initial configurations of robots on the ring contains
all configurations with the same initial direction of all robots. RingBounce is the optimal
position detection algorithm for all feasible initial configurations of robots on the ring. This
algorithm assumes constant-size memory of the robot running it.

Clearly, we can easily adapt algorithm RingBounce, so for infeasible initial configuration
the algorithm stops and reports the infeasibility. It is sufficient to test whether the very first
walk of the robot ends with a bounce before the robot traverses the distance of 1/2.

11

5 Bouncing on the Line Segment

In this section we show how the algorithm for bouncing robots may be used for the case of
a segment. We suppose that each robot walks along the unit segment changing its direction
when bouncing from another robot or from an endpoint of the segment. Robots have the
same capabilities as in the case of the ring and they cannot distinguish between bouncing
from another robot and bouncing from a segment endpoint.

We consider the segment [0, 1) containing n robots, initially deployed at positions 0 ≤
r0(0) < r1(0), . . . , rn−1(0) < 1. Each robot ri, 0 ≤ i ≤ n − 1 is given an initial direction
diri, such that diri = 1 denotes the left to right initial movement and diri = −1 denotes
initial movement from right to left on segment [0, 1). The robots start moving with unit
speed at the same time moment t = 0 at the predefined directions and they change direction
upon meeting another robot or bumping at the segment endpoint. The main difficulty of the
segment case is that the robot r executing the position detection algorithm for the ring has
to report the relative locations of other robots, i.e. their distances to its own initial position
r(0), while in the segment case the absolute distance from r(0) to the segment endpoint has
to be found.

We show in this section that the bouncing problem is feasible for all initial robot config-
urations except a small set of symmetric ones. Intuitively, an initial configuration of robots
is symmetric if the unit segment may be partitioned into k subsegments S0, S1, . . . , Sk−1,
such that the positions and directions of robots in each subsegment form a reflected copy of
positions and directions of robots in a neighboring subsegment (see Fig. 2). More formally
we have the following

Definition 1. A configuration C = ((r0(0), dir0), . . . , (rn−1(0), dirn−1)) is symmetric if there
exists a positive integer k < n, such that n mod k = 0 and the partition of segment S = [0, 1)
into subsegments S0 = [0, 1

k
), S1 = [1

k
, 2
k
), . . . , S1 = [k−1

k
, 1) with the following property. For

each robot ri, 0 ≤ i < n, if ri(0) = p
n
+ x, for 0 ≤ x < 1

k
, (i.e. ri(0) ∈ Sp), 0 ≤ p < n,

then, if p > 0, there exists a robot ri′, such that ri′(0) =
p
n
− x and diri′ = 1 − diri and, if

p < n− 1, there exists a robot ri′′, such that ri′′(0) =
p+2
n
− x and diri′′ = 1− diri.

Theorem 4. Every symmetric initial configuration of robots is infeasible.

Proof. Let C1 = ((r0(0), dir0), . . . , (rn−1(0), dirn−1)) be a symmetric configuration and k the
number of consecutive subsegments, each one being the reflected copy of its neighbor. Con-
struct now configuration C2 = ((r′0(0), dir

′
0), . . . , (r

′
n−1(0), dir

′
n−1)) of n robots considering

also a sequence of n equal size intervals and swapping the roles of odd-numbered and even-
numbered robots of C1. More precisely for each robot ri, such that ri(0) ∈ Sp = [p

n
, p+1

n
)

there exists a robot r′j such that r′j(0) =
2p+1
n
− ri(0) and dir′j = 1− diri. Observe that, no

robot ever crosses the boundary of any subsegment Sp, i.e. ri(0) ∈ Sp implies ri(t) ∈ Sp,
for any t ≥ 0. Indeed, by construction, for any robot reaching and endpoint of Sp, dif-
ferent from points 0 and 1, at the same time moment there is another robot approaching
this endpoint from the other side within the reflected copy of Sp provoking a bounce (cf.
Fig. 3). Therefore, within each even-numbered subsegment S2n of a symmetric configura-
tion the relative positions of robots and their directions are the same (similarly within each

12

S0 S1 S2

10
r0 r1 r2 r3 r8 r9 r10 r11r4 r6r5 r71

3
2
3

Figure 2: Example of a symmetric initial configuration of n = 12 robots containing k = 3
subsegments

odd-numbered subsegment). Consequently, no robot can distinguish whether it is, say, in
an even-numbered segment of C1 or in an odd-numbered segment of C2 so its position in
segment [0, 1) is unknown.

We show now how the position detection algorithm for the ring may be used in the case
of the segment.

Let S be a unit segment containing n robots at initial positions r0(0) < r1(0) < . . . <
rn−1(0) and the initial directions dir0, . . . , dirn−1. Suppose that a segment SR ⊂ [1, 2] is
the reflected copy of S containing n robots rRn , . . . , r

R
2n−1 at the initial positions rRn (0) =

2 − rn(0) < rRn−1(0) = 2 − rn−1(0) < . . . < rR0 (0) = 2 − r0(0). The initial directions of each
robot rRi is 1 − diri for 0 ≤ i < n. Let R2 be the ring of perimeter 2 composed of segment
S concatenated with segment SR, with points 0 and 2 identified.

Consider the walk of robots ri, for 0 ≤ i < n, within segment S and ring R2. Let t0 = 0
and 0 ≤ t1 < t2 . . . be the sequence of time moments during which some bounces occur. Each
such bounce takes place either between some pair of robots or when some robot bounces from
an endpoint of S. It is easy to see by induction on i that at any time moment t ∈ [ti, ti+1]
each robot rj has the same positions in S and R2 as well as the same direction of movement
and that the SR part of R2 is a reflected copy of S. Indeed, by construction, this condition
is true for the interval [t0, t1]. If robots rj, rj+1 bounce against each other in S at time ti,
at the same time robots rj, rj+1 bounce in R2, as well as, by symmetry rRj bounces against
rRj+1. If in time ti robot r0 (or rn−1) bounce from an endpoint of S, by inductive hypothesis
r0 bounces against rR0 at point 0 ∈ R2 (or rn−1 bounces against rRn−1 at point 1 ∈ R2). In
each case, the inductive condition holds. We just showed

Lemma 4. The bounce sequence of any robot ri on segment S is the same as the bounce
sequence of ri on ring R2.

13

0
1

r0 rR2 rR0r1 r2 r3 rR1rR3rR4r4

2

t = 2

Figure 3: Five robots on a segment [0, 1) and their reflected copy

To prove that only symmetric configuration of robots on the segment are infeasible we
need the following lemma.

Lemma 5. Suppose that the initial configuration of robots C = ((r0(0), dir0), . . . , (rn−1(0),
dirn−1)) on a unit segment is not symmetric. Then no internal robot ri, for 1 ≤ i ≤ n− 2,
may have all its left bounces or all right bounces at the same point of the unit segment.

Proof. Suppose, by contradiction that there exists an internal robot having all its left bounces
at the same point (the proof in the case of all right bounces falling at the same point is
similar, by symmetry). Let i be the smallest index 1 ≤ i ≤ n − 2 of a robot with this
property and point x, 0 < x < 1, be the point of all left bounces of ri. We show first that
the initial configuration of robots belonging to segment [0, x] is the reflected copy of the
initial configuration of robots belonging to segment [x, 2x] Then robot ri−1 has all its right
bounces also at point x. Consequently, at each moment of time after the first such bounce,
the position and the direction of robot ri−1 is a symmetric (reflected) copy of robot ri with
respect to point x. Then, if i ≥ 2, the trajectory of ri−2 is a reflected copy of the trajectory
of ri+1. By induction on i, for any q ≥ 0 the trajectory of rq is the reflected copy of the
trajectory of r2i−q−1 and finally the trajectory of r0 is the reflected copy of the trajectory
of r2i−1. Therefore, all right bounces of robot r2i−1 are at point 2x of the unit segment, so
initial configuration of robots belonging to segment [0, x] is the reflected copy of the initial
configuration of robots belonging to segment [x, 2x], as needed.

By induction on j we prove that each subsegment [(j − 1)x, jx] is a reflected copy of
subsegment [jx, (j + 1)x]. By minimality of x, no such subsegment contains a point which

14

is never crossed by any robot, hence, for some value of j, we have jx = 1, concluding the
proof.

We can show now, that the set of configurations on the unit segment for which no
position detection algorithm exists is exactly the set of symmetric configurations. For all
other configurations we propose an optimal position detection algorithm. We suppose that
the robot assumes that its initial direction on the segment is positive. Otherwise, the robot
needs to be chirality aware, i.e. capable of identifying the positive direction of the segment.

Theorem 5. For any collection of n robots not in a symmetric initial configuration on the
unit segment there exist a position detection algorithm A with cost CA(n) = 2. For any ε > 0
there exist collections of robots, such that some of them cannot terminate the execution of
any position detection algorithm before time 2− ε.

Proof. To construct algorithm A adapt algorithm RingBounce in the following way. The
constant of 1/2 used in lines 5, 6, 9 and 13 is changed to 1. Moreover, the values of original
positions output in lines 10 and 14 are multiplied by a factor of 2 and put in the list C
instead of being directly output. By Lemma 4 the algorithm finds the positions of 2n robots
of ring R2 constructed from segment S. Note that, as ring R2 has size 2, we needed to scale
up the time and distance constants of the algorithm by the factor of 2.

Since the robots of S are not in a symmetric initial configuration, by Lemma 5, only
the endpoints of S are the points which are never crossed by any robot in S. Consequently
there are only two points in R2, which are never crossed by any robot. This unique pair
of (antipodal) points split ring R2 into two segments, segment S, and it reflected copy SR.
Since the positions of all robots are stored in list C, it is possible to perform in algorithm
A the generation of the bounce sequence of each robot of C, in order to find which two
robots bounce in one direction against the same positions of the ring. This way, the first and
the last robot on the unit segment as well as its left and right endpoints may be identified,
which permits to determine the rank and the absolute initial position of the robot running
the algorithm, as well as those of all other robots.

In order to analyze the cost of such algorithm, observe that, since exactly half of 2n
robots in R2 have the same initial direction, by Theorem 2, robot ri terminates its walk at
time 1

2
d2n
n
e · c = 2, where c = 2 is the scaling factor.

We prove now the second part of the claim of the theorem. For any ε > 0 we construct
two different configurations of robots C1, C2 on the unit segment, such that for some robots
from C1 and C2 the bounce sequence until time 2− ε is the same. Consequently, the robot
observing such bounce sequence cannot unambiguously report positions of other robots.

Let C1 be the configuration of two robots r0, r1, such that dir0 = dir1 = 1 and r0(0) =
ε
5
, r1(0) =

2ε
5

. We find below the first two values t1, t2 of the bounce sequence of robot r0.
Robot r1 reaches point 1 of the segment and bounces at time t∗ = 1− 2ε

5
, while robot r0 is

at point 1− ε
5

of the segment. Since at time t∗ the robots start to approach, they meet after
additional time ε

10
, so t1 = 1 − 2ε

5
+ ε

10
= 1 − 3ε

10
and r0(t1) = 1 − ε

5
+ ε

10
= 1 − ε

10
. At time

t1 robot r0 starts moving left on the segment until it bounces at its endpoint 0. This takes
time 1− ε

10
, so t2 = t1 + 1− ε

10
= 2− 2ε

5
> 2− ε.

Consider now configuration C2, containing two robots r0, r1, such that dir0 = dir1 = 1
and r0(0) = ε

10
, r1(0) = ε

2
. The similar analysis reveals that t∗ = 1 − ε

2
, r1(t∗) = 1, and

15

r0(t
∗) = 1− 2ε

5
. At time t∗, r0 and r1 start approaching and meet at time t1 = t∗+ ε

5
= 1− 3ε

10
,

while r0(t1) = 1− ε
5
. After the bounce at time t1, r0 walks left until it bounces at endpoint

0 at time t2 = t1 + 1− ε
5
= 2− ε

2
> 2− ε.

Since for both configurations C1, C2 we have t1 = 1 − 3ε
10

and t2 > 2 − ε, hence robot r0
cannot unambiguously output the initial robots’ positions before time 2− ε.

As the algorithm for the segment, presented in the proof of Theorem 5 assumes storing
in robot’s memory the positions of all robots, from Theorems 4 and 5 follows

Corollary 3. The family of infeasible initial configurations of robots on the segment contains
all symmetric initial configurations of robots. There exists an optimal position detection
algorithm for all feasible initial configurations of robots on the segment. This algorithm
assumes O(n)-size memory of the robot executing it.

6 Conclusion

The algorithms of the paper may be extended to the case when only one robot r0 starts
moving initially (while all other robot movements are triggered by bounces) and r0 must
report other robots’ initial positions. Indeed, observe that all robots must be moving at no
later than time 1 for the ring and at no later than time 2 for the segment. Robot r0 may
then compute the trajectories of all other robots as if they started moving simultaneously
and then successively compute the sequence of motion triggering bounces of all robots.

One open problem is to determine whether there exists an optimal position detection
algorithm for the segment using a constant size memory. Another open problem is whether
the bouncing problem may be solved for the case of robots having different initial speeds.
If we assume the momentum conservation principle, so that the bouncing robots exchange
their speeds, the baton trajectories still remain semi-lines of constant slopes. Therefore, if
each robot is always aware of its current speed, perhaps it might be possible, that, after a
finite time, it learns the starting positions and initial speeds of all other robots.

The location discovery performed by the collection of robots, presented in this paper,
may be used for the equally-spaced self-deployment of the robots around the environment
(e.g. to perform optimal patrolling) or for some other pattern formation task. However,
such a task would require an additional robot capacity besides passive mobility the way it is
assumed in this paper. Once the positions of the entire collection is known, the robots need
to synchronize their movements, e.g. by adding waiting periods.

Acknowledgements

Research of J. Czyzowicz and E. Kranakis supported in part by NSERC grants, L. Gąsieniec
was sponsored by the Royal Society Grant IJP - 2010/R2 , O. Morales by MITACS grant
and E. Pacheco by CONACyT and NSERC grant.

16

References

[1] H. Ando, Y. Oasa, I. Suzuki, M. Yamashita. Distributed memoryless point convergence
algorithm for mobile robots with limited visibility, IEEE Transactions on Robotics and
Automation 15(5) (1999), pp 818–828.

[2] D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, R. Peralta. Computation in networks
of passively mobile finite-state sensors, Distributed Computing (2006), pp. 235-253.

[3] D. Angluin, J. Aspnes, D. Eisenstat. Stably computable predicates are semilinear, Proc.
of PODC, (2006), pp. 292-299.

[4] R. Cohen, D. Peleg. Local spreading algorithms for autonomous robot systems, Theo-
retical Computer Science 399(1-2), (2008), pp. 71-82.

[5] R. Cohen, D. Peleg. Convergence Properties of the Gravitational Algorithm in Asyn-
chronous Robot Systems, SIAM Journal on Computing 34(6), (2005), pp. 1516-1528.

[6] J. Czyzowicz, L. Gąsieniec, A. Kosowski, E. Kranakis. Boundary Patrolling by Mobile
Agents with Distinct Maximal Speeds, Proc. of ESA (2011), pp. 701-712.

[7] S. Das, P. Flocchini, N. Santoro, M. Yamashita. On the Computational Power of Obliv-
ious Robots: Forming a Series of Geometric Patterns, Proc. of PODC, (2010), pp.
267-276.

[8] E.W. Dijkstra. Selected Writings on Computing: Personal Perspective, Springer, New
York, (1982), pp. 34-35.

[9] A. Efrima, D. Peleg. Distributed algorithms for partitioning a swarm of autonomous
mobile robots, Theoretical Computer Science 410, (2009), pp. 1355-1368.

[10] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer. Gathering of asynchronous oblivi-
ous robots with limited visibility, Theor. Comput. Sci. 337(1-3), (2005), pp. 147-168.

[11] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer. Arbitrary pattern formation by
asynchronous, anonymous, oblivious robots, Theor. Comput. Sci. 407(1-3), (2008), pp.
412-447.

[12] T. Friedetzky, L. Gasieniec, T. Gorry, R. Martin. Observe and remain silent
(Communication-less agent location discovery), to appear in Proc. of MFCS 2012

[13] K. Sugihara, I. Suzuki. Distributed algorithms for formation of geometric patterns with
many mobile robots, Journal of Robotic Systems 13(3), (1996), pp. 127-139.

[14] I. Suzuki, M. Yamashita. Distributed Anonymous Mobile Robots: Formation of Geo-
metric Patterns, SIAM J. Comput., vol. 28(4), (1999), pp. 1347-1363.

[15] M. Yamashita, I. Suzuki. Characterizing geometric patterns formable by oblivious
anonymous mobile robots, Th. Comp. Science, 411(26-28), (2010), pp. 2433-2453.

17

