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Monitoring surface currents from uncertain image
observations

Isabelle Herlin, Etienne Huot

1. Introduction

The paper discusses the estimation of surface motion from satellite acquisitions of Black Sea.
Estimating motion from an image sequence is still intensively studied in the literature. A recent
survey of research performed in the image processing community, concerning fluid flow observa-
tions, can be found in (Heitz et al., 2010). Application of data assimilation methods, in order to
solve this problem, emerged around five-six years ago. Unlike most image processing methods,
which apply a Tikhonov regularisation in order to solve motion’s aperture problem, data assi-
milation relies on a dynamic model of apparent velocity. Readers can refer to (Papadakis et al.,
2007), (Titaud et al., 2010), and (Béréziat and Herlin, 2011) for recent contributions to the
subject. However, the dynamic model is also uncertain and only approximates the processes,
that are underlying the image evolution.

The model, that is used in the paper for motion estimation, includes the Lagrangian con-
stancy of velocity and expresses the transport of image brightness by the motion field. Image
assimilation allows an estimation of motion, based on the uncertainties of image data and
model, that are translated as error terms in equations. The paper discusses both issues:

• Uncertain image information. This requires the definition of dedicated observation oper-
ators and observation errors, in order to optimize the estimation process.

• Uncertain model. This requires the involvement of a model error. A weak 4D-Var is
described in order to estimate motion. Improvements obtained, when including this error
in the control, are discussed and analyzed.

Results are quantified on synthetic images and illustrated on satellite data, acquired over
Black Sea by NOAA-AVHRR sensors. Perspectives of the research concern the short-term
prediction of surface currents on the whole basin.

Section 2 provides the mathematical setting of the paper and describes the data assimilation
method, that is applied to retrieve surface motion from an image sequence. The issue of
the choice of image information, to be involved in the estimation, and that of model error
are discussed in Section 3. Section 4 quantifies and analyses results, and conclusions and
perspectives are given in Section 5.

2. Problem statement

Let us denote Ω the bounded domain, corresponding to image acquisitions, [0, tf ] the temporal
domain, on which images are acquired, and A = Ω× [0, tf ]. x = (x, y)T denotes the position of
a pixel in the image domain and t the temporal index.

Let I(t) denotes the continuous image sequence, providing the discrete acquired sequence
Ii, 1 < · · · < i < · · · < Nobs, that is processed in order to estimate motion.

The assumption, that is used to define the dynamic model, is the Lagrangian constancy

of the motion vector, dw
dt

= 0, with w =
(

u v
)T

the motion vector, and u and v its zonal
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and meridional components. According to that assumption, the velocity is constant along each
pixel’s trajectory. This is rewritten as :

du

dt
= 0 ⇔

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0 (1)

dv

dt
= 0 ⇔

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= 0 (2)

We define a pseudo-image Is(x, t), that is transported by surface velocity w(x, t), with the
same heuristics as the image sequence: this is the optical flow constraint equation (Horn and
Schunk, 1981), expressed as:

∂Is
∂t

+∇Is.w = 0 (3)

These pseudo-images will be directly compared to satellite images, during the estimation pro-
cess. They will be forced to be almost identical at acquisition dates.

The state vector X is defined as
(

u v Is
)T

, on the space-time domain A. The 4D-Var
algorithm estimates motion from image acquisitions by solving the following system of three
equations :

∂X

∂t
(x, t) +▼(X)(x, t) = 0 (4)

X(x, 0)−Xb(x) = ǫB(x) (5)

❍(X, I)(x, t) = ǫR(x, t) (6)

The first one is the so-called evolution equation, that summarizes Eqs. (1), (2) and (3).
One can notice that X(x, t), for any t, is only determined from X(x, 0) and the integration of
Equation (4).

Equation (5) corresponds to the knowledge, that is usually available on the state vector at
initial date 0, and expressed as the background value Xb(x). The solution, estimated by the
4D-Var algorithm, should stay close to this background value. However, as this knowledge is
uncertain, an error term, ǫB(x), is added to the equation. For motion estimation, no information
is available on the initial value of the velocity field, and its initialization value is null, while
the background on the pseudo-image Is is the first image of the sequence I1. The background
equation is then simplified as a scalar equation:

P(X(x, 0))− I1(x) = ǫB(x) (7)

where P is the projection on the pseudo-image component.

Last, Equation (6) is named observation equation. It links the image observations I to the
state vector X. In this case, ❍ denotes the observation operator, that compares the pseudo-
image Is to image observations. They have to be almost identical and the observation equation
is also scalar:

❍(X, I)(x, t) = P(X(x, t))− I(x, t) = ǫR(x, t) (8)

The discrepancy between pseudo-images and observations is described by the error term ǫR(x, t).

In the context of variational data assimilation, the error terms ǫB(x) and ǫR(x, t) are sup-
posed Gaussian and zero-mean. We additionaly suppose no correlation in space and time. The
respective variance values are written B(x) and R(x, t).
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Solving System (4, 7, 8) is then written as a minimisation problem. The objective is to find
the minimum X(0) of the cost function J :

J(X(0)) =
1

2

∫

A

(ǫR(x, t))
2

R(x, t)
dxdt+

1

2

∫

Ω

(ǫB(x))
2

B(x)
dx (9)

According to (Le Dimet and Talagrand, 1986), let λ be the adjoint variable, defined as the
solution of Equations (10) and (11):

λ(tf ) = 0 (10)

−
∂λ(t)

∂t
+

(

∂▼

∂X

)

∗

λ(t) = PT

(

P(X(x, t)− I(x, t)

R(x, t)

)

(11)

The adjoint model ∂▼
∂X

∗

verifies the definition of an adjoint operator:

∫
(

∂▼

∂X
(η)

)T

λdµ =

∫

ηT
(

∂▼

∂X

)

∗

(λ)dµ (12)

for all integrable functions η and λ. Le Dimet and Talagrand demonstrated that the gradient
of J verifies:

∂J

∂X(0)
= PT

(

P(X(0))− I1
B

)

+ λ(0) (13)

Minimum of J is then obtained with a method of steepest descent and the L-BFGS algo-
rithm (Zhu et al., 1997).

3. Uncertainties

This section is split in two parts. The first one discusses the uncertainty on the image data
and the definition of image information, that has to be assimilated. The second one concerns
the uncertainty on the evolution equation and the involvement of a model error.

3.1 Uncertainty on image information

Processing images and retrieving their motion field is a difficult issue, that faces a large range
of practical and theorical problems.

In the case of satellite data, images are contaminated by noise and often strongly corrupted
by cloud cover. For discarding such pixels during the estimation process, their contribution to
the energy function J , Equation (9) should be small. Then, R(x, t) should get a high value,
almost infinite, on those points, that are characterized as not valid by the metadata provided
simultaneously with satellite images. This idea has been used for instance in (Herlin et al.,
2011) in order to recover missing data with an inpainting method: pseudo-images obtained by
the assimilation process are a denoised version of the real acquisitions.

Another crucial issue concerns the information, that is assimilated to retrieve motion. From
Equation (3), it can be seen that motion estimation is possible, only if the gradient norm is
high enough and correctly estimated. This may potentially affect the correct determination
of velocity for structures with low contrast, as the gradient is computed by finite differences
during the numerical integration of (3). For that purpose, we proposed in (Béréziat and Herlin,
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2012) to consider a new observation operator, ❍2, that links the state vector to the image
acquisitions, whose definition is:

❍2(X, I)(x, t) =
Ii+1(x)− Ii(x)

△ti
+∇ITi (x)w(x, ti) (14)

and that is only computed at acquisition dates, with △ti the time interval between the two
frames i and i+1 and ti the acquisition date of image i. ∇Ii is computed by efficient algorithms
(See (Deriche, 1987)), that allow a good estimation of the gradient norm, even in case of a low
constrast, and a good location of the contour points, which is mandatory for having structures
correctly positioned in space. An error term is associated to that additional observation opera-
tor, denoted ǫR2(x, t), with a variance value R2(x, t). Last, a second term is added in the right
part of the backward Equation (11), with the adjoint of ❍2 being equal to:

(

∂❍2

∂X

)

∗

(X)(x, ti) =
(

∇Ii (x) 0
)T

(15)

Improvements obtained thanks to that second observation operator are discussed in the results
section.

3.2 Uncertainty on evolution laws

The heuristics on the dynamics of the image sequence, the transport equation, and those on
the motion field, the Lagrangian constancy, are only a rough approximation of the reality. This
would be the same for any mathematical model. This uncertainty on the geophysical processes
underlying the image sequence requires the introduction of an error term ǫ(x, t) in the evolution
equation, (Trémolet, 2006), (Valur Hólm, 2008), and (Herlin et al., 2012):

∂X

∂t
(x, t) +▼(X)(x, t) = ǫ(x, t) (16)

Let assume that the model error ǫ(x, t) is Gaussian, zero-mean, not correlated in the space-time
domain, and described by its covariance matrix Q.

Looking for the solution X, that solves the system of Eqs. (16, 7, 8), is rewritten again as
an optimization problem. A cost function J2 is defined and has to be minimized by controlling
the two unknowns X(0) and ǫ(t):

J2(X(0), ǫ(t)) = J1(X(0), ǫ(t)) +
1

2

∫

A

(ǫ(x, t))T Q−1(x, t)ǫ(x, t)dxdt (17)

Using the adjoint variable defined by Equations (10) and (11), the gradient of J2 is:

∂J

∂X(0)
[X(0), ǫ(t)] = P

T

(

P(X(0))− I1
B

)

+ λ(t0) (18)

∂J

∂ǫ(t)
[X(0), ǫ(t)] = Q−1ǫ(t) + λ(t) (19)

Controlling the error term ǫ(t) allows to better estimate motion, as it will be illustrated in the
results section on a synthetic experiment.
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4. Results

This section is split in the same way than Section 3: first the choice of image information that
has to be assimilated, in order to get optimal results, will be illustrated on satellite data. The
aim is to demonstrate the improvement obtained, when adding the second observation term,
on low contrast structures. Second, the impact of adding a model error in the data assimilation
system will be quantified on synthetic data, as no ground truth would be available on real data
to quantify this impact.

4.1 Uncertainty on image data

A sequence of four satellite images, acquired over Black Sea, in July 2005, by NOAA-AVHRR
sensors, is displayed on the first row of Fig. 1. Two data assimilation methods are implemented.
The first one, denoted M1, corresponds to the minimisation of J , as written in Equation (9),
while, in the second one, denoted M2, an additional observation term, corresponding to ❍2

(Equation (14)), is added. Results of M1 and M2 are displayed respectively on Fig. 1, second
and third rows, for the pseudo-image component, and on Fig. 2, left and right, for the initial
motion fields. The impact of assimilating the gradient information may be seen on the filament
structure, that is displayed in red on Fig. 3. Its real motion is displayed by blue arrows and is
better assessed by the method M2.

Figure 1: Up: image observation. Middle: result with M1. Down: result with M2.

XX International Conference PDMU, Czech Republic, Brno, September 17–21, 2012 5



Figure 2: Left: motion field estimated by M1. Right: by M2.

Figure 3: Location and motion of the filament on the fourth observation.

4.2 Uncertainty on evolution laws

Two algorithms are implemented and compared, in order to demonstrate and quantify the
impact of the model error term. The first one is named IM, that stands for Imperfect Model,
and satisfies Eqs. (16,7,8) with the error term ǫ(x, t) included in the evolution equation. The
second one, named PM for Perfect Model, satisfies Eqs. (4,7,8).
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A synthetic experiment1 is conducted. Given initial condition X(0), at time 0, displayed on
Fig. 4, and given a noise function b(x, t), Eq. (20) is integrated in time:

∂X

∂t
(x, t) +▼(X)(x, t) = b(x, t) (20)

X(x, 0) = X(0) (21)

Figure 4: Condition initiale wr(0) et Is(0).

In the experiment, b(x, t) is constant in space, and null except at one single date t = tN/2 =
41. b(x, 41) has a null component on the pseudo-image. Its component on motion is represented
on the right part of Fig. 5, where the motion component of b, at date 0, is also displayed.

Figure 5: Motion component of noise b at dates 0 and 41.

5 snapshots of the simulation, at dates t = 2, 22, 42, 62, 82, are taken as observations for
the assimilation process with the Imperfect and Perfect Models. They are displayed in Fig. 6.
Motion obtained from the simulation and later used as ground-truth is displayed on the same
figure.

1Thanks to Dominique Béréziat, Université Pierre et Marie Curie, 75005 Paris, France.
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Figure 6: Up: image observations. Down: ground truth of motion at observation dates.

In order to understand the impact due to b during the simulation, the motion field, that
is obtained on the last frame of the simulation, without adding b, is displayed on Fig. 7 and
compared to the one obtained when adding b.

Figure 7: Left: motion obtained without b, Right: with b.

The data assimilation process is then applied with IM and PM. Results of the initial motion
field are visualized on Fig. 8 and compared to the ground-truth.

Figure 8: From left to right: ground-truth, result of IM, result of PM.

Statistics are also computed on the discrepancy between data assimilation results and
ground-truth, for initial motion fields, and given in table 1. Index r concerns the ground-
truth, which is the reference, while index e corresponds to the result, that is estimated with,
respectively, PM on the first line, and IM on the second one. θ denotes the orientation of the
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motion vector and ‖w‖ its norm. Values are given for the average and standard deviation of the
orientation error. Minimum, maximum, average, and standard deviation values of the relative
norm error are also provided.

|θr − θe| |‖wr‖ − ‖we‖|/‖wr‖

method date mean stdev min max mean stdev
PM t = 0 31.4 34.4 0.0002 7.7 0.49 0.44
IM t = 0 6.0 12.1 0.00005 3.0 0.13 0.14

Table 1: Statistics on results: comparison of estimated motion we(0) with ground-truth wr(0).

5. Conclusion

The paper discusses some of the uncertainties, which have to be faced when retrieving motion
from image data, in order to correctly monitor ocean surface circulation on satellite acquisitions.

The first set concerns those on the data observations. Satellite acquisitions are often con-
taminated by noise and occluded by clouds. This has to be taken into account in the motion
estimation process. As explained in the paper, dedicated observation errors are computed
from the metadata documenting the satellite acquisitions: they allow not taking into account
corrupted data during the estimation process. Deciding which image information has to be
including in the observation vector is also mandatory to assure a good quality result. As il-
lustration, we discuss the case of fine filaments with low contrast, which require to efficiently
compute gradients and to include them in the observation data, in order to be correctly moni-
tored.

The second type of uncertainty concerns the evolution equations of motion field and images.
The full set of equations that represents the processes, which create the image sequence, is not
at hand. The assumptions, that are used in the dynamic model, are a rough approximation of
the reality. As described in the paper, adding a model error, in the assimilation process has a
strong impact on the quality of results.

Perspectives concern two main lines of research. First refining the image information, that is
assimilated, and, for instance, add structures’ representation in the observation vector. Second,
the weak formulation of 4D-Var will be used to monitor dynamics’ errors, which are occuring
during the acquisition period.
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Herlin, I., Béréziat, D., and Mercier, N. (2011). Recovering missing data on satellite images.
In SCIA, pages 697–707.
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