U. S. Jha, R. Prasad, and O. , Towards Fixed and Mobile Broadband Wireless Access, 2007.

J. Daniel, G. Swanson, and W. J. Hoefer, Microwave Circuit Modeling Using Electromagnetic Field Simulation, 2003.

R. Hoppe, P. Wertz, F. M. Landstorfer, and G. Wölfle, Advanced ray-optical wave propagation modelling for urban and indoor scenarios including wideband properties, European Transactions on Telecommunications, vol.22, issue.1, pp.61-69, 2003.
DOI : 10.1002/ett.4460140108

J. Gorce, K. J. Runser, and G. De-la-roche, The Adaptive Multi-Resolution Frequency-Domain ParFlow (MR-FDPF) Method for Indoor Radio Wave Propagation Simulation. Part I : Theory and Algorithms, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070278

P. Berini and K. Wu, A new frequency domain symmetrical condensed TLM node, IEEE Microwave and Guided Wave Letters, vol.4, issue.6, pp.180-182, 1994.
DOI : 10.1109/75.294285

D. Johns and C. Christopouros, New frequency-domain TLM method for the numerical solution of steady-state electromagnetic problems, IEE Proceedings - Science, Measurement and Technology, vol.141, issue.4, pp.310-316, 1994.
DOI : 10.1049/ip-smt:19941063

H. Jin and R. Vahldieck, A new Frequency-Domain TLM symmetrical condensed node derived directly from Maxwell's equations, Proc. IEEE MTT-S Int. Microwave Symp. Digest, pp.487-490, 1995.

B. Chopard, P. Luthi, and J. Wagen, Lattice Boltzmann method for wave propagation in urban microcells, Microwaves, Antennas and Propagation, IEE Proceedings, pp.251-255, 1997.
DOI : 10.1049/ip-map:19971197

C. Christopoulos, The Transmission-Line Modeling (TLM) Method in Electromagnetics, Synthesis Lectures on Computational Electromagnetics, vol.1, issue.1, 2006.
DOI : 10.2200/S00027ED1V01Y200605CEM007

I. Salama and S. M. Riad, TFDTLM-a new computationally efficient frequency-domain transmission-line-matrix method, IEEE Transactions on Microwave Theory and Techniques, vol.48, issue.7, pp.1089-1097, 2000.
DOI : 10.1109/22.848491

J. Gorce, K. Jaffres-runser, and G. De-la-roche, Deterministic Approach for Fast Simulations of Indoor Radio Wave Propagation, IEEE Transactions on Antennas and Propagation, vol.55, issue.3, pp.938-948, 2007.
DOI : 10.1109/TAP.2007.891811

URL : https://hal.archives-ouvertes.fr/inria-00404836

G. De-la-roche, K. Jaffres-runser, and J. Gorce, On predicting in-building WiFi coverage with a fast discrete approach, International Journal of Mobile Network Design and Innovation, vol.2, issue.1, pp.3-12, 2007.
DOI : 10.1504/IJMNDI.2007.013799

URL : https://hal.archives-ouvertes.fr/inria-00404857

B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems, 1998.

P. O. Luthi, Lattice wave automata: From radio waves to fractures propagation, 1998.

B. Chopard and P. O. Luthi, Lattice Boltzmann computations and applications to physics, Theoretical Computer Science, vol.217, issue.1, pp.115-130, 1999.
DOI : 10.1016/S0304-3975(98)00153-4

V. Trenkic, The development and characterization of advanced nodes for the TLM method, 1995.

P. B. Johns, A Symmetrical Condensed Node for the TLM Method, IEEE Transactions on Microwave Theory and Techniques, vol.35, issue.4, pp.370-377, 1987.
DOI : 10.1109/TMTT.1987.1133658

P. Enders, Huygens' principle in the transmission line matrix method (TLM). Global theory, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol.2, issue.5, pp.451-456
DOI : 10.1002/jnm.427

N. V. Kantartzis and T. D. , Tsiboukis, Modern EMC Analysis Techniques, 2008.

V. V. Nikolsky and T. I. Nikolskaya, Electrodynamics and Propagation of Radio Waves, Nauka, 1989.