L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-brown, Performance statistics for Pilot algorithm using 3 different Pilot heuristics: MWKR, SPR, and LOPN, on the three different problem sizes. References 1 Satzilla: Portfolio-based algorithm selection for sat, Table 2. Pilot algorithms, pp.565-606, 2008.

E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan et al., Hyper-heuristics: a survey of the state of the art, Journal of the Operational Research Society, vol.3, issue.2, 2010.
DOI : 10.1057/jors.2013.71

C. Duin and S. Voß, The pilot method: A strategy for heuristic repetition with application to the Steiner problem in graphs, Networks, vol.7, issue.3, pp.181-191, 1999.
DOI : 10.1002/(SICI)1097-0037(199910)34:3<181::AID-NET2>3.0.CO;2-Y

M. G. Lagoudakis and R. Parr, Reinforcement learning as classification: Leveraging modern classifiers, Proc. 20th Int. Conf. on Machine Learning (ICML'03), pp.424-431, 2003.

L. Kocsis and C. Szepesvári, Bandit Based Monte-Carlo Planning, Proc. Eur. Conf. on Machine Learning (ECML'06), pp.282-293, 2006.
DOI : 10.1007/11871842_29

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Gelly and D. Silver, Combining online and offline knowledge in UCT, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.273-280, 2007.
DOI : 10.1145/1273496.1273531

URL : https://hal.archives-ouvertes.fr/inria-00164003

J. Asmuth and M. Littman, Learning is planning: near Bayes-optimal reinforcement learning via Monte-Carlo tree search, Proceedings of The 27th Conference on Uncertainty in Artificial Intelligence (UAI-11, 2011.

T. Lai and H. Robbins, Asymptotically efficient adaptive allocation rules, Advances in Applied Mathematics, vol.6, issue.1, pp.4-22, 1985.
DOI : 10.1016/0196-8858(85)90002-8

URL : http://doi.org/10.1016/0196-8858(85)90002-8

D. Mesmay, F. Rimmel, A. Voronenko, Y. Püschel, and M. , Bandit-based optimization on graphs with application to library performance tuning, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09
DOI : 10.1145/1553374.1553468

URL : https://hal.archives-ouvertes.fr/inria-00379523

P. Rolet, M. Sebag, and O. Teytaud, Boosting Active Learning to Optimality: A Tractable Monte-Carlo, Billiard-Based Algorithm, Proc. ECML/PKDD, pp.302-317, 2009.
DOI : 10.1007/978-3-642-04174-7_20

URL : https://hal.archives-ouvertes.fr/inria-00433866

S. Matsumoto, N. Hirosue, K. Itonaga, N. Ueno, and H. Ishii, Monte-Carlo Tree Search for a reentrant scheduling problem, The 40th International Conference on Computers & Indutrial Engineering, pp.1-6, 2010.
DOI : 10.1109/ICCIE.2010.5668320

M. Streeter and S. Smith, A simple distribution-free approach to the max k-armed bandit problem. Principles and Practice of Constraint Programming, pp.4204-560, 2006.

P. Brucker, Scheduling algorithms, 2007.

H. Bräsel, L. Dornheim, S. Kutz, M. Mörig, and I. Rössling, LiSA ? Library of Scheduling Algorithms, 2011.

S. Panwalkar and W. Iskander, A Survey of Scheduling Rules, Operations Research, vol.25, issue.1, pp.45-61, 1977.
DOI : 10.1287/opre.25.1.45

T. Kawai and Y. Fujimoto, An efficient combination of dispatch rules for job-shop scheduling problem, INDIN '05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005., pp.484-488, 2005.
DOI : 10.1109/INDIN.2005.1560424

S. Voß, A. Fink, and C. Duin, Looking Ahead with the Pilot Method, Annals of Operations Research, vol.64, issue.1, pp.285-302, 2005.
DOI : 10.1007/s10479-005-2060-2

D. Bertsekas, J. Tsitsiklis, and C. Wu, Rollout algorithms for combinatorial optimization, Journal of Heuristics, vol.3, issue.3, pp.245-262, 1997.
DOI : 10.1023/A:1009635226865

P. Auer, N. Cesa-bianchi, and P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002.
DOI : 10.1023/A:1013689704352

V. Cicirello and S. Smith, The max k-armed bandit: A new model of exploration applied to search heuristic selection, Proc. Nat. Conf. on Artificial Intelligence, pp.1355-1361, 2005.

A. Fialho, L. Da-costa, M. Schoenauer, and M. Sebag, Dynamic Multi-Armed Bandits and Extreme Value-Based Rewards for Adaptive Operator Selection in Evolutionary Algorithms, Proc. 3rd Intl Conf. on Learning and Intelligent OptimizatioN (LION'09), pp.176-190, 2009.
DOI : 10.1007/978-3-642-11169-3_13

URL : https://hal.archives-ouvertes.fr/inria-00377401

E. Taillard, Benchmarks for basic scheduling problems, European Journal of Operational Research, vol.64, issue.2, pp.278-285, 1993.
DOI : 10.1016/0377-2217(93)90182-M

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Yamada and R. Nakano, A genetic algorithm applicable to large-scale job shop Problems, Parallel Problem Solving from Nature (PPSN II), pp.283-292, 1992.

A. Banharnsakun, B. Sirinaovakul, and T. Achalakul, Job Shop Scheduling with the Best-so-far ABC, Engineering Applications of Artificial Intelligence, vol.25, issue.3, pp.1-11, 2006.
DOI : 10.1016/j.engappai.2011.08.003