G2p2° :BM:; *0GiQJ M :2 0 B #BHBiv BM a
S'Q+2bb GBM2b

1KK MmM2HH2 QmBHHGO- "2MQBi *QK#2K H2- PHBpB
C2 M@J "+ Cax0[m2H

hQ +Bi2 i?Bb p2 ' bBQM,

1KK MM2HH2 QmBHHO- "2MQBi *QK#2K H2- PHBpB2 " > Bb- . pB/ hQI
'BM; *0oGiQJ M ;20 'B #BHBiv BM aQ7ir "2 S°'Q+2bb GBM2bX bB @S
72°2M+2- .2+ kyRk- >QM; EQM;- *?BM X kyRkX I1? H@yydj833R=

> G A/, ? H@yydj833R
2iiTh,ff? HXBM B X7'f? H@yydj833R
am#KBii2/ QM kd a2T kyRKk

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.inria.fr/hal-00735881
https://hal.archives-ouvertes.fr

Leveraging CVL to Manage Variability
In Software Process Lines

Emmanuelle Rouillé, Benoit Combemale Olivier Baraid, David Touzet and Jean-Marc Jézéqiel
Sodifrance
P.A. la Breteche, avenue Saint-Vincent, 35768, Saint-Grégoire, France
Email: {erouille, dtouzet}@sodifrance.fr
TUniversité de Rennes 1
IRISA, Campus de Beaulieu, 35042, Rennes, France
Email: {emmanuelle.rouille, benoit.combemale, olivier.barais, jean-marc.jezequel}@irisa.fr

Abstract—Variability on project requirements often implies with other process metamodels without adapting it. This also
variability on software processes. To manage such variability, requires the development of new tools (e.g. tools for process
Software Process Lines (SPLs) can be used to represent Common'modeling execution, checking) for managing the modied

ality (i.e., common practices) and variability (i.e., differences) of S .
a set of related software processes. To this end, some Softward’r0C€SS metamodel. Other contributions do not modify the

Process Modeling Languages (SPMLs) natively integrate vari- Process metamodel but transform the process model into a
ability mechanisms. Nevertheless, such a coupling between thepivot structure that captures the variability concern. These

SPML and the variability mechanisms i) requires to interpret the contributions are also dependent of the process metamodel
requirements variability in terms of the processes variability, ii) because they require the de nition of a transformation for each

limits the reuse of the requirements variability for other purposes t del. We still mi hf ¢ i
(e.g., the development itself), and iii) is a barrier to the use process metamodel. Ve slill miss an approach tor automat-

of advances from the eld of variability management. In this Cally reusing processes according to projects requirements that
paper, we propose an approach to apply the Common Variability is independent of the process metamodel.
Language (CVL from the OMG consortium) for requirement As stated in the speci cation of the Common Variability

variability modeling and its binding to the processes. This : " oo
work is illustrated on a family of industrial Java development Language (CVL), CVL is a "domain-independent language

processes. Our approach enables the de nition of an SPL and fOr SPecifying and resolving variability”. Therefore, CVL
the automatic derivation of a process from this SPL according to Would address this limitation. Indeed, CVL is an ONIG

the requirements of a given project. The variability is managed standardization effort for the product lines de nition. It en-
separately from the process model and benets from existing gples to reference process elements de ned in every process
tools coming from process modeling community and CVL.. model whose metamodel conforms to the Meta-Object Facility
(MOF)® metametamodel and it provides operators to specify
how to derive a process.

A software development process captures the sequence ah this article we answer the following research questions:
steps to perform in order to realize a software engineeringl) Rql: how to use CVL in the context of processes?

project. Processes are a mean for capturing the know-hOV\Q) Rg2: does CVL enable the management of processes
that companies acquired during projects. Inherent variability variability?

on project requirements often implies variability on software 3) Rg3: is CVL independent of the process metamodel?

processes that are still complex to capture. Moreover, the_I_ h h) lead)
more variants of a software artifact there are, the more the'© &NSWer t.ese research questions, we ead an experi-
t with Sodifrancg a software and computing services

management of variability reduces development costs and tith&" ;) , X
to market [1]. This is also true in context of processes. Sorff@MPany. Sodifrance performs different kinds of projects that

approaches for modeling process variability and for enablifj€ develop_ment, m"dem'za“f_’” a_nd SO“W_afe maintenance
the reuse of process model rely on Software Process Line # gjects._T_hls experiment consists in modeling and/or refac-_
gineering (SPLE) [2]. Indeed, SPLE enables the de nition argring eX|st|ng. software develop.ment. processes to eqable their
reuse of common and variable parts between processes. THEYSS accordl.ng to commonalities in projects reqwrgmen_ts.
approaches also use the Model-Driven Engineering (MDE) pr this experiment, we use the Software Process Engineering
order to de ne a Software Process Line (SPL), which is Igle’ltzal\rxozdgl _(SPEMO)Mz(';O [4] 35 groczss metaqulel. II:jdeIed,
set of processes that captures commonalities and variabilit%% 4 QIS an d strz:m ard an hcommerma mo ee(rjsl
between these processes [3]. However, existing contributididst- However, we could choose any other process metamode

are dependent of a process metamodel. Indeed, some of them L .
. . L . “http://www.omgwiki.org/variability/

modify a process metamodel with a variability concern, in 2http:fwww.omg.org/

order to model places in processes that vary and the possib&p:/mww.omg.org/mofi

variations. This prevents the reuse of the variability concernthttp:/imww.sodifrance.fr/

I. INTRODUCTION

according to one's needs and preferences. We perform tthie process elements (the method content) from their use into
experiment and illustrate our approach on a process line mbcesses (the process structure).
Java development processes. Figure 1 shows an extract of the SPEM 2.0 metamodel we
This paper is organized as follows. Section Il presentse in the following. However, one can use every SPEM 2.0
our illustrative example. Section Ill presents SPEM 2.0 arwbncepts with our methodology.
CVL. Sections IV, V and VI respectively answer the research The method content part contains method content ele-
questions rgl, rg2 and rg3. Section VIl presents the relatents MethodContentElemenfor de ning role de nitions
work. We conclude in Section VIII. (RoleDe nition), that perform task de nitionsTaskDe nitior),
using a tool de nition foolDe nition). A task de nition uses
Il. 1LLUSTRATIVE EXAMPLE " " .
work product de nitions WorkProductDe nitior) as inputs
In this section, we present a simpli ed Java developmeghg outputs.
process of the Sodifrance company as an illustrative exampleThe process structure part contains work breakdown struc-
A. The Most Often Used Java Development Process tures BreakdownEIe_m_enand WorkBreakd_ownEIemehnnd
structures for describing work ows Activity, Processand
. The most often_used Java develqpment process of the SB liveryProcess A delivery process DeliveryProcesk de-
firance company is as .fOHO.WS' During the rst FaSk’ the CUScribes a complete project lifecycle. An activitpdtivity)
tomer produc_es a spect cat!ons gocument Qe ning the techr]E a container for breakdown elemenBréakdownElemeht
cal anq functional speci (‘:atlons.of the application to .develo%ubtypes of the class namdtethodContentUsese subtypes
according to the prOjeqts requirements. The following tas? the class namedvethodContentElementhrough corre-
the developmgnt, consists of manually er'tmg 'the Java co onding references. A role uedleUs# performs a task use
of the application. It takes as input the speci C_atlons docume skUsg which uses a work product usérkProductUs
and produces as output the Java code. During the tests t %E’input or output. The parameter type (attribute named

the developers test the application under development. If th rframeterTyp)a of a process parameteProcessParametgr
are errors, then the process ow goes back to the developm Al es a work product use of a task use

task in order to correct the errors. If there is no error, then We use UML 2 [5] activity diagrams to model the ow of
the process ow goes 1o the production task, which consisltgsk uses because the class narmaskUseis a stereotyped
of deploying the application on the customer environme

During the development task, the developers have to use tt I\?/I:L 2 Action.
[i : Cp . Figure 2 shows th ncr ntax w represen
Eclipse IDE and a version control system, which is SUN ig. 90 2 SNows the concrete synfax we use fo represent

;) PEM 2.0 and activity diagram model elements.
this example. They also use MySQL as database during t q:igure 3 shows the SPEM 2.0 model of the most often used

_de_z_/elopment ta_sk. Modelling the _proc.:ess_ permits to create tj'a%a development process of our illustrative example.
initial con guration of a new project: building eclipse IDE,

generating the maven project object models, initializing th®. CVL

source code repository, .. We use CVL to de ne an SPL and automatically derive a

B. Variability in the Java Development Process process according to the project's requirements from this SPL.

There are variants of the Java development process E(i)gure 4 summarizes CVL and illustrates it in the context of
instance, if the customer uses Oracle as database, then deJ&c€SSes: C\f/l‘ Proposes tg Ide nef a b_ase m?]de:\'/lgli"c_lr_'h's
opers will use Oracle instead of MySQL. If there is no datd" mstan(;:el 0 ar;)y metamode cor:j 0|rr_nmg to the Th) C\e/L
to persist, then there is no database. If the customer provi&@sse. Model IS a base process model in our case. Fhemn,
the speci cations into a formal language.g.,UML 2.x), then provides constructs to capture the variability (the Variability

a code generation task occurs before the development taslﬁl?lsuac.t'on Modgl (VAM)). qu Instance, the VAM spect es
consists of generating the code which is similar for all thtéIe projects requirements V?”ab'“ty'. CVL. als_(_) provides con-
entities of the application. It produces some generated JﬁQJCtT t(r)] d‘*/”? tbhle resllz?tlon of';c/rlnz Vﬁr{f‘s:\l/'lty Oﬁhthisﬁﬂse
code as output. When the code generation task occurs, then M€ (t.e. Elma ”t3; CslalelatI?In ode .()- (T. it th
development task takes the generated Java code as additibhgl€ ©"'9!na part 0 - It allows designer to explicit the

input and consists of manually writing the non generated cod&!@PpPing between the VAM (that can be compared to a feature

model) and the assets (the base model). In this mapping,

I1l. BACKGROUND the VRM de nes which base model elements are impacted

In this section, we present SPEM 2.0 and CVL. with a speci ¢ variation point but also how these base model
elements are impacted. CVL provides in the VRM several

A. SPEM 2.0 types of variation point that capture the derivation semantics.

We use the SPEM 2.0 process metamodel to model the Javee main bene ts of this model is the ability to capture the
development process example. The SPEM 2.0 speci catioariability requirement in the VAM and its materialization in
de nes a metamodel whose general idea is that roles perfothe base model using the VRM. In our case, the VRM de nes
activities, that take work products as inputs and outputs. Thebinding between the projects requirements variability and
peculiarity of SPEM 2.0 is that it separates the de nition ofhe processes variability. CVL provides constructs to resolve

Method content

ParameterDirectionKind

<<enumeration>>

Process structure

MethodContentElement in
1

1 +out

0.*
Default_TaskDefinitionParameter
+direction: ParameterDirectionKind

DeliveryProcess
I

l—D' Process |
| I |
1

nestedBreakdownElement %7

IWorkProductDefinitionI
I

’:\1

—| RoleDefinition 0.1

ProcessParameter Activity
+direction: ParameterDirectionKind 0..*
0..* 0..1 parameterType| [BreakdownElement
0.1 [WorkProductuse| e
! =—— 7
RoleUse MethodContentUse

ownedProcessPdrameter 1.%
ProcessPerformer
- |WorkBreakdownEIement
0.. I]
1 <t
TaskDefinition 0.1 TaskUse Zr
Figure 1: Excerpt of the SPEM 2.0 metamodel
IniialNode fouardl * GontrolFiow ForkNode
source target
ActivityFinalNode |l ProcessParameter JoinNode
RoleUse DecisionNode ~m A TaskUseand s Activity

ownedProcessParameter

Figure 2: SPEM 2.0 and activity diagram concrete syntax

<<conformsTo>>

Metamodel <<conformsTo>>

(SPEM 2.0)

{<<conformsTo>>

VAM
(projects requirements
variability specification)

VRM
(projects requirements
& processes binding)

RM
(projects requirements
variability resolution)

base model
(base process model)
A

resolved model
(resolved process model)

<<references>>

..................... -

<<takes asiinput>> <<references>>

CVL derivation engine

Figure 4: Using CVL for SPLs

this variability in order to select a con guration of the bas€VL metamodel that we use in the following.
model (the Resolution Model (RM)).

The variability abstraction part de nes variability through

CVL can be executed. A CVL model composed of a VAMyariability speci cations ¥Speg. A variability speci cation
a VRM and a RM contains enough information to provide ean be a choice Ghoice, i.e. a feature that will belong
resolved base model without variability. The resolved modet not to the resolved model depending on whether it is
is thus another instance of the metamodel that the base madsblved to true or false. A variability specication may
conforms to. In our context, the resolved model is a resolvedntain children. Children can be resolved to true only if their
process model. Thereafter, we present the CVL metamogealrent is resolved to true. A variability speci cation also has
according to its three parts (variability abstraction, variabilitg group multiplicity groupMultiplicity) de ning the minimal
realization and resolution). Figure 5 details the excerpt of tlamd maximal (attributes namddwer and upper of the class

Variability abstraction Resolution

Multiplicitylnterval Choice < csovedChoice ChoiceResolution LinkHandle link
+upper: Integer +isImpliedByParent: Boolean +decision: Boolean +MOFRef: String é
+lower: Integer
roupMuTtiplicity\O--1 — . " — . = "
group P VarlatlonPomt|<—|Ch0|ceVarlatlonPomt|4— LinkAssignment
I | I |
1 L 1

} s +linkEndIdentifier: String
Child0 >(VSpec <
- 0..* bindingVSpec

newEnd

I I .
ObjectExistence —>| Existencel |0bjectSubstitution replacementObject 1 ObjectHandle
1[1
’ ' placementObject 1 +HOFRef: String

optionalObject 1/T\

Variability realization

Figure 5: Excerpt of the CVL metamodel

namedMultiplicityInterval) numbers of direct children that canderivation engine performs each variation point whose binding
be resolved to true. If a choice is implied by its parent (attributeriability speci cations are resolved to true. The derivation
namedsimpliedByParenequals true), then it must be resolvedpplies on a copy of the base process model. To perform a
to true if its parent is resolved to true, expressing a mandatdirgk assignment, it retrieves from the base process model copy
feature. The variability abstraction model provides the santee link object. If its link end identi er reference has a upper
expression power than a feature modédr, Card, Or, Alt, bound of one, it updates the link end identi er reference to
or Mandatory can be expressed using tgeoupMultilplicity the new end. If the link end identi er has an in nite upper
reference and thisimpliedByParengttribute. bound, it adds the new end to the list of links that instan-
The variability realization part de nes the variation pointdiate the link end identi er reference. To perform an object
(VariationPoin), that are operations to perform on the basgubstitution, it retrieves from the base process model copy
model in order to derive a resolved model. A variatiothe placement object and applies all its incoming references
point is performed when its binding variability speci cationgo the replacement object. It then deletes the placement object
(bindingVSpedgsare resolved to true. CVL de nes severafrom the base process model copy. For an object existence, the
types of variation points. Each of them can be seen asdarivation engine removes the optional object from the base
reusable function that can be applied on the base mogpcess model copy if at least one of the binding variability
during the derivation. Among variation points, an object sulspeci cations of the object existence is resolved to false.
stitution (ObjectSubstitution replaces an object of the baserinally, it serializes the modi ed copy of the base process
model, the placement objecplacementObjedt by another model into a new le, giving the resolved process model. Our
one, the replacement objeseplacementObjelt and deletes implementation of the CVL derivation engine relies on the
the placement object. A link assignmeritifkAssignment Eclipse Modeling Framework (EMF)API to load, manage
sets a reference of the base model, the link end identi @d save the modéls
reference, to a new endéwEng. A link object (ink) contains
the reference, identi ed by its naméinkEndldenti er). An . . .
object existence@bjectExistendespeci es that an optional " this section, we answer rql by presenting our approach
object pptionalObjec) of the base model will still exist in ©© US€ CVL in the context of processes. Figure 7 shows an

the resolved model. The optional object is removed from tfRYerview of this approach. It involves two roles: a process

resolved model if at least one binding variability speci ca€XPert, who knows the different processes of a company and

tion is resolved to false. Thus, object existences executeﬂi’l‘?',r context of use, and an engineer, V\,/ho IS involved into a
negative variability. This means that the objects belong R§©/ect and needs a process speci ¢ to this project. The process
the base model if they belong to a con guration. They arexpert captures the requirements variability and its binding

deleted during derivation if they do not belong to the selectdfl the SPL (steps 1 to 3). Then, the engineer automatically

con guration. On the contrary, positive variability means tha#€fves & process from this SPL according to the requirements

all the objects are not in the base model and they are creaég® 9iven project (steps 4 and 5). Steps 4 and 5 occur
during derivation. The link handle.inkHandlg and the object €2¢h time the engineer wants to derive a process. In our
handle ObjectHandI® model elements reference an object ofPProach, the process expert and the engineer use the CVL

the base model through their attribute nanM@FRef which (©0ling to perform steps 2 to 5. Any SPML can be used to
corresponds to the URI of the object to reference. perform step 1, even if we focus in this paper on the use

The resolution part contains choice resolutioBdiceRes- of SPEM. Our approach preserves the separation between

olution) that resolve their resolved choicegolvedChoice projects requirements and processes. It also directly binds
to true or false projects requirements to processes, instead of interpreting

. requirements variability in terms of processes variability. In
Figure 6 shows the concrete syntax we use to represent tﬁg y P y

CVL model elements. Shttp://www.eclipse.org/modeling/emf/
We now detail the part of the derivation algorithm which °CVL derivation engine can be downloaded htp://goo.gl/ifGFD
is useful to understand the example of Section IV. The CVL

IV. APPROACH

Parent choice

with a groupMultiplicity

(Choice resolved to true) (Parent choice) _
with lower = n and (Child :choice]
i €

(Choice resolved to falg : " upper=1m isimpliedByParent = fals

link
indi Link assignment
bindingVSpec< linkEndIdentifier = "name of the reference to set"|{v
=) newEnd
bindingVSpec Object existence optionalObject
bindingVSpec Object substitution==_ placementObject

~ 9 replacementObject

Figure 6: CVL concrete syntax

en

s : : ments :
base process modeling variability specification and processes binding
<<perform>> fxuse>>
<<use>> <<perform>> <<use>> <<out>> i <<use>>
<<perform>> <<use>> <<perform>>
i <<out>>
] <<in>>) <<in>>

i process modeler <<out>> process expert <<in>> i engineer derivation engine
{e.g. SPEM 2.0 modeler) <<out>> variability modeler i
: (e.g. CVL modeler) ii <<jn>> <<out>> :

VAM VRM RM resolved process model:

base process model <<in>>

Figure 7: Overview of an approach using CVL to bind the requirements variability to the process variability

the following of this section, we detail the different steps of
our approach, ranging from the SPL de nition to the process
derivation. We illustrate them thanks to the illustrative example
introduced in Section II.

A. The SPL De nition

1) Methodology for Process Elements Modeling (step 1):
This step allows the process expert to model the process
elements required to de ne the expected family of processes.
The process expert performs this step using any modeler based
on its favorite SPML. .))

The process expert rst models the most often used proc‘fggure 8: Method content elements of the illustrative example
of the company into a base process model (called base model
in CVL). Then, the process expert provides all other procebase process model to derive the most often used process.
elements that do not belong to the most often used procdisdeed, in SPEM 2.0, a process describing a complete project
(called external process elemehtsThese external processlife cycle is described into a delivery process, and there the
elements are added in the same base process model, withoast often used process is already described in a delivery
linking them to the most often used process. Even if sevefaiocess.
processes use the same external process element, it is model&dhile Figure 3 shows the most often used process of our
only once in the base process model. Consequently, whedaxa development process example, Figure 8 shows the corre-
process element common to several processes evolves, it $faanding method content elements. As for the external process
to be updated only once. The different processes that useedements, we model only their properties that correspond to
external process element often require different settings of thee most often used process that uses these method content
properties of this external process element. In this case, #lements. For instance, we model that the task de nition
process expert only sets the properties as the most often usathedDevelopmentuses the tool de nition namedlySQL
of these processes requires. and not theOracle one.

Using SPEM 2.0 as SPML, the process expert starts byFigure 9 shows the process fragment representing the
modeling the method content elements upon which the mastternal process elements of the Java development process
often used process and the external process elements willewample. Note that the outgoing control ow from the task
de ned. The process expert then models the most often usexsk namedCode generations invalid w.r.t the metamodel
process and the external process elements in different deliveiiyce it does not have any target. Nevertheless, this control
processes. This way, there is no operation to perform on tloev is useful because getting a Java development process with

and the work product use namedsenerated Java codé&

the delivery process of the most often used process. It then

redirects the outgoing control ow from the task use named
Figure 9: A process fragment representing the external procggseci cationsto the task use name@ode generatiorand
elements of the illustrative example redirects the outgoing control ow from the task use named

Code generatiomo the task use namddevelopmentlt nally

code generation consists of adding the task use nabuett Puts the work product use nameenerated Java cocks input
generationto the most often used process, as well as a cont®] the task use nameDevelopmentTo this end, the VRM
ow from the task use name@ode generatiotto the task use adds a process parameter to the task use nddegdlopment
namedDevelopmentwhile redirecting the control ow from and puts the work product use nam@enerated Java codas
the task use namedlechnical and Functional Speci cationsParameter type of this process parameter.
to the task use nameBode generationSince most of the In addition to the concepts used in the illustrative example,
process modelerse(g., SPEM-Designéi) do not enable the CVL provides various constructs to specify the VRM that are
modeling of invalid process elements, we rely on approachéseful in the context of processes. A construct assigns the
that handle model fragments.g.,[6]) for such a purpose. value of an attribute of a process element (slot assignment).
2) Projects Requirements Variability Speci cation (step 2)S0Me constructs specify the existence of an attribute or of a
In the second step of our approach, the process expert usedifie0f a process element (slot value existence, link existence).
CVL variability abstraction metamodel to specify the projectsonstructs enable to specify a value to assign or an object to
requirements variability in the VAM. substitute into the RM (parametric link assignment, parametric
The right part of Figure 10 shows the VAM of the reSlot assignment, parametric object substitution). These con-
quirements for the different Java development projects of ogffucts are useful when the process expert does not know the
illustrative example. A project uses a database or not, andv@tiants of a process element at the time of the VRM's edition.
yes, it is either a MySQL one or an Oracle one. Moreover,PMe constructs replace a process fragment by another one
project uses code generation or not to produce the code of (ff@gment substitution, repeatable fragment substitution) and
application to deliver. create several instances of a process fragment (repeatable frag-
In addition to the concepts used in the illustrative exanfoent substitution). Figures 11la and 11b respectively illustrate
ple, CVL enables the specication of variability about the fragment substitution and a repeatable fragment substitution.
number of fragment instances. Furthermore, CVL enables tR@ the other hand, some process metamodels enable the reuse
expression of constraints on the variability resolution th&f objects. For instance, SPEM 2.0 introduces the notion of
are not in a parent-child relationship. To this end, CvProcess pattern, which factorizes a process fragment common
provides the way to express constraints using rst order logie Several activities. Then, these activities can reuse this
(including universal and existential quanti cations), as well aBrocess pattern. When a process pattern contains variability,
arithmetic constraints. CVL also enables to automatically inféffferent activities can require different resolutions of this
the resolution of variability speci cations from the resolutiorPrOC€SS pattern to reuse it. However, an activity cannot reuse a
of other variability speci cations, according to the constraintéesolved process pattern if it is not resolved appropriately. This
imposed on their resolution. problem applies to any object that contains variability and that
3) Projects Requirements and Processes Binding (step 3’)3. reused with different variability resolutions in a model. The
In the third step of our approach, the process expert de nesGYL speci cation calls such an object a con gurable container
the VRM the binding between projects requirements variabili§Piect. To this end, CVL introduces constructs that specify a

(the VAM de ned in step 2) and processes (the base mode®n gurable container object (con gurable unit) and that clone
de ned in step 1). the con gurable container object, resolve variability on the

The center part of Figure 10 shows the VRM of ouflone and nally redirect the link of the base model object (that
illustrative example. This VRM speci es the con gurationUses the resol_ved clone). to the resolved clone (con g_urable
of a delivery process used by an engineer according to t4@it usage). Figure 11c |IIu§tr§1tes thg con gurable unit and
possible requirements. The activity naméala development €ON gurable unit usage variation points with the example
processrepresents the delivery process of the most often us@d Process patterns. Finally, the process expert can de ne
process. For a project with a MySQL database and withoffgW variation points using a model to model transformation
code generation, the VRM does not modify the deliver{PPaque variation point).
process that contains the most often used process (cf. Figgre
3). For a project with an Oracle database, it replaces the t(H'JO
de nition named MySQL by the one namedracle For a .) o .
project without database, it deletes the tool de nition named 1) Projects Requirements Variability Resolution (step 4):
MySQL For a project with code generation, the VRM adds th_'ghe engineer uses the CVL resolution metamodel to select

task use name€ode generationits outgoing control ow, N an RM the requirements of a given project among those
that the VAM speci es. We refer to this action as projects

http://marketplace.eclipse.org/content/spem-designer-helios-version ~ requirements variability resolution.

Process Derivation According to the Requirements of a
ject

VAM and RM

.....Excerpt of the base (process) model VRM (whichisrepresented by andx)
N SO 1 i :
: v : ~_Link assignment —
:Specifications | Development Code generation :: linkEndldentifier = "target" L Java development
A .‘i":ff Link assignment e /N\0..2
N mee oo ‘L_T______ R linkEndldentifier = "target" i
o B Link assignment sl — -
Nizzzzzzp-oriq) ifier = " «++—=>{Code generation] (Databas
Java development process | T linkEndldentifier = "nestedBreakdownElement! s 11 :
|- st] Link assignment e el . :
1" linkEndldentifier = "nestedBreakdownElement" [[—§[—§
I s I MySQL] :
‘\\:\ Tink assignment 3 Oracle ySQ :
Generated java code __| -F*1 |InkEndIdent|f|er.= nes?edBreakdownEIement S] :
<7 e Link assignment :
------- = “|linkEndldentifier = "ownedProcessParameter"|":
- Link assignment
Oracle = linkEndldentifier = "parameterType"
Q- Object substitution
MySQL o

Object existence —

Figure 10: The VAM, the VRM, and one possible RM of the illustrative example

replacement fragment placement fragment
c D E F ¢

—_—
fragment
substitution

(a) Fragment substitution

(b) Repeatable fragment substitution

(c) Con gurable unit and con gurable unit usage
Figure 11: Overview of other CVL variation points
The right part of Figure 10 also shows an RM for a Javangineer can manually adapt the derived process to these

development project that requires code generation and meeds. Indeed, there is no need to capitalize on project speci ¢
database (see for the choices selected by the engineer antkeds into the process line if they are unlikely recurrent.

X for the implicitly unselected ones) . _ V. USE OFCVL TO BRIDGE THE GAP BETWEEN THE
2) Automatic Process Derivation (step Syinally, the last REQUIREMENTSVARIABILITY AND THE PROCESSES
step of our approach consists in automatically deriving the VARIABILITY

process corresponding to the requirements of a given project, . this section, we answer rq2 by discussing the capacity of

For 'this purpose, we use the CVL derivation engine to allow gy, v/ -hased approach to capture the processes variability
engineer to derive a new process model from the base Proc&SSording to the requirements variability.

model (step 1), and according to the requirements selected IMccording to our approach, the VAM captures the re-
the RM (step 4), and the variability realization captured in t'T?uirements variability, while the VRM speci es the binding
VRM (step 3). This step produces a resolved process modgbyyeen the requirements variability and the base process
Figure 12 shows the resolved process model correspondiigidel. These three models (VAM, VRM and base process
to the RM depicted in Figure 10. In the resolved procesfodel) thus constitute the de nition of an SPL.
model, the CVL derivation engine has deleted the databaserhen, CVL allows an engineer i) to select the requirements
and it has introduced the code generation task to the mesta given project in a realization model (RM), and ii) to
often used Java development process. automatically derive a process model from a given RM and
If there are unlikely recurrent project specic needs, ththe base process model.

Figure 12: Complete resolved model according to the RM of Figure 10

In our illustrative example, we were able to capture the re- These possible errors constitute the rst category we have
guirements of 384 Java development projects of the Sodifraridenti ed. These errors arise because CVL does not constrain
company and their corresponding processes. The Sodifrandh&s speci cation of the VRM according to the metamodel to
Java development projects vary on the version control systevhich it applies. Nevertheless, the use of CVL could be forced
(SVN or CVS), the database (MySQL, Oracle, Postgresdly constraints generically expressed on its metamodel, thus
or no database), the GUI framework (Struts, JSF, Flex, ensuring the validity of the VRM with respect to the resolved
GWT), the build tool (Ant or Maven), the development (withmodels. For example, the type compatibility mentioned above
code generation or not) and the delivery (delivery of thia the context of a link assignment could be avoided by using
source code, of the compiled code or installation of thie following constraint expressed with the Object Constraint
application on the customer environment by a Sodifrant@nguage (OCL) [8] on the CVL metamodel:
engineer). Following our approach, the SPL is composed of
86 model elements (48 SPEM process elements, 21 Variability
Speci cations and 17 Variation Points). In comparison, the
modeling of the different processes in extension (i.e., without find(self.newEnd.MOFRef). OclType =
factorizing the common parts between processes) would have find(self.link.MOFRef). OcIType
required the modeling of 384 processes, each of them mad

e

of at least 30 process elements. Thus, it would have led to ttiﬁe resolved modei,e. when a link refers to an object that

moBdeI!ngFof tat Ie'\a/lstdl} 5EOFEArOCG;SS elder(r;etr;]ts. | Vari b_does not exist anymore. This occurs during an object existence,
asic Feature Madels (s) [7] and Orthogonal Varia II\7vhen an object is deleted but not its incoming links. In order

ity Model§ (OVMs) .[1] would also enable the speci Ca.t'onto avoid this error, the following constraint must be satis ed:

of the projects requirements variability thanks to a dedmatg\%

context LinkAssignement inv:

The second error is when there are dandling references in

going to see in the following paragraph the error related
h he link existence and how to avoid it.
®The third error concerns the non-respect of the multiplicity
of a reference. For instance, when a reference with a lower
bound of n and a upper bound op is instantiated bym
links, with m< n or m> p. This occurs when a (paramet-
ric) link assignment (respectively a link existence) creates
In this section, we answer rgq3 by analyzing the indepegrespectively deletes) a link that makes the number of links
dence promoted by CVL with respect to the metamodel gnstantiating a reference greater (respectively lower) than the
which it is used (in our case, SPEM). upper (respectively lower) bound of this reference. This also
Since CVL uses a string in the object handle and the lirdccurs during a fragment substitution, because CVL enables
handle to reference a model element, CVL is independaht assignment of new outgoing and incoming links to the
of the language on which it is applied. Nevertheless, weplacement fragment, as well as the deletion of existing
observe that the CVL derivation operator can produce &#nks, without ensuring the respect of the multiplicity of the
invalid resolved process model, while the VAM, the VRM andeferences that the links instantiate. Moreover, the error occurs
the RM are valid. In the following, we identify the possibleduring a repeatable fragment substitution, when the incoming
sources of such an invalidity, and we classify them accorditigks to which the replacement fragments are bound cannot
to the way to prevent them. reference as much replacement fragments as the RM de nes.
The rst errors we observe occur during assignments (i.dzjnally, this occurs during a con gurable unit usage, when the
link assignment, slot assignment, parametric link assignmeatntainer of the con gurable container object cannot contain
parametric slot assignment) or substitutions (i.e., object suls much con gurable container objects as the ones that are
stitution, parametric object substitution, fragment substitutiooreated by con gurable unit usages. In order to avoid this
repeatable fragment substitution) that do not respect the tygreor, constraints must be satis ed. A new link can instantiate
compatibility with the base model. a reference whose upper bound is strictly upper than one

design models (here, the processes). On the contrary, the V,
enables the capture of the requirements variability and t
VRM enables to directly re ect this variability on processes.

V1. USE OFCVL INDEPENDENTLY OF THEPROCESS
METAMODEL

only if the number of links already instantiating this reference VIl. RELATED WORK
is strictly lower than the upper bound of the reference. A
link can be deleted only if the reference it is instantiating One approach for reusing processes provides a technique
before its deletion has a number of links strictly upper thd@r the retrieval of processes stored into a repository [9]. The
its lower bound. A process fragment can be duplicated orfRebus-Booch prototype [10] enables to select a software de-
if its incoming links can also be duplicated while ensurin§ign process from a family of such processes and to execute it.
the respect of the multiplicity of the reference they instantiatéhese approaches de ne the different processes in extension.
For a con gurable unit usage, the container of the con gurabigherefore, when a part common to several processes evolves,
container object must be able to contain one more con guratifehas to be updated in all the processes it belongs to, which
container object. is error prone and time consuming.
. . The following approaches address this problem by de nin

The se.condl and third errors consitute the second CategQWSPL, in ordgr tgpr)nodel places in procesF')ses that vgry and tghe
we havg identi ed. _The;e errors occur becau;e CVL does ssible variations. However, they are dependent of the process
constrain the. speci catlgn of the VRM gccordmg to the bas etamodel because they modify the process metamodel with
model to which it applies a_nd according to the meta_modg riability mechanisms. In the eld of software processes, one
of the base mode_l. A solution 1o ensure th? cons_tramts roach relies on the variability mechanisms that SPEM 2.0
the second and third errors would be a generic static analy vides in order to model a general process model with
tool thaﬁ would check pefore the derivation if the_ constrain fiability [11]. The VSPEM approach [12] extends SPEM 2.0
are satis ed. .By generic we mean metamodel |qdepende ith variability mechanisms empirically evaluated as more
I th_e constraints are not satis e_d,_the to_ol WOUIO.I inform th?mderstandable [13]. Still in the eld of software processes,
engineer of the error, of t_he yarlat|on point that introduces & other approach [3] provides a metamodel for an SPL, that
and of the cgnstramt that is violated. Then, the process eXPeflst be specialized according to the process metamodel and
and the engineer woulld have to correct the errors to start Itlfﬁ(:é variability to capture. In the eld of business processes, ap-

derivation. proaches extend the Event-driven Process Chain (EPC) process

The fourth error is when the resolved process model cometamodel to model variability into an EPC reference process.
forms to its metamodel but is semantically inconsistent. Figufdie reference process captures all the different processes
13 illustrates this error. In SPEM 2.0, a work sequence spetsing conditional branching. Con gurable EPC (C-EPC) [14]

i es the dependencies about the execution of activities. Tiekpresses variability on the functions and connectors EPC
work sequence of kinchishToFinish means that the activity model elements. The approach in [15] extends C-EPC with
namedB can nish when the activity named nishes. The the concepts of role and object and speci es variability on
work sequence of kindnishToStart means that the activity these concepts. Aggregate EPC (aEPC) [16] links process
namedB can start when the activity named nishes. Here elements to the con gurations that use them. The PROcess
the work sequence of kindishToFinish is useless. In order Variants by OPtions (Provop) approach [17] copes with the
to avoid this error, we must ensure that there is no semanfien distinction between branching nodes that are part of a
inconsistencies in the resolved process model. process and the ones that denote different processes in a

his 1 h ki ¢) he thi reference process. It proposes to model one process and the
This fourth kind of error constitutes the third category W@, erations to perform on it to derive the different processes.

have identi ed. As for the second category, these errors alg'ﬁ” in the eld of business processes, approaches [18], [19]
occur because QVL does not constrain the speci catlon_ 8§<tend the BPMN metamodel for modeling places where
the VRM a_ccordmg to the base model to which it alOpl'e\%riability occurs in processes and their possible resolutions.
and according to the metamodel of the base model. HOWeVgRqiher approach [20] captures process variability into a
in this case, the errors are specic to a metamodel apgh o chical structure and provides support for variant process
cannot be generalized. A solution would be to implemeRienents management and reuse. Other approaches [21]-[23]
a SPEM-speci c derivation engine. It would ensure during iy address the problem of the dependence towards the
derivation 'Fhat SPEM-speci ¢ co_nstramts are satis ed, on t_OBrocess metamodel by transforming a process model into a
of performing the same operations than the CVL derivatigt), ot structure to de ne variability. However, these approaches
engine. When a SPEM-speci ¢ constraint is not satis ed, thg,qire the de nition of a transformation for each process
SPEM-speci ¢ derivation engine would inform the engineer of,otamodel. Finally, the Adaptive Business Process Modeling
the error, of the de_:rlvatlon_ ste_p that has introduced the ertarihe Internet of Services (ABIS) approach [24] introduces
and of the constraint that is violated. constructs for managing variability in BPMN 2.0 processes
without modifying the BPMN 2.0 [25] metamodel. This ap-
proach is also dependent of the process metamodel. Indeed,
the variability constructs need to be adapted in case of the use
of another process metamodel.
The following approaches specify variability independently
of the process metamodel. However, they do not provide all

Figure 13: Over-speci ed work sequence

the mechanisms for automatically deriving a process. One REFERENCES

approach [26] proposes to quel process Variabi”ty separate[lM K. Pohl, G. Béckle, and F. J. v. d. Lindergoftware Product Line
from the process model, using BFMs or OVMs. However, Engineering: Foundations, Principles and TechniqueSpringer, 2005.
BFMs do not provide a binding mechanism between the BEN#! H- D. Rombach, “Integrated software process and product lines,” in

) ha " ISPW 2005, pp. 83-90.
and the process model. OVMs provide a binding mechanismg, 1" remits, “Process Lines: A Product Line Approach Designed for

with the model for which variability is speci ede(g., the Process Model Development,” BEAA 2009, pp. 173-180.

process model). However, this binding mechanism impliefs"‘] OMG, “Software an_d Systems Process Engineering Metamodel Speci -
e . . T cation (SPEM) Version 2.0,” http://www.omg.org/spec/SPEM/2.0/, 2008.
modifying the metamodel of the model for which variability is ;57 —__ «pocuments Associated With UML Version 2.0,” http:/fwww.omg.

speci ed. Furthermore, OVMs do not provide a mechanism to org/spec/UML/2.0/, 2005.

automatically derive a process. Other approaches are simil§ R- Ramos, O. Barais, and J. Jézéquel, “Matching model-snippets,” in
MoDELS 07 2007, pp. 121-135.

to ours. One approa_ch [27] proposes to model one ProCeE§ k. c. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
and to augment it with process elements selected according terson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,”

to a process goa|s speci cation, in order to obtain a particma[]{)] Carnegie-Mellon University Soft. Eng. Institute, Tech. Rep., 1990.
8

Th . f | . . is cl OMG, “Documents associated with Object Constraint Language, Version
process. e notion of process goals speci cation Is close 2.2, http://www.omg.org/spec/OCL/2.2/, 2010.

our notion of requirements of a project. Our approach goes] R. Lu and S. Sadig, “On the Discovery of Preferred Work Practice
further by providing mechanisms to automate the derivation |ﬁf0,] Through Business Process Variants,'8R, 2007, pp. 165-180.
e

di h . f . A X. Song and L. J. Osterweil, “Engineering Software Design Processes to
a process according to the requirements ot a project. Anot Guide Process ExecutionEEE Transactions on Software Engineering

approach [28] provides a questionnaire-driven method for se- vol. 24, no. 9, pp. 759-775, 1998.
lecting a process from a reference process model. Actions g J- Hurtado Alegria, M. Bastarrica, A. Quispe, and S. Ochoa, “An MDE

f d h f del deri Approach to Software Process Tailoring,” iI@SSR 2011, pp. 43-52.
performed on the reference process model to derive a proc@s$ 1. martinez-Ruiz, F. Garcia, and M. Piattini, “Towards a SPEM v2.0

according to the answers to the questions. Our approach goes Extension to De ne Process Lines Variability Mechanisms,"SERA

further by providing a language to de ne actions on process . 2008. pp. 115-130. . o i _

del h hei del i 13] T. Martinez-Ruiz, F. Garcia, M. Piattini, and J. Miinch, “Modelling
models whatever their metamode '_S' Software Process Variability: an Empirical StudiET Software vol. 5,
To conclude, approaches for reusing processes to our knowl- no. 2, pp. 172-187, 2011.

edge either de ne the different processes in extension, or 4F4l M. Rosemann and W. M. P. van der Aalst, “A Con gurable Reference

. Modelling Language,’Information Systemsvol. 32, no. 1, pp. 1-23,
dependent of the process metamodel, or do not provide all the 5497 9 -angtag Y PP

mechanisms for automatically deriving a process. [15] M. Rosa, M. Dumas, A. H. Hofstede, J. Mendling, and F. Gottschalk,
“Beyond Control-Flow: Extending Business Process Con guration to
VIIl. CONCLUSION AND PERSPECTIVES Roles and Objects,” ifER, 2008, pp. 199-215.

. [16] H. A. Reijers, R. S. Mans, and R. A. van der Toorn, “Improved
We propose an approach to use CVL in the context of Model Management with Aggregated Business Process Modisa
processes and we perform an experiment (i) to understand how Knowledge Engineering/ol. 168, no. 2, pp. 221243, 2009.

t thi iabilit deli | in thi ¢ X[t17] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing Variability in
0 use this new variability modeling language in this CONext, ° gysiness Process Models: the Provop ApproaSbftware Maintenange

(i) to discuss if CVL enables the management of processes vol. 22, no. 67, pp. 519-546, 2010.
variability, (iii) and to discuss if CVL enables the managemed#8] V. Kulkarmi and S. Barat, "Business Process Families Using Model
L . . . riven Techniques,” i , , pp. —325.
of processes Va”ab'"ty while bemg mdepend.ent of th_e proce[§§] A. Schnieders and F. Puhlmann, “Variability Mechanisms in E-Business
metamodel. The lessons learned from this experiment are Process Families,” i8IS, 2006, pp. 583-601.
maimy that CVL enables the de nition of an SPL and thd20] W. Derguech and S. Bhiri, “Reuse-Oriented Business Process Modelling
. L . . Based on a Hierarchical Structure,” BPM, 2010, pp. 301-313.
automatic derivation of a process frpm thls_ SPL according {9) £ Gottschalk, W. M. van der Aalst, M. H. Jansen-Vullers, and
the requirements of a project. CVL is also independent of the M. La Rosa, “Con gurable Work ow Models,Cooperative Information
process metamodel, but this can be a source of errors in the Systemsvol. 17, no. 2, pp. 177-221, 2008. .
lved del [22] S. Meerkamm, “Con guration of Multi-perspectives Variants,”BiPM,
resolved process model. _ 2010, pp. 277-288.

Using CVL to model process lines has the advantage [@B] E. Santos, J. Castro, and O. Sanchez, J.and Pastor, “A Goal-Oriented
being independent of the process metamodel. This enablei Qpp\r/s;%w;rzr?/agab}!thltgrBPnﬂMNlé;r:?zWEDR g%ﬁ?éigﬁe-r”;ﬁgh Vet
the reuse of the approach with every process _metamOdel as zner, “Adaptivé Business Isrocess Mc;deling in the Infernet of Services
well as the reuse of process metamodel specic tools. The (ABIS),” in ICIW, 2011, pp. 29-34.
current limitation of the use of CVL for modeling proces§25] OMG, “Documents Associated with Business Process Model and Nota-
. ; tion (BPMN) Version 2.0,” http://www.bpmn.org/, 2011.
lines is that models are dif cult to edit and maintain. Inde?q%] J. Simmonds and M. C. Bastarrica, “Modeling Variability in Software
processes other than the most often used one are not visible Process Lines,” Universidad de Chile, Tech. Rep., 2011.

in the SPL due to the structure of the base process model &g B: - Simidchieva, L. A. Clarke, and L. J. Osterweil, “Representing
h iabilit t | ti tool that enabl Process Variation with a Process Family,” ISP, 2007, pp. 109-120.
the variability mana_ger_n_en. mp e_mer_] Ing a ool tha e_ ablBB) M. La Rosa, J. Lux, S. Seidel, M. Dumas, and A. ter Hofstede,
processes and variability modeling into the same diagram “Questionnaire-driven Con guration of Reference Process Models,” in
would address this limitation. CAISE 2007, pp. 424-438.

As perspectives of work, we are implementing a generic
static analysis tool and a derivation engine plugin for SPEM, in
order to automatically ensure the satisfaction of the constraints

for deriving a valid resolved process model.

