Rationally connected manifolds and semipositivity of the Ricci curvature

Abstract : This work establishes a structure theorem for compact Kähler manifolds with semipositive anticanonical bundle. Up to finite étale cover, it is proved that such manifolds split holomorphically and isometrically as a product of Ricci flat varieties and of rationally connected manifolds. The proof is based on a characterization of rationally connected manifolds through the non existence of certain twisted contravariant tensor products of the tangent bundle, along with a generalized holonomy principle for pseudoeffective line bundles. A crucial ingredient for this is the characterization of uniruledness by the property that the anticanonical bundle is not pseudoeffective.


https://hal.archives-ouvertes.fr/hal-00739178
Contributeur : Jean-Pierre Demailly <>
Soumis le : mardi 21 janvier 2014 - 22:20:16
Dernière modification le : samedi 17 septembre 2016 - 01:01:10
Document(s) archivé(s) le : mardi 22 avril 2014 - 10:11:53

Fichiers

cdp2-ltx.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00739178, version 2
  • ARXIV : 1210.2092

Collections

Citation

Frédéric Campana, Jean-Pierre Demailly, Thomas Peternell. Rationally connected manifolds and semipositivity of the Ricci curvature. 2012. <hal-00739178v2>

Exporter

Partager

Métriques

Consultations de
la notice

146

Téléchargements du document

125