E. G. Cerami, B. E. Gross, E. Demir, I. Rodchenkov, O. Babur et al., Pathway Commons, a web resource for biological pathway data, Database issue), pp.685-690, 2011.
DOI : 10.1093/nar/gkq1039

C. F. Schaefer, K. Anthony, S. Krupa, J. Buchoff, M. Day et al., PID: the Pathway Interaction Database, Nucleic Acids Research, vol.37, issue.Database, pp.674-679, 2009.
DOI : 10.1093/nar/gkn653

A. Zinovyev, E. Viara, L. Calzone, and E. Barillot, BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks, Bioinformatics, vol.24, issue.6, pp.876-877, 2008.
DOI : 10.1093/bioinformatics/btm553

C. Guziolowski, A. Kittas, F. Dittmann, and N. Grabe, Automatic generation of causal networks linking growth factor stimuli to functional cell state changes, FEBS Journal, vol.84, issue.Database issue, 2012.
DOI : 10.1111/j.1742-4658.2012.08616.x

URL : https://hal.archives-ouvertes.fr/hal-00915016

G. Palmisano and T. E. Thingholm, Strategies for quantitation of phosphoproteomic data, Expert Review of Proteomics, vol.7, issue.3, pp.439-456, 2010.
DOI : 10.1586/epr.10.19

C. Terfve and J. Saez-rodriguez, Modeling Signaling Networks Using Highthroughput Phospho-proteomics Advances in experimental medicine and biology, pp.736-755, 2012.

M. Bansal, V. Belcastro, A. Ambesi-impiombato, and D. Di-bernardo, How to infer gene networks from expression profiles, Mol. Syst. Biol, vol.3, p.78, 2007.

M. Hecker, S. Lambeck, S. Toepfer, E. Van-someren, and R. Guthke, Gene regulatory network inference: Data integration in dynamic models???A review, Biosystems, vol.96, issue.1, pp.86-103, 2009.
DOI : 10.1016/j.biosystems.2008.12.004

J. Saez-rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction, Molecular Systems Biology, vol.41, issue.331, p.331, 2009.
DOI : 10.1038/msb.2009.87

R. J. Prill, J. Saez-rodriguez, L. G. Alexopoulos, P. K. Sorger, and G. Stolovitzky, Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge, Science Signaling, vol.4, issue.189, p.7, 2011.
DOI : 10.1126/scisignal.2002212

C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, 2003.
DOI : 10.1017/CBO9780511543357

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, Conflict-driven answer set solving, pp.386-392, 2007.

A. Mitsos, I. Melas, P. Siminelakis, A. Chairakaki, J. Saez-rodriguez et al., Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data, PLoS Computational Biology, vol.13, issue.12, p.1000591, 2009.
DOI : 10.1371/journal.pcbi.1000591.s004

S. Klamt, U. U. Haus, and F. J. Theis, Hypergraphs and Cellular Networks, PLoS Computational Biology, vol.9, issue.5, p.1000385, 2009.
DOI : 10.1371/journal.pcbi.1000385.g002

S. Klamt, J. Saez-rodriguez, J. Lindquist, L. Simeoni, and E. Gilles, A methodology for the structural and functional analysis of signaling and regulatory networks, BMC Bioinformatics, vol.7, issue.1, p.56, 2006.
DOI : 10.1186/1471-2105-7-56

J. Saez-rodriguez, L. Simeoni, J. Lindquist, R. Hemenway, U. Bommhardt et al., A Logical Model Provides Insights into T Cell Receptor Signaling, PLoS Computational Biology, vol.284, issue.8, p.163, 2007.
DOI : 10.1371/journal.pcbi.0030163.st002

T. S. Christensen, A. P. Oliveira, and J. Nielsen, Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae, BMC Systems Biology, vol.3, issue.1, pp.7-7, 2009.
DOI : 10.1186/1752-0509-3-7

E. Tsang, Foundations of constraint satisfaction, Academic Pr, 1993.

U. U. Haus, K. Niermann, K. Truemper, and R. Weismantel, Logic Integer Programming Models for Signaling Networks, Journal of Computational Biology, vol.16, issue.5, pp.725-743, 2009.
DOI : 10.1089/cmb.2008.0163

M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub, and S. Thiele, On the Input Language of ASP Grounder Gringo, Lecture Notes in Computer Science, vol.5753, 2009.
DOI : 10.1007/978-3-642-04238-6_49

M. K. Morris, J. Saez-rodriguez, D. C. Clarke, P. K. Sorger, and D. A. Lauffenburger, Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli, PLoS Computational Biology, vol.31, issue.3, p.1001099, 2011.
DOI : 10.1371/journal.pcbi.1001099.s019