Fluid flow estimation with multiscale ensemble filters based on motion measurements under location uncertainty

Sébastien Beyou 1 Thomas Corpetti 2 Sai Gorthi 1 Etienne Mémin 1, *
* Auteur correspondant
1 FLUMINANCE - Fluid Flow Analysis, Description and Control from Image Sequences
IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture, Inria Rennes – Bretagne Atlantique
Abstract : This paper proposes a novel multi-scale fluid flow data assimilation approach, which integrates and complements the advantages of a Bayesian sequential assimilation technique, the Weighted Ensemble Kalman filter (WEnKF). The data assimilation proposed in this work incorporates measurement brought by an efficient multiscale stochastic formulation of the well-known Lucas-Kanade (LK) estimator. This estimator has the great advantage to provide uncertainties associated to the motion measurements at different scales. The proposed assimilation scheme benefits from this multiscale uncertainty information and enables to enforce a physically plausible dynamical consistency of the estimated motion fields along the image sequence. Experimental evaluations are presented on synthetic and real fluid flow sequences.
Type de document :
Article dans une revue
Numerical Mathematics: Theory Methods and Applications., Global Science Press, 2013, 6 (1), pp.21-46
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00736457
Contributeur : Sébastien Beyou <>
Soumis le : lundi 16 décembre 2013 - 15:02:35
Dernière modification le : mardi 26 septembre 2017 - 11:54:28
Document(s) archivé(s) le : mardi 18 mars 2014 - 12:16:20

Fichier

NM-TMA-SSVM-final-authors.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00736457, version 1

Collections

Citation

Sébastien Beyou, Thomas Corpetti, Sai Gorthi, Etienne Mémin. Fluid flow estimation with multiscale ensemble filters based on motion measurements under location uncertainty. Numerical Mathematics: Theory Methods and Applications., Global Science Press, 2013, 6 (1), pp.21-46. 〈hal-00736457〉

Partager

Métriques

Consultations de
la notice

559

Téléchargements du document

238