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Abstract: We study the problem of minimum makespan scheduling when tasks are restricted
to subsets of the processors (resource constraints), and require either one or multiple distinct
processors to be executed (parallel tasks). This problem is related to the minimum makespan
scheduling problem on unrelated machines, as well as to the concurrent job shop problem, and it
amounts to finding a semi-matching in bipartite graphs or hypergraphs. While the problem was
known to be NP-complete for bipartite graphs, but solvable in polynomial time for unweighted
graphs (i.e., unit tasks), we prove that the problem is NP-complete for hypergraphs even in the
unweighted case. We design several greedy algorithms of low complexity to solve two versions of
the problem, and assess their performance through a set of exhaustive simulations. Even though
there is no approximation guarantee on these linear algorithms, they return solutions close to the
optimal (or a known lower bound) in average.

Key-words: semi-matching, bipartite graphs, hypergraphs, scheduling, parallel tasks, resource
constraints.



Algorithmes de couplage partiel pour
l’ordonnancement de tâches parallèles sous

contraintes de ressources
Résumé : On étudie le problème d’ordonnancement visant à minimiser le
temps d’exécution lorsque les tâches peuvent être exécutées soit sur un seul
processeur, soit sur plusieurs processeurs en parallèle, et sont restreintes à cer-
tains sous-ensembles de processeurs. Le problème se ramène à devoir trouver
un couplage partiel dans un graphe biparti ou dans un hypergraphe. Sur les
graphes bipartis, le problème général est NP-complet, mais il est possible de
résoudre en temps polynomial les instances de problèmes où toutes les tâches
sont de poids unitaire. Nous montrons dans ce rapport que le problème devient
NP-complet pour les hypergraphes même dans le cas unitaire. Nous proposons
plusieurs algorithmes gloutons pour résoudre deux versions du problème, et nous
étudions leur performance à travers des simulations. Bien qu’il n’y ait aucune
garantie d’approximation sur ces algorithmes, ils retournent en moyenne des so-
lutions proches de l’optimal (ou d’une borne inférieure connue), avec un temps
d’exécution très rapide.

Mots-clés : couplage partiel, graphes bipartis, hypergraphes, ordonnance-
ment, tâches parallèles, contraintes de ressources.



Semi-matching algorithms for scheduling parallel tasks 3

1 Introduction
The Minimum Makespan Scheduling Problem on Unrelated Machines is a clas-
sical topic in scheduling [7]. It can be described as follows: given a set of tasks
and a set of processors, assign the tasks to the processors such that the load
among the processors is balanced, i.e., the maximum load of a processor is min-
imized. The tasks usually differ in their processing time, i.e., in the load that
they create on the processor they are assigned to.

For today’s high performance computing environment dominated by server
virtualization, cloud computing, application accelerators and emerging architec-
tures, we need to refine the problem formulation. Indeed, in classical scheduling,
while the need for different computational resources can be expressed through
the difference in processing time, it does not express the fact that a single task
may have a choice among combinations of multiple computational resources.
We therefore consider the MultiProc problem where (i) tasks are parallel,
i.e., a task can be split in several identical parts and computed simultaneously
on several processors; (ii) tasks are subject to resource constraints, i.e., several
configurations of processors, leading to different execution times, are proposed.
The goal is to find one configuration for each task, in order to minimize the
makespan.

MultiProc is related to the concurrent job shop problem [1]. In this prob-
lem, a job consists of multiple different components, each of which is to be
processed on a specific dedicated processor. Components of the same job can
be processed in parallel on their respective processors. A job is completed once
all of its components are completed. According to Roemer [14], the problem was
introduced by Ahmadi and Bagchi [1]. It has been studied widely [11, 12, 17]
and was proved to be strongly NP-complete [14]. The main difference between
MultiProc and the concurrent job shop problem is the resource constraints,
i.e., whether components are restricted to a specific processor or not. In Mul-
tiProc, each task has the choice among multiple different sets of processors
(different configurations). Those sets can differ in size (i.e., number of proces-
sors), but processing times are equal for all processors in each set. Most of the
time, if there are more processors in a set, then the execution time becomes
smaller on each processor of the set. Similarly to the concurrent job shop prob-
lem, the components of the tasks (i.e., the elements of the processor sets for
each task) are independent: they do not require execution at the same time,
and no order of execution is specified. Note that we only consider the overall
makespan as objective function.

In graph theoretical terms, an instance of the MultiProc problem can be
modeled as a hypergraph, and finding a schedule of minimummakespan amounts
to finding a semi-matching in the hypergraph, where the matching hyperedges
are to be disjoint when restricted to a subset of vertices. As far as we know,
this problem has not been tackled before.

We also consider a variant of the problem with sequential tasks (and re-
source constraints), SingleProc. Here, each task is scheduled only on a single
processor, chosen among a set of possible processors (and corresponding execu-
tion times). In this case, the hypergraph is in fact a bipartite graph, and the
problem consists therefore of finding a semi-matching in a bipartite graph. This
has been studied intensively in the case of unweighted bipartite graphs, i.e.,
unit weight tasks SingleProc-Unit: several polynomial time algorithms were
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Semi-matching algorithms for scheduling parallel tasks 4

proposed [4, 8]. The weighted version turns out to be NP-complete, for which
a 3/2-approximation algorithm has been recently proposed [13]. However, the
running time of this approximation algorithm is quadratic in the total number
of tasks (with the average degree as a multiplicative factor), and hence not very
practical for large problem instances.

Our contribution is twofold, and stands at the crossroad between scheduling
and graph theory.

1. For the SingleProc-Unit problem, we design a set of linear time heuris-
tics, and we investigate the quality of their approximations. The results
indicate that even though they have no approximation guarantee (i.e., we
can build examples in which they are as far as possible from the optimal),
their average behavior is very good when compared to the optimal solu-
tion, and they are suitable for practical application, e.g., load balancing
in parallel computing.

2. For the MultiProc problem, we prove that it is NP-complete even in the
unweighted case (while SingleProc-Unit was solvable in polynomial
time). Moreover, for all ε > 0, there is no (2− ε)-approximation algorithm
unless P=NP. Building on the concepts used in the previous heuristics,
we design a new set of heuristics for the most general problem instance.
Since it is not possible to compute easily the optimal solution, we rely
on a lower bound to assess the performance of the heuristics, and present
exhaustive simulation results.

The remainder of this paper is organized as follows. We start with a formal
description of the optimization problems in Section 2. We then prove in Section 3
that the general problem MultiProc is NP-complete, even with unit weight
tasks. We design several linear time algorithms for two variants of the problem
in Section 4, and then assess their performance in Section 5. Finally, we conclude
in Section 6 with a summary and plans on further investigations of the addressed
problems.

2 Framework
We consider the problem of scheduling n independent tasks onto a set of p
processors, with the objective of minimizing the makespan, i.e., the maximum
load of a processor. Let T1, . . . , Tn be the set of tasks, and let P1, . . . , Pp be the
set of processors.

For 1 ≤ i ≤ n, task Ti is subject to resource constraints: it can be executed
only on some of the processors, and possibly in parallel on several processors
(parallel task). There is therefore a set of possible configurations for each task,
e.g., task T1 can be processed either on processor P1, or concurrently on pro-
cessors P2 and P3. Let Si be the different configurations for Ti, i.e., the collec-
tion of sets of processors on which Ti can be executed. Back to our example,
S1 = {{P1}, {P2, P3}}. Task Ti is executed on a set of processors alloc(i) ∈ Si,
and it takes a time walloc(i)

i on each of the processors Pu ∈ alloc(i). The pro-
cessing can be done at different time steps on the processors of alloc(i), since
the task is executed in parallel, and we assume that the different parts of the
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Semi-matching algorithms for scheduling parallel tasks 5

task are independent, similarly to the concurrent job shop problem. The goal is
to find a mapping of tasks to processors, i.e., decide the set alloc(i) of processors
on which Ti is executed, for 1 ≤ i ≤ n.

We define the load l(u) of processor Pu as its execution time:

l(u) =
∑

i | Pu∈alloc(i)

w
alloc(i)
i .

The goal is to complete all tasks as soon as possible, i.e., minimize the
makespan M = max1≤u≤p l(u). We consider several problem variants in the
following, and describe the problems in the graph and hypergraph formalisms,
so that the scheduling problem amounts to finding a semi-matching.

2.1 With a single processor
In some cases, tasks cannot be executed in parallel, and Si is just a set of
processors on which Ti can be executed, instead of a set of sets. This problem
is called SingleProc. Note that it amounts to finding a semi-matching in a
bipartite graph. We recall some graph definitions below to ease the description.

In a bipartite graph G = (V1 ∪ V2, E), the vertex sets V1 and V2 are disjoint
and for all edges in E, one of the endpoints belongs to V1 and the other belongs
to V2. In our problem, V1 is the set of tasks, V2 is the set of processors, and an
edge e = (Ti, Pu) ∈ E between a task Ti ∈ V1 and a processor Pu ∈ V2 means
that Pu is in the set Si (see Fig. 1, where S1 = {P1, P2} and S2 = {P1}). We
use dv to refer to the number of neighbors of a vertex v ∈ V1 ∪ V2. Moreover,
we can add weights to the edges, that correspond to execution times: w(e) =
w(Ti, Pu) = wPu

i .

V1 V2E

T1

T2

P1

P2

Figure 1: A sample bipartite graph for SingleProc-Unit.

Given a bipartite graph G = (V1 ∪ V2, E), a semi-matching M in G is a
set of edges M ⊆ E such that each vertex v ∈ V1 is incident to exactly one
edge inM, i.e., it corresponds to the allocation function alloc(i). Given a semi-
matching M, the load l(u) of u ∈ V2 is the sum of the weights of the edges
in M incident on u. The objective is to find a semi-matching M such that
maxu∈V2

l(u) is minimized.
This SingleProc problem was shown to be NP-complete [13] by reduction

from the Minimum Makespan Scheduling Problem on Identical Machines, which
differs from SingleProc in the fact that the tasks can be run on any machine
(i.e., no resource constraints). It was also noted there that SingleProc can be
reduced to the Minimum Makespan Scheduling Problem on Unrelated Machines,
a more general formulation where the tasks can vary in execution time on dif-
ferent processors. For this problem, a 2-approximation algorithm was given by
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Graham et al. [7], which was subsequently improved to 2− 1
p by Shchepin and

Vakhania [16].
We consider also the unweighted version, that amounts to having wPu

i = 1
for 1 ≤ i ≤ n and Pu ∈ Si. This corresponds to unit tasks, and the problem is
called SingleProc-Unit. This simpler instance of the problem can be solved
via bipartite graph matching algorithms in polynomial time, as shown in [8]. In
Section 4, we design several linear time heuristics for this SingleProc-Unit
problem, since this allows us to compare the heuristics with the optimal solution
in a reasonable time. Heuristics are then extended to solve the most general
problem, that we detail below.

2.2 With multiple processors
The general problem is called MultiProc, and Si is now a set of sets of pro-
cessors. Back to the graph theory, this problem can then be seen as a matching
problem in hypergraphs. A hypergraph H=(V,N ) consists of a set of vertices
V and a set of hyperedges N . Each hyperedge is a subset of vertices.

A MultiProc problem instance can be modeled as a bipartite hypergraph
H =(V,N ) of the following form: the vertex set is bipartite (V = V1 ∪ V2, V1 ∩
V2 = ∅), and each hyperedge h ∈ N satisfies |V1 ∩ h| = 1, i.e., one single task
Ti ∈ V1 is associated to a set of processors in V2 through an hyperedge. In the
example of Fig. 2, tasks T3 and T4 have only one configuration (they are in a
single hyperedge), and must therefore be executed on P3. Tasks T1 and T2 can
be executed in parallel and have the choice between several configurations. For
example, T1 can be executed by P1 sequentially or by P2 and P3 collectively.

V1 V2N

T1

T2

T3

T4

P1

P2

P3

Figure 2: A sample hypergraph for MultiProc.

The problem now amounts to finding a semi-matching in a hypergraph, i.e.,
a set of hyperedges M ⊆ N where the hyperedges in M are disjoint on the
vertices in V1. Thus, for all Ti ∈ V1, there must be exactly one hyperedge hi
inM such that hi ∩ V1 = Ti. We then define alloc(i) = hi ∩ V2. The processor
load l(u) of u ∈ V2 is equal to the sum of the weights of hyperedges incident on
u inM. For the ease of notations, we let wh = wh∩V2

h∩V1
be the weight associated

to hyperedge h ∈ N . We use dv to denote the number of hyperedges containing
the vertex v ∈ V1.

The unweighted version of this problem, where all weights are 1, is called
MultiProc-Unit. While it is possible to solve SingleProc-Unit in poly-
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nomial time, MultiProc-Unit turns out to be NP-complete, even with unit
weights (see Section 3).

3 NP-completeness of MultiProc-Unit

It was shown that SingleProc is NP-complete [13], while SingleProc-Unit
is solvable in polynomial time [8]. We show that MultiProc is NP-complete
even for the unweighted version MultiProc-Unit. Moreover, the reduction
implies approximation hardness.

Theorem 1. The problem MultiProc-Unit is NP-complete, and for all ε > 0,
there is no (2− ε)-approximation algorithm unless P=NP.

Proof. We consider the associated decision problem: given an instance of
MultiProc-Unit and a bound on the makespan D, is there a solution of
makespan not larger than D? This problem is obviously in NP, since the
makespan can be computed in linear time, given an assignment of tasks to
processors.

To establish the completeness, we use a reduction from Exact Cover by 3-
Sets (X3C) [5, p. 53]. We consider an instance I1 of X3C: given a finite set X
of elements where |X| = 3q and a collection C of 3-element subsets of X, does
C contain an exact cover C ′ ⊆ C such that every element of X occurs in one
member of C ′.

We build an instance I2 of MultiProc-Unit: the set of elements of I1 are
the processors, i.e., the vertex set V2 in the hypergraph formulation. There are
q tasks to be mapped on these 3q processors, i.e., |V1| = q. Each of these tasks
can be mapped onto the sets of processors corresponding to the collection C,
i.e., Si = C for 1 ≤ i ≤ n. Moreover, we set the deadline D = 1.

Clearly, the size of I2 is polynomial in the size of I1. We show that I1 has
a solution if and only if I2 does.

If I1 has a solution, i.e., there is an exact cover, then we assign each task
to the set of processors corresponding to one member of C ′. Each processor is
therefore processing exactly one task, and the makespan is 1 ≤ D, therefore I2
has a solution.

Suppose now that I2 has a solution. Since the makespan is at most 1, each
processor can process at most one task, and since each task is executed on three
distinct processors by construction of Si, the allocation of I2 forms a cover
for I1, and hence the result.

There remains to prove the inapproximability result. Let us assume that
there is a (2 − ε)-approximation algorithm of MultiProc-Unit, with ε > 0.
Then, we use this algorithm to solve instance I2, hence obtaining a makespan
M ≤ (2 − ε)Mopt, where Mopt is the optimal makespan. Since Mopt = 1, we
obtain M < 2, and hence M = 1 since all weights are unit. The algorithm has
therefore found an optimal solution, that corresponds to a cover, in polynomial
time. This cannot hold unless P=NP.

Since the MultiProc problem is NP-complete even with unit weights (see
MultiProc-Unit), we derive efficient algorithms to solve it. We design algo-
rithms also for the simpler version of the problem SingleProc-Unit, since we
are then able to compare heuristics to the optimal solution.

RR n° 8089
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4 Algorithms
In this section, we propose heuristics for SingleProc-Unit and MultiProc,
as well as a polynomial time exact algorithm for SingleProc-Unit and a lower
bound for MultiProc, which we use for experimental comparison. The exact
algorithm for SingleProc-Unit and the lower bound for MultiProc are de-
veloped to obtain baseline values for evaluating the proposed heuristics. The
exact algorithm for SingleProc-Unit can be expensive for large problem in-
stances, and therefore the heuristics for SingleProc-Unit are designed to be of
linear time. Even though we focus on the unweighted case SingleProc-Unit,
the heuristics can be easily extended to weighted instances without adversely
affecting their running time. The heuristics for the MultiProc problem are
based on the heuristics for SingleProc-Unit.

4.1 Exact Algorithm for SingleProc-Unit
As shown by Harvey et al. [8], SingleProc-Unit can be solved using some
modified versions of the standard matching algorithms. We propose a concep-
tually simpler algorithm by making use of the standard matching algorithms
(see a relatively recent survey [3] on augmenting-path based ones, and other
studies,[6, 9] on push-relabel based ones). Assume a deadline D = 1 and run
the push-relabel algorithm on G. If a perfect matching is found, we have found
a schedule of makespan 1, hence an optimal schedule. Otherwise, increase D
by 1 and run the push-relabel algorithm on GD, where GD is identical to G
except that it contains a total of D copies of each vertex in u ∈ V2, each having
the same neighborhood as the original vertex u. Repeat this process until a
matching covering all the task vertices is found, at which time D is equivalent
to the optimal makespan.

At step D, the algorithm has a complexity of O(
√
|V1||E|D), and there are

Mopt steps, where Mopt is the optimal makespan. Hence the algorithm has a
running time complexity of O(

√
|V1||E||M2

opt). Note thatMopt ≤ |V1|, since the
worst case is when all tasks are mapped on the same machine.

4.2 Greedy Algorithms for SingleProc-Unit
4.2.1 Basic-greedy

The basic greedy algorithm is straightforward (see Algorithm 1). It loops
through the tasks in V1 and assigns each task v ∈ V1 to a processor in the
neighborhood of v that has the smallest current load. The running time is
O(|E|). Even though this algorithm often performs reasonably well, there are
some instances in which it performs poorly. A toy example with two tasks (on
the left) and two processors is shown in Fig. 1. If T1 is mapped to P1, with T2
having a single choice, the basic-greedy algorithm can assign the two tasks to
processor P1 and reach a makespan of 2 (versus 1 for the optimal solution). We
show below that the basic greedy algorithm does not have any approximation
guarantee.

RR n° 8089
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Input: A bipartite graph G = (V1 ∪ V2, E)
Output: A matchingM in G
1: for all v ∈ V1 do
2: find an edge e = {v, u} ∈ E for which l(u) is minimum
3: M←M+ e
4: l(u)← l(u) + 1
5: return M

Algorithm 1: basic-greedy

4.2.2 Sorted-greedy

We improve basic-greedy by sorting tasks by non-decreasing out-degrees. The
idea is to schedule the tasks that have less freedom first, e.g., task T2 in the
example of Fig. 1. The only modification to Algorithm 1 consists in visiting
the tasks according to a non-decreasing order of degrees (dv) at line 1. Unfor-
tunately, this sorted-greedy algorithm may also take wrong decisions. We show
here an example where it is at a factor k from the optimal solution, for any k
(this is an example also showing that basic-greedy can be arbitrarily far from
the optimal).

Consider that there are 2k−1 tasks to be mapped onto 2k processors. For the
ease of reading, tasks are named T (`)

i , with 0 ≤ ` ≤ k − 1, and 1 ≤ i ≤ 2k−1−`.
Task T (`)

i can be placed either on processor Pi, or on processor Pi+2k−1−` (see
Fig. 3, for k = 3).

The optimal solution places T (`)
i on Pi+2k−1−` , for 0 ≤ ` ≤ k − 1, and

1 ≤ i ≤ 2k−1−`. There is only one task per processor, hence an optimal schedule
has a makespan of 1. However, the sorted-greedy algorithm starts by placing
tasks T (0)

i on processors P1 through P2k−1 , and then all processors that can be
used for tasks T (1)

i have already a makespan of 1, it places them on processors
P1 through P2k−2 , and so on. Finally, task T (k−1)

1 is also mapped on P1, and
processor P1 achieves a makespan of k.

4.2.3 Double-sorted

From the example above, it seems better to also sort processors by increasing
in-degrees, when there is a tie (i.e., edges leading to identical loads). This
double-sorted algorithm is detailed as Algorithm 2.

This algorithm may also take wrong decisions. We can for instance generalize
the example of Fig. 3 by adding extra tasks with higher degree and processors,
so that all processors from the previous example have the same degree and the
newcomers have a smaller degree. We illustrate this counter-example only for
the case k = 3, see Fig. 4. Tasks T9 to T12 have a larger out-degree, so they
are considered last. Then, since processors P1 to P8 have an identical in-degree
of 3, double-sorted may take the same wrong decisions as sorted-greedy does,
and obtain a makespan of 3 (while the optimal makespan is 1).

RR n° 8089
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T
(0)
1

T
(0)
2

T
(0)
3

T
(0)
4

T
(1)
1

T
(1)
2

T
(2)
1

P1

P2

P3

P4

P5

P6

P7

P8

Figure 3: Example where basic-greedy and sorted-greedy obtain a makespan
of k = 3, while the optimal makespan is 1.

Input: A bipartite graph G = (V1 ∪ V2, E)
Output: A matchingM in G
1: for all v ∈ V1, sorted by non-decreasing out-degree do
2: minl ← n
3: mind ← n
4: for all e = {v, u} ∈ E do
5: if l(u) < minl or (l(u) = minl and du ≤ mind) then
6: minl ← l(u)
7: mind ← du
8: mine ← e
9: M←M+mine

10: l(u)← l(u) + 1
11: return M

Algorithm 2: double-sorted
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Input: A bipartite graph G = (V1 ∪ V2, E)
Output: A matchingM in G
1: for all u ∈ V2 do
2: o(u)← 0
3: for all v ∈ V1 do
4: for all {v, u} ∈ E do
5: o(u)← o(u) + 1/dv
6: for all v ∈ V1, sorted by non-decreasing out-degree do
7: find an edge e = {v, u} ∈ E for which o(u) is minimum
8: M←M+ e
9: o(u)← o(u) + 1− 1/dv

10: for all {v, u} ∈ E \ {e} do
11: o(u)← o(u)− 1/dv
12: return M

Algorithm 3: expected-greedy

T
(0)
1

T
(0)
2

T
(0)
3

T
(0)
4

T
(1)
1

T
(1)
2

T
(2)
1

T8

T9

T10

T11

T12

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

Figure 4: Example where double-sorted obtains a makespan of k = 3, while the
optimal solution is 1.
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4.2.4 Expected-greedy

As we have seen above, a weakness of the greedy algorithms is their inability
to predict load that will arrive at a given vertex later during the execution of
the algorithm. In this last greedy algorithm, we add a simple load prediction
technique to sorted-greedy and adapt the strategy for the assignment of matching
vertices. The resulting algorithm shown in Algorithm 3 is referred to as expected-
greedy.

In this algorithm, o(u) represents the expected load of a vertex in V2 (or
processor). The values o(u) can be interpreted as the expected load a vertex u
would have if the remaining matchings were performed uniformly at random.
Actually, matching v to u can be seen as the collapse of the probability function.
Consequently u, i.e., the possibility that was realized is assigned a probability of
1 and all other possibilities (i.e., neighbors of v) are assigned a probability of 0.
The values of o are updated accordingly. When the algorithm terminates, the
values o(u) are equivalent to actual loads l(u), and their maximum is equal to
the makespan. One immediately verifies that the running time remains O(|E|).

On the example of Fig. 4, the values of o(u) differ since tasks T9 to T12 are
of degree 3, while the others are of degree 2. Therefore, expected-greedy places
T

(0)
1 on P5, as in the optimal solution, and reaches the optimal makespan of 1.

However, it is possible to modify the example so that expected-greedy also takes
the wrong decisions, by having 16 tasks and 16 processors, and all tasks of
degree 2, as in Fig. 5. Tasks T9 to T16 can be assigned to their own processor,
and processors P1 to P8 have a degree 3. Therefore, the same wrong decisions
will be taken by expected greedy and by double-sorted (i.e., tasks T (0)

i will be
mapped on Pi, for 1 ≤ i ≤ 4, and so on).

Note that those worst cases are however extremely unlikely in practice.
Therefore, we study the quality offered by the heuristics and contrast it with
the optimum values obtained from the exact algorithm. Results are discussed
in Section 5.

4.3 Lower bound for MultiProc
Since we cannot compute the optimal solution for MultiProc, we derive a
lower bound so that we will be able to assess the performance of the heuristics,
later in Section 5. For each task Ti ∈ V1, we find a hyperedge hi ∈ N such that
Ti ∈ hi, and whi

× |hi ∩ V2| is minimum. We then define

timei = min
hi∈N :Ti∈hi

whi
× |hi ∩ V2| .

Since all tasks must be executed on the p processors, the ideal case is when
all processors achieve an identical load, equal to the makespan. Therefore, an
obvious lower bound is one in which each task is in the best configuration in
terms of the global load, leading to a total execution time of timei, and where
the load is equally shared between processors:

LB =
1

p

∑
1≤i≤n

timei .
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Figure 5: Example where expected-greedy obtains a makespan of k = 3, while
the optimal solution is 1. Note that all tasks are of degree 2, processors P1 to P8

are of degree 3, and processors P8 to P16 are of degree 1.
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4.4 Greedy Algorithms for MultiProc
In this section, we aim at adapting the previous greedy algorithms for the Mul-
tiProc problem. On one hand, we need to account for the fact that a task may
be executed on several processors. On the other hand, we need to account for
task incurring different weights in different configurations, since we considered
only the unweighted case previously.

We consider four heuristics for MultiProc, mainly based on the sorted-
greedy algorithm for SingleProc-Unit. We exploit the hypergraph structure
by introducing a new way of deciding which set of processors to choose (i.e.,
which hyperedge) for a given task (see the vector heuristics).

4.4.1 Sorted-greedy-hyp

Adapting sorted-greedy for MultiProc requires only minimal effort. Instead
of choosing a neighbor of v having minimum current load, we chose a hyper-
edge h that minimizes maxu∈h l(u), among all hyperedges incident to v (see
Algorithm 4). We also consider the weights in the new version of the algorithm,
when computing the load l(u).

Input: A hypergraph H=(V1, V2,N )
Output: A matchingM
1: for all v ∈ V1, sorted by non-decreasing out-degree do
2: find a hyperedge h : v ∈ h for which maxu∈h l(u) is minimum.
3: M←M+ h
4: return M

Algorithm 4: sorted-greedy-hyp

The running time now depends on the number of V2 vertices in the hyper-
edges being inspected. In the worst case, the running time becomesO(

∑
h∈N |h|).

Since bipartite graph semi-matching is a special case of hypergraph semi-matching,
this algorithm also does not have an approximation guarantee. However, ap-
proximation of hypergraph semi-matching faces the additional difficulty that a
single task can increase the load on multiple processors.

4.4.2 Expected-greedy-hyp

The expected-greedy algorithm can also be naturally extended to hypergraphs.
In this case, when computing the values o(u), a hyperedge h containing v assigns
its value of wh/dv to all vertices of V2 contained in h, where wh is the weight
associated to the hyperedge, i.e., the execution time of task corresponding to v
on each processor of the hyperedge. Other computations of o(·) are performed
accordingly, as shown in Algorithm 5.

The running time of this algorithm is O
(∑

h∈N |h|
)
. Due to the updates

of o, its running time will generally be in O
(∑

h∈N |h|
)
since hyperedges cannot

be skipped during the updates. As discussed above, in the hypergraph case the
additional information provided by the o values is far more important, since the
potential mistakes the basic greedy algorithm can make are far greater.
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Input: A hypergraph H=(V1, V2,N )
Output: A matchingM
1: for all u ∈ V2 do
2: o(u)← 0
3: for all v ∈ V1 do
4: for all h ∈ N : v ∈ h do
5: for all u ∈ V2 : u ∈ h do
6: o(u)← o(u) + wh/dv
7: for all v ∈ V1, sorted by non-decreasing out-degree do
8: find a hyperedge h : v ∈ h for which maxu∈h o(u) is minimum.
9: M←M+ h

10: for all u ∈ V2 : u ∈ h do
11: o(u)← o(u) + wh − wh/dv
12: for all h′ ∈ N \ {h} : v ∈ h′ do
13: for all u ∈ V2 : u ∈ h′ do
14: o(u)← o(u)− wh′/dv
15: return M

Algorithm 5: expected-greedy-hyp

4.4.3 Vector-greedy-hyp

Consider the sorted-greedy-hyp algorithm. At line 2, instead of looking at the
loads increased by the hyperedge, we can look at the current bottleneck value,
e.g., maxu∈V2 l(u). Clearly there will be many ties. In these case, we can
favor the hyperedge that has the smaller second largest load. This tie breaking
mechanism can be extended to check the load vectors sorted in descending order
lexicographically. That is, among the hyperedges, choose the ones that yield the
smallest largest l(·) value; among the alternatives choose the ones that yield the
smallest second largest l(·) value and so on.

The worst case running time complexity of this heuristic can be shown to
be O

(∑
v∈V1

dv|V2| log |V2|+
∑

h∈N |h|
)
, as checking the sorted load vectors

lexicographically requires a sort operation (on |V2| items) for each hyperedge.
Two improvements of this running time are immediate. First, if the hyperedges
are unit weighted, then the sort operation can be done in linear time using bucket
sort (or counting sort). Furthermore, one can keep the current load vector sorted
as a list and then obtain the sorted load vector of an hyperedge by modifying
the positions of modified loads. Here one can take advantage of the list already
being sorted to reduce the sort operation as the merge of two lists (one of them
is the processors in the hyperedge, the other is the remaining ones). This variant
has the worst case time complexity of O

(∑
v∈V1

dv|V2|+
∑

h∈N |h|
)
.

4.4.4 Expected-vector-greedy-hyp

This last heuristic is a combination of the expected and vector greedy heuris-
tics on hypergraphs. There is one difficulty though. The current expected
load vector of the processors contains contributions from each hyperedge as-
sociated with the task to be assigned. In order to differentiate between the
hyperedges, one of them should be tentatively realized, and the others should
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be tentatively discarded so that the effect of each hyperedge can be mea-
sured. For a vertex with dv hyperedges, this requires O(dv

∑
v∈h |h|) operations.

The overall complexity of the algorithm with the list representation would be
O
(∑

v∈V1
dv|V2|+

∑
v dv

∑
v∈h |h|

)
. The first term would likely be the domi-

nant one in reasonable settings but the overhead due to the second term (with
respect to the vector-greedy-hyp) can be significant.

5 Experiments
We have implemented the proposed heuristics in Matlab and run the codes on
a MacBook Pro equipped with a 2.7 GHz Intel Core i7 processor and 8GBytes
of 1333 MHz DDR3 ram. We used an implementation of the push-relabel al-
gorithm [9] provided in MatchMaker suit [3]. The reported running times of
algorithms are in seconds and obtained by tic-toc routines of Matlab.

Below, we first explain how the data has been generated. Then we detail
experimental results for SingleProc-Unit and MultiProc.

5.1 Data set
We have simulated the algorithms in settings where the number of tasks n is
in {1280, 5120, 20480}, and the number of processors p is in 256, 1024, 4096; we
did not test the cases where n < 5 × p. The size of the problem instances is
comparable to the numbers in recent studies [15]. We implemented, in Matlab,
two random bipartite graph generators [2] to create the structure of bipartite
graphs and the hypergraphs used in the experiments. These generators are
widely used in testing matching [3, 10] and semi-matching algorithms [8]. The
generators take a number of parameters and create an instance of the problems
at hand. In order to remove statistical bias, we create 10 instances with a
given parameter set and report the median of measurements in those 10 random
instances for the given parameter set.

5.1.1 Bipartite graphs and SingleProc-Unit instances

The HiLo generator has been used in the cited resources to create bipartite
graphs with |V1| = |V2| where the resulting bipartite graph has a unique max-
imum matching with cardinality |V1|. The associated task-processor bipartite
graphs admit therefore a trivial makespan of one. We use this generator to cre-
ate task-processor graphs with many more tasks than processors, hence possibly
having many maximum matchings (with cardinality |V2|). A little precision is
necessary to describe the resulting random bipartite graphs resulting from this
generator for the case |V1| 6= |V2|. There are four parameters to the HiLo bipar-
tite graph generator: n, the number of vertices in V1; p, the number of vertices
in V2; g the number of groups in which the vertices of V1 and V2 are divided;
and d, a parameter used in defining the neighbors of a vertex in V1. Let xji
be the ith vertex in the jth vertex group of V1 and yjk be the kth vertex in
the jth vertex group of V2. The vertex xji is connected to all vertices yjk for
k = max(1,min(i, p/g) − d), . . . ,min(i, p/g) and also if j < g to those yj+1

k for
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k = max(1,min(i, p/g)− d), . . . ,min(i, p/g). We use HiLo(n, p, g, d) to denote a
generic instance from this family created according to the four parameters.

The FewgManyg generator [2] also has four parameters: n, the number of
vertices in V1; p, the number of vertices in V2; g the number of groups in which
the vertices of V1 and V2 are divided; and d, the average degree of a vertex in
V1. First, the number of neighbors di of each vertex xji ∈ V1 is determined by
sampling from a binomial distribution with mean d. Then for a vertex xji ∈ V1,
di vertices are randomly chosen (without replacement) among the V2 vertices
in the j − 1st to j + 1st groups with wrap-around. In cases where di is bigger
than 3p/g, vertices are chosen with replacement. In the original description of
the FewgManyg generator, g = 32 was used to refer to bipartite graph instances
with few groups, and g = 256 was used to refer to bipartite graph instances with
few groups. We use FewgManyg(n, p, g, d) to denote a generic instance from this
family created according to the four parameters.

In our study, we use all combinations of d ∈ {2, 5, 10} and g ∈ {32, 128} for
the two generators to create instances of the problem SingleProc-Unit. We
present detailed results for only d = 10, as this choice of d is more common
for these generators [2, 8], and give a short summary of the results for other
combinations in the appendix.

5.1.2 Hypergraphs and MultiProc instances

The hypergraph corresponding to the MultiProc instances can conveniently
be represented by two bipartite graphs. The first one represents the connections
between V1 and N , the second one represents the connections between N and
V2. By exploiting this fact, we create the instances for the problem MultiProc
in two steps using five parameters: n, the number of tasks; p, the number of
processors; dv, the average degree of a task; dh, a parameter used in defining
the processor vertices in an hyperedge; and g the number of groups in which
the processors and the hyperedges are divided.

In the first step, we choose the degrees of vertices in V1 by random sam-
pling a binomial distribution with mean dv. Since the set of hyperedges of
each vertex in V1 are disjoint from the others, the degrees of vertices is enough
to form the set of hyperedges. That is, we create |N | ≈ |V1|dv hyperedges,
each containing a unique vertex from V1. Then, in the second step, given the
total number of hyperedges from the first step, we call HiLo(|N |, p, g, dh) or
FewgManyg(|N |, p, g, dh) to add the processor vertices to each hyperedge.

In our study, we use all combinations of dv, dh ∈ {2, 5, 10} and g ∈ {32, 128}
for the two generators to create instances of the problem MultiProc. In one
set of data created with these parameters, we used unit hyperedge weights,
essentially creating instances of MultiProc-Unit. In the second set of experi-
ments, we deterministically assigned the weight wh to an hyperedge h as follows.
Let sh = |h ∩ V2|; then wh =

⌈
minj∈N {sj}×maxj∈N {sj}

sh

⌉
. Note that this results

in almost linear speed up for all configurations represented by hyperedges. In
all combinations of dv, dh, the ranking of the heuristics according to the mean
average quality were the same. We present detailed results for only dv = 5 and
dh = 10, as this choice of dh is more common with the use of the generators and
dv = 5 seems reasonable with respect to dh. We give a short summary of the
results for other combinations of dv and dh in the appendix.
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Table 1: Random bipartite graph instances constructed by the FewgManyg and
HiLo generators.

Instance |V1| |V2| |E|
MG-5-1-SP 1280 256 12446
FG-5-1-SP 1280 256 5552
MG-20-1-SP 5120 256 49775
FG-20-1-SP 5120 256 22165
MG-20-4-SP 20480 256 198779
FG-20-4-SP 20480 256 88705
MG-80-1-SP 5120 1024 51280
FG-80-1-SP 5120 1024 49817
MG-80-4-SP 20480 1024 204874
FG-80-4-SP 20480 1024 198561
MG-80-16-SP 20480 4096 204325
FG-80-16-SP 20480 4096 204853
HLM-5-1-SP 1280 256 18396
HLF-5-1-SP 1280 256 4845
HLM-20-1-SP 5120 256 78876
HLF-20-1-SP 5120 256 20145
HLM-20-4-SP 20480 256 320796
HLF-20-4-SP 20480 256 81345
HLM-80-1-SP 5120 1024 107415
HLF-80-1-SP 5120 1024 74460
HLM-80-4-SP 20480 1024 440055
HLF-80-4-SP 20480 1024 319260
HLM-80-16-SP 20480 4096 440055
HLF-80-16-SP 20480 4096 434775

5.2 Experimental results for SingleProc
We now present our experimental results. First, an overview over the test
instances is shown in Table 1. Instances from the FewgManyg generator are
named for number of groups with FG for few groups (g = 32) and MG for many
groups (g = 128). Instances from the HiLo generator are named HLF for g = 32
and HLM for g = 128. The following two numbers denote the number of tasks
and the number of processors, both in multiples of 256. Finally, the appended
-SP denotes a SingleProc problem. In this table, |E| is the median value of
the number of edges in 10 random instances for a given parameter set.

Results are shown in Table 2. The tables report the optimal makespan
M computed with the exact algorithm of Section 4.1, and the ratio of each
heuristic solution compared to the optimal makespan. The algorithms are those
of Section 4.2: basic-greedy (BG), sorted-greedy (SG) double-sorted greedy (DG),
and expected-greedy (EG).

For the FewgManyg generator, basic-greedy is the fastest algorithm but offers
the lowest quality. Sorted-greedy significantly improves upon it while taking
only marginally longer running time. The same is true for double-sorted greedy,
but it offers no benefit in comparison to the standard sorted variant. Finally
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Table 2: Performance of the greedy algorithms for the FewgManyg and HiLo
random bipartite graph instances with respect to the optimal value M . BG:
basic-greedy ; SG: sorted-greedy DG: double-sorted greedy ; EG: expected-greedy.

Instance M BG SG DG EG
MG-5-1-SP 5 1.20 1.20 1.20 1.20
FG-5-1-SP 5 1.20 1.20 1.20 1.20
MG-20-1-SP 20 1.25 1.05 1.05 1.05
FG-20-1-SP 20 1.25 1.15 1.15 1.05
MG-20-4-SP 80 1.25 1.02 1.04 1.01
FG-20-4-SP 80 1.26 1.14 1.14 1.01
MG-80-1-SP 5 1.40 1.20 1.20 1.20
FG-80-1-SP 5 1.20 1.20 1.20 1.20
MG-80-4-SP 20 1.30 1.05 1.05 1.05
FG-80-4-SP 20 1.25 1.05 1.05 1.05
MG-80-16-SP 5 1.40 1.20 1.20 1.20
FG-80-16-SP 5 1.40 1.20 1.20 1.20
Average quality 1 1.28 1.14 1.14 1.12
Average time (.s) 2.725 0.067 0.073 0.077 1.236
HLM-5-1-SP 5 1.80 1.40 1.40 1.20
HLF-5-1-SP 5 1.80 1.40 1.40 1.20
HLM-20-1-SP 20 1.95 1.50 1.50 1.25
HLF-20-1-SP 20 1.95 1.50 1.50 1.25
HLM-20-4-SP 80 1.99 1.50 1.50 1.25
HLF-20-4-SP 80 1.99 1.50 1.50 1.25
HLM-80-1-SP 12 2.00 1.58 1.58 1.25
HLF-80-1-SP 5 1.80 1.40 1.40 1.20
HLM-80-4-SP 56 2.00 1.50 1.50 1.25
HLF-80-4-SP 20 1.95 1.50 1.50 1.25
HLM-80-16-SP 47 2.00 1.51 1.51 1.26
HLF-80-16-SP 12 2.00 1.58 1.58 1.25
Average quality 1 1.94 1.49 1.49 1.24
Average time (.s) 6.842 0.058 0.067 0.071 1.083

we see that expected-greedy offers the best approximation but does so at the
cost of an immense increase in running time, and its running time is closer to
the exact algorithm’s running time (which is implemented in C [9]) than to
that of sorted-greedy. We note however that this is due to Matlab being an
interpreted language, which cannot do all optimizations to each code. Thus, we
can conclude that in this experiment, sorted-greedy offers the best combination
of speed and quality with the current implementation. Expected-greedy should
not be too slow with respect to sorted-greedy in an implementation using an
imperative language such as C.

For the HiLo generator, the overall picture is similar to that of the Fewg-
Manyg instances (see the lower part of Table 2). The difference in approximation
quality is more pronounced here. Expected-greedy now offers a significantly bet-
ter approximation and because values ofM are higher, its running time is much
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Table 3: Random hypergraph instances constructed by the FewgManyg and
HiLo generators.

Instance |V1| |V2| |N |
∑

h∈N |h ∩ V2|
MG-5-1-MP 1280 256 6368 61643
FG-5-1-MP 1280 256 6400 27705
MG-20-1-MP 5120 256 25504 248683
FG-20-1-MP 5120 256 25600 110817
MG-20-4-MP 5120 1024 25632 256459
FG-20-4-MP 5120 1024 25728 249483
MG-80-1-MP 20480 256 102336 993764
FG-80-1-MP 20480 256 102016 441810
MG-80-4-MP 20480 1024 102112 1021574
FG-80-4-MP 20480 1024 101888 994256
MG-80-16-MP 20480 4096 102176 1022141
FG-80-16-MP 20480 4096 102144 1027001
HLM-5-1-MP 1280 256 6368 99036
HLF-5-1-MP 1280 256 6400 25245
HLM-20-1-MP 5120 256 25472 400428
HLF-20-1-MP 5120 256 25600 101745
HLM-20-4-MP 5120 1024 26016 556479
HLF-20-4-MP 5120 1024 25600 400860
HLM-80-1-MP 20480 256 102752 1612548
HLF-80-1-MP 20480 256 102528 407235
HLM-80-4-MP 20480 1024 102848 2219679
HLF-80-4-MP 20480 1024 102656 1626900
HLM-80-16-MP 20480 4096 102592 2218293
HLF-80-16-MP 20480 4096 101888 2235585

faster compared to the exact algorithm. However, sorted-greedy still offers the
best tradeoff between running time and approximation quality.

We can conclude that sorted-greedy is essentially superior to basic-greedy and
double-sorted greedy. Since the problem can be solved exactly in polynomial
time, these algorithms are mostly useful in situations where running times is
crucial. Therefore, for expected-greedy to be useful, it must be implemented in
another programming language.

We remind the reader that we have tested with d ∈ {2, 5, 10}, and pre-
sented only results for d = 10. However, the ranking of the heuristics for the
SingleProc-Unit problem were always the same as in Table 2, for the two
families of the random bipartite graphs.

5.3 Experimental results for MultiProc
For MultiProc, we study weighted as well as unweighted instances for both
types of random hypergraphs. Here, the appended -MP denotes a MultiProc
problem. The instances otherwise follow the same naming conventions as the
SingleProc instances. Weighted instances are denoted by an appended -W,
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but are otherwise identical to their unweighted counterparts. The instances are
listed in Table 3. Instead of indicating the number of edges, we now report the
number of hyperedges |N | and the total number of vertices of V2 contained in
the hyperedges

∑
h∈N |h ∩ V2|, where these two last values are the median of

the ten random instances generated with the given parameter settings.

Table 4: Performance of the greedy algorithms for the unweighted FewgManyg
and HiLo random hypergraphs with respect to the lower bound LB. SGH: sorted-
greedy-hyp; VGH: vector-greedy-hyp; EGH: expected-greedy-hyp; EVG: expected-
vector-greedy.

Instance LB SGH VGH EGH EVG
MG-5-1-MP 34 1.43 1.33 1.39 1.37
FG-5-1-MP 17 1.43 1.32 1.43 1.38
MG-20-1-MP 135 1.34 1.24 1.32 1.30
FG-20-1-MP 70 1.40 1.27 1.38 1.38
MG-20-4-MP 34 1.41 1.30 1.39 1.37
FG-20-4-MP 34 1.45 1.34 1.39 1.39
MG-80-1-MP 539 1.30 1.22 1.27 1.27
FG-80-1-MP 280 1.39 1.26 1.37 1.36
MG-80-4-MP 136 1.35 1.24 1.32 1.32
FG-80-4-MP 135 1.34 1.25 1.31 1.31
MG-80-16-MP 34 1.42 1.30 1.39 1.39
FG-80-16-MP 34 1.42 1.30 1.39 1.39
Average quality 1.39 1.28 1.36 1.35
Average time (.s) 0.717 5.355 0.732 9.819
HLM-5-1-MP 68 1.18 1.17 1.17 1.18
HLF-5-1-MP 19 1.12 1.12 1.12 1.12
HLM-20-1-MP 291 1.1 1.1 1.1 1.1
HLF-20-1-MP 78 1.04 1.04 1.04 1.04
HLM-20-4-MP 99 2.84 2.84 2.84 2.84
HLF-20-4-MP 72 1.12 1.12 1.12 1.12
HLM-80-1-MP 1182 1.08 1.08 1.08 1.08
HLF-80-1-MP 313 1.03 1.03 1.03 1.03
HLM-80-4-MP 405 3.06 3.06 3.06 3.06
HLF-80-4-MP 307 1.05 1.05 1.05 1.05
HLM-80-16-MP 101 10.54 10.54 10.54 10.54
HLF-80-16-MP 105 2.7 2.69 2.69 2.69
Average quality 2.29 2.29 2.29 2.29
Average time (.s) 0.758 4.944 0.810 9.479

SinceM is infeasible to compute via exact algorithm in this setting, the lower
bound (LB) described in Section 4.3 is given for comparison. The algorithms are
sorted-greedy-hyp (SGH), vector-greedy-hyp (VGH), expected-greedy-hyp (EGH)
for hypergraphs, and expected-vector-greedy-hyp (EVG). The variants using lex-
icographic ordering of load vectors (VGH and EVG) are not implemented us-
ing the asymptotically faster algorithms discussed in the end of Secion 4.4.3.
The quality of the four greedy algorithms is given as the ratio of the achieved
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makespan to the lower bound, where the ratio is taken as the median of the ten
random instances. Note that the lower bound is very optimistic and may be far
from the optimal solution.

Results for the unweighted instances are reported in Table 4. For the Fewg-
Manyg generator, we immediately notice that vector-greedy-hyp provides bet-
ter quality than the alternatives, but also takes significantly more time while
sorted-greedy-hyp and expected-greedy-hyp are rather close. Interestingly, ex-
pected vector-greedy-hyp does not attain the good approximation quality of
vector-greedy-hyp. For the unweighted HiLo instances, we again observe similar
running times. However, all algorithms attain the same approximation quality
which means that neither the expected nor the vector strategy work here.

Table 5: Performance of the greedy algorithms for the weighted FewgManyg and
HiLo random hypergraphs with respect to the lower bound LB. SGH: sorted-
greedy-hyp; VGH: vector-greedy-hyp; EGH: expected-greedy-hyp; EVG: expected-
vector-greedy.

Instance LB SGH VGH EGH EVG
MG-5-1-MP-W 87 1.34 1.3 1.27 1.25
FG-5-1-MP-W 26 1.63 1.59 1.51 1.32
MG-20-1-MP-W 335 1.25 1.24 1.19 1.19
FG-20-1-MP-W 103 1.55 1.55 1.43 1.28
MG-20-4-MP-W 123 1.35 1.35 1.26 1.17
FG-20-4-MP-W 84 1.41 1.36 1.31 1.26
MG-80-1-MP-W 1406 1.19 1.18 1.15 1.15
FG-80-1-MP-W 413 1.54 1.54 1.43 1.27
MG-80-4-MP-W 549 1.24 1.24 1.12 1.11
FG-80-4-MP-W 381 1.22 1.21 1.17 1.15
MG-80-16-MP-W 141 1.36 1.35 1.24 1.17
FG-80-16-MP-W 141 1.35 1.37 1.29 1.17
Average quality 1.37 1.36 1.28 1.21
Average time (.s) 0.717 6.213 0.730 9.816
HLM-5-1-MP-W 80 1.25 1.24 1.12 1.02
HLF-5-1-MP-W 20 1.15 1.15 1.05 1.05
HLM-20-1-MP-W 320 1.17 1.17 1.05 1.02
HLF-20-1-MP-W 80 1.06 1.06 1.03 1.01
HLM-20-4-MP-W 110 2.93 2.93 2.61 2.60
HLF-20-4-MP-W 80 1.18 1.18 1.16 1.02
HLM-80-1-MP-W 1280 1.15 1.15 1.03 1.02
HLF-80-1-MP-W 320 1.04 1.04 1.01 1.01
HLM-80-4-MP-W 440 3.22 3.23 2.87 2.86
HLF-80-4-MP-W 320 1.07 1.06 1.03 1.01
HLM-80-16-MP-W 110 11.07 11.06 9.89 9.85
HLF-80-16-MP-W 110 2.66 2.66 2.57 2.57
Average quality 2.41 2.41 2.20 2.17
Average time (.s) 0.733 4.921 0.780 9.134

The weighted results are then reported in Table 5. Interestingly, the weighted
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FewgManyg results show a very different picture than the unweighted ones.
Running times remain similar, but here the expected-greedy-hyp algorithm shows
much better quality, while vector-greedy-hyp cannot improve upon sorted-greedy-
hyp. Interestingly, expected-vector-greedy-hyp does improve upon the quality of
expected-greedy-hyp, although at a steep cost in running time. For the weighted
HiLo instances, similarly to the unweighted HiLo case, vector-greedy-hyp is at
the same level as sorted-greedy-hyp, while the expected greedy algorithms show
better approximation. This is consistent with their behavior in the weighted
FewgManyg case.

From the above observation, we can conclude that the expected strategy is
helpful in weighted instances. Expected-greedy-hyp showed better quality than
sorted-greedy-hyp at the cost of only marginally higher running time. On the
other hand, vector-greedy-hyp performed better only for unweighted FewgManyg
and was significantly faster. Thus, the usefulness of the vector strategy is some-
what limited, although considering that these problems are NP-complete, us-
ing it to improve upon the quality of expected-greedy-hyp with expected-vector-
greedy-hyp might still be worthwhile in order to obtain the best performance.

We remind the reader that we have tested with all combinations of dv, dh ∈
{2, 5, 10}. The ranking of the heuristics for the MultiProc-Unit and Mul-
tiProc problem were always the same as in the Tables 4 and 5, for the two
families of the random hypergraphs.

6 Conclusion
We have studied the problem of scheduling parallel tasks under resource con-
straints to minimize the makespan. We have formulated the problem in terms
of bipartite graphs and hypergraphs, and shown that the scheduling problem
amounts to finding semi-matchings in the corresponding graph theoretical for-
mulation. In the case of hypergraphs (i.e., parallel tasks), we have proved
that the problem is NP-complete and that for all ε > 0, there is no (2 − ε)-
approximation algorithm unless P=NP.

For the simplest problem instance corresponding to semi-matchings in un-
weighted bipartite graphs, we have designed several linear time greedy algo-
rithms, and from the simulation results, it turns out that performing a simple
sort on the out-degree of the tasks (sorted-greedy algorithm) is very efficient
and the execution is much faster than for the optimal algorithm. In addition,
expected-greedy, which incorporates expected loads of processors, is shown to be
more effective, albeit with an increase in the running time, in the current test
platform.

We have extended the heuristics proposed for the bipartite graphs to the
general case of weighted hypergraphs. While the adaptation of sorted-greedy
still performs quite well in this case, the one with the load prediction technique
(expected-greedy-hyp), obtains better results at the price of only a small increase
in the execution time. We have also introduced two new heuristics based on a
lexicographic ordering of load vectors instead of just minimizing the maximum
load at each step, and the obtained solution is then shown to be even better.

As future work, we plan to further investigate the hypergraph problem, and
to design new algorithms with guarantees. Indeed, even if the greedy algorithms
perform quite well, their solution may be arbitrarily far from the optimal. There-
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fore, it seems challenging to obtain approximation algorithms for this problem.
We also plan to implement the proposed heuristics in an imperative program-
ming language to perform further tests.
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A Further experimental results

A.1 SingleProc-Unit
In Section 5.2, we have presented some detailed results for the SingleProc-
Unit problem. We have seen results with random bipartite graphs created using
generators FewgManyg(n, p, g, d) and HiLo(n, p, g, d), where n, the number of
tasks, is in {1280, 5120, 20480}; p, the number of processors, is in 256, 1024, 4096
(we did not test the cases where n < 5× p); d = 10; and the number of groups
g ∈ {32, 128}. In Table 6, we give average quality results for the heuristics with
d ∈ {2, 5, 10}. In this table, a row shows the average performance of the heuristic
with respect to the optimal value. In a sense each row corresponds to the row
“Average quality” given in Table 2, which are repeated here for convenience. As
seen from Table 6, whereas the quality of each heuristic changes with respect to
the optimal value, the ranking of them remains the same: expected-greedy is the
best, basic-greedy is the worst, and the two sorted variants are in the middle,
without any difference between them.

Table 6: Performance of the greedy algorithms for the SingleProc-Unit prob-
lem with FewgManyg and HiLo random bipartite graph instances, reported as
average quality with respect to the optimal value for the random graph fami-
lies FewgManyg(·, ·, ·, d) and HiLo(·, ·, ·, d) for differing d. BG: basic-greedy ; SG:
sorted-greedy DG: double-sorted greedy ; EG: expected-greedy.

BG SG DG EG
d FewgManyg instances
2 1.31 1.02 1.02 1.02
5 1.32 1.24 1.24 1.12
10 1.28 1.14 1.14 1.12
d HiLo instances
2 1.98 1.50 1.50 1.25
5 1.98 1.49 1.49 1.23
10 1.94 1.49 1.49 1.24
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A.2 MultiProc
In Section 5.3, we have presented some detailed results for the MultiProc-
Unit and MultiProc problems. We have seen results with random hyper-
graphs created using generators FewgManyg(|N |, p, g, dh) and HiLo(|N |, p, g, dh),
where |N | is the number of hyperedges determined according to a random
sampling of the degree of task vertices, n, under a binomial distribution with
mean dv. In the presented detailed experiments (see Tables 4 and 5), we had
dv = 5 and dh = 10. In Table 7, we give average quality results for the heuristics
with dv, dh ∈ {2, 5, 10}. In this table, a row shows the average performance of
the heuristic with respect to the lower bound. In a sense each row corresponds
to the row “Average quality” given in Tables 4 and 5, which are repeated here for
convenience. As seen in Table 7, the average quality of the heuristics changes,
but their ranking remain the same in different problems and families.

Table 7: Performance of the greedy algorithms for the MultiProc-Unit (on
the left) and MultiProc (on the right) problems with FewgManyg and HiLo
random hypergraph instances, reported as average quality with respect to the
lower bound value for differing dv and dh. SGH: sorted-greedy-hyp; VGH: vector-
greedy-hyp; EGH: expected-greedy-hyp; EVG: expected-vector-greedy.

MultiProc-Unit problem MultiProc problem
SGH VGH EGH EVG SGH VGH EGH EVG

dv dh FewgManyg instances FewgManyg instances
2 2 1.39 1.37 1.40 1.40 1.29 1.30 1.25 1.25
2 5 1.28 1.25 1.27 1.27 1.29 1.28 1.22 1.16
2 10 1.31 1.27 1.30 1.30 1.32 1.30 1.29 1.25
5 2 1.47 1.26 1.40 1.40 1.43 1.43 1.13 1.13
5 5 1.49 1.30 1.43 1.43 1.39 1.39 1.19 1.14
5 10 1.39 1.28 1.36 1.35 1.37 1.36 1.28 1.21
10 2 1.51 1.16 1.34 1.33 1.56 1.55 1.12 1.16
10 5 1.74 1.37 1.61 1.61 1.47 1.47 1.19 1.15
10 10 1.55 1.32 1.48 1.48 1.45 1.44 1.31 1.21
dv dh HiLo instances HiLo instances
2 2 6.78 6.78 6.78 6.78 6.92 6.91 6.68 6.66
2 5 3.59 3.59 3.59 3.59 3.65 3.65 3.52 3.51
2 10 2.25 2.25 2.24 2.24 2.30 2.30 2.23 2.19
5 2 7.03 7.02 7.02 7.02 7.36 7.36 6.67 6.65
5 5 3.72 3.72 3.71 3.71 3.87 3.87 3.52 3.50
5 10 2.29 2.29 2.29 2.29 2.41 2.41 2.20 2.17
10 2 7.45 7.45 7.45 7.45 8.05 8.05 6.67 6.65
10 5 3.93 3.93 3.93 3.93 4.22 4.22 3.51 3.50
10 10 2.45 2.45 2.45 2.45 2.61 2.61 2.19 2.17
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