
HAL Id: hal-00740231
https://inria.hal.science/hal-00740231v1
Submitted on 9 Oct 2012 (v1), last revised 1 Mar 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Measuring Similarity for Sequences of Itemsets
Elias Egho, Chedy Raïssi, Toon Calders, Nicolas Jay, Amedeo Napoli

To cite this version:
Elias Egho, Chedy Raïssi, Toon Calders, Nicolas Jay, Amedeo Napoli. On Measuring Similarity for
Sequences of Itemsets. [Research Report] RR-8086, 2012, pp.19. �hal-00740231v1�

https://inria.hal.science/hal-00740231v1
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
80

86
--

FR
+E

N
G

RESEARCH
REPORT
N° 8086
October 2012

Project-Teams Orpailleur

On Measuring Similarity
for Sequences of Itemsets
Elias Egho , Chedy Raïssi , Toon Calders , Thomas Bourquard ,
Nicolas Jay , Amedeo Napoli

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

On Measuring Similarity for Sequences of
Itemsets

Elias Egho ∗, Chedy Raïssi †, Toon Calders ‡, Thomas
Bourquard †, Nicolas Jay ∗, Amedeo Napoli ∗

Project-Teams Orpailleur

Research Report n° 8086 — October 2012 — 19 pages

Abstract: Computing the similarity between sequences is a very important challenge for many
different data mining tasks. There is a plethora of similarity measures for sequences in the liter-
ature, most of them being designed for sequences of items. In this work, we study the problem
of measuring the similarity ratio between sequences of itemsets. We present new combinatorial
results for efficiently counting distinct and common subsequences. These theoretical results are
the cornerstone for an effective dynamic programming approach to deal with this problem. Ex-
periments are realized on biological protein and synthetic dataset, showing that our measure of
similarity produces competitive scores and indicates that our method is relevant for real-world
sequential data analysis.

Key-words: Similarity measure, Clustering, Sequence mining

∗ LORIA, Vandoeuvre-les-Nancy, France
† INRIA, Nancy Grand Est, France
‡ Université Libre de Bruxelles

Vers une mesure de similarité pour les séquences complexes
Résumé : Le calcul de la similarité entre les séquences est un défi très important pour
de nombreuses tâches d’exploration de données. Il existe une pléthore de mesures de similarité
de séquences dans la littérature, la plupart d’entre eux étant conçu pour les séquences d’items.
Dans ce travail, nous étudions le problème de la mesure du taux de similitude entre les séquences
d’itemsets. Nous vous présentons de nouveaux résultats combinatoires pour compter efficacement
touts les sous-séquences distinctes et communes. Ces résultats théoriques sont la pierre angulaire
d’une approche de programmation dynamique efficace pour traiter ce problème. Les expériences
sont réalisées sur les données biologiques et ur les jeux de données synthétiques, montrant que
notre mesure de similarité produit scores compétitifs et indique que notre méthode est pertinente
pour le monde réel l’analyse de données séquentielles.

Mots-clés : Mesure de imilarité, Feuille de données, Feuille de données séquentielles

On Measuring Similarity for Sequences of Itemsets 3

1 Introduction
Sequential data is widely present and used in many applications such as matching of time series
in databases [1], DNA or amino-acids protein sequences analysis [2, 3], as well as web log analysis
[4], and music sequences matching [5]. Consequently, analyzing sequential data has become an
important data mining and machine learning task with a special focus on the examination of
pairwise relationships between sequences. For example, some clustering and kernel-based learning
methods depend on computing distances or similarity ratios between sequences [6, 7]. However,
for a large part of literature, similarity measures on sequential data remains limited to simple
sequences, which are ordered lists of items (i.e., symbols) [8, 9, 10, 11]. By contrast, in modern
life sciences [12], sequential data sets are represented as ordered lists of itemsets (i.e., sets of
symbols). This singularity is in itself a challenge as it implies to carefully take into account
complex combinatorial aspects to compute similarities between sequences.

In this study, we focus on the notion of common subsequences as a mean to define a dis-
tance or similarity ratio between a pair of sequences composed of a list of itemsets. We make
two significant contributions. Firstly, we start by answering two fundamental theoretical open
problems: (i) given a sequence of itemsets, can we count, without enumerating, the number of
distinct subsequences? (ii) for a pair of sequences, can we efficiently count the number of com-
mon subsequences? We present two theorems that positively answer these questions. Secondly,
we discuss and present a dynamic programming algorithm for counting all common subsequences
(ACS) between two given sequences. This dynamic programming algorithm allows us to define
in a simple and intuitive manner our similarity measure which is a ratio between the number of
common subsequences from two sequences S and T divided by the maximal number of distinct
subsequences.

We believe that the results reported in this work are a useful contribution with direct practical
applications to different discriminative approaches, and in particular kernel methods, as new
complex sequence kernels can be devised based on the theoretical results provided in this work.
Moreover, the method is completely general in that it can be used (with slight modifications) for
a broad spectrum of sequence-based classification or clustering problems. We report extensive
empirical study on synthetic datasets and a qualitative experiment on the comparison of the
3D-structures of two sets of proteins, namely haemoglobin and myoglobin protein families.

The rest of the report is organized as follows. Section 2 reviews the related work. Section 3
briefly reviews the preliminaries needed in our development. Section 4 and 5 introduces our new
combinatorial results. Two experimental studies are reported in Section 6 and we conclude our
work in Section 7.

2 Related Work
Since Levenshtein [8] proposed the edit distance measure to compute a distance between strings,
many studies focused on developing efficient approaches for sequences similarities. The Leven-
shtein distance between strings s and t is defined as the minimum number of edit operations
needed to transform s into t. The edit operations are either an insertion, a deletion, or a sub-
stitution of a symbol. Many other approaches are built on this seminal result but with notable
differences like weighting the symbols or the edit operations [9], or using stochastic processes
[13]. For time series, another important approach is the Dynamic Time Warping (DTW) tech-
nique for finding an optimal alignment between two sequences [10]. Intuitively, the sequences
are warped in a nonlinear fashion to match each other. DTW technique had a huge impact and
has been used to compare multiple patterns in automatic speech recognition to cope with differ-
ent speaking speeds [14]. Zaki et al. [15] and Vlachos et al. [16] followed a radically different

RR n° 8086

4 Egho & others

approach by developing longest common subsequences approaches for the comparison and sim-
ilarity measure. However, the common information shared between two sequences is more than
the longest common subsequence. In fact counting all possible common information between
sequences provides a good idea about the similarity relationship between the sequences and their
overall complexity. In addition, the common subsequences problem is related to the problem of
counting the number of all distinct common subsequences between two sequences. Wang et al.
[11] studied all common subsequences (ACS) as a similarity measure between two sequences of
items. Elzinga et al. [17] used a dynamic programming algorithm to count a distinct common
subsequences between two sequences of items.

In this work, we extend and generalize the previous work of [11, 17] for the complex structure
of sequence of itemsets.

3 Preliminaries

Definition 1 (Sequence) Let I be a finite set of items. An itemset X is a non-empty subset
of I. A sequence S over I is an ordered list 〈X1 · · ·Xn〉, where Xi (1 ≤ i ≤ n, n ∈ N) is an
itemset. Sl denotes the l-prefix 〈X1, . . . , Xl〉 of sequence S with 1 ≤ l ≤ n. The j-th itemset Xj

of sequence S is denoted S[j] with 1 ≤ j ≤ n.

Definition 2 (Subsequence) A sequence T = 〈Y1 · · ·Ym〉 is a subsequence of S = 〈X1 . . . Xn〉,
denoted by T � S, if there exist indices 1 ≤ i1 < i2 < · · · < im ≤ n such that Yj ⊆ Xij for all
j = 1 . . .m and m ≤ n. S is said to be a supersequence of T .

ϕ(S) denotes the set of all subsequences of a given sequence S and φ(S) = |ϕ(S)|. For
two sequences S and T , ϕ(S, T) denotes the set of all common subsequences between two
sequences S and T : ϕ(S, T) = ϕ(S) ∩ ϕ(T) and φ(S, T) = |ϕ(S, T)|.

We now define the following similarity measure between two sequences of itemsets S and T .

Definition 3 The similarity between two sequences S and T , denoted sim(S ,T) is defined
as the number of common subsequences divided by the maximal number of subsequences of S and
T ; that is:

sim(S, T) =
φ(S, T)

max{φ(S), φ(T)}

From this point on, the rest of the report, up to the experiments Section, will be dedicated
to efficient techniques for computing φ(S) and φ(S, T), as these form the backbone of our new
similarity measure. As the explanation and the proofs of correctness of these computations
involve complicated manipulations of sequences, we introduce the following operators on sets of
sequences.

Definition 4 (Concatenation) Let S = 〈X1 · · ·Xn〉 and T = 〈Y1 · · ·Ym〉 be two sequences.
The concatenation of S and T , denoted S ◦ T , is the sequence 〈X1 · · ·Xn Y1 · · ·Ym〉.

Given two sets of sequences S and T , S ◦ T = {S ◦ T | S ∈ S, T ∈ T }.

For ease of notation we will denote a non-empty itemset X with the singleton sequence 〈X〉,
the empty set ∅ with the empty sequence 〈〉. As usual, the powerset of an itemset X will be
denoted by P(X), and P≥1(X) denotes all nonempty subsets of X; that is, P≥1(X) = P(X)\{∅}.

Example 1 We use the sequence database Dex in Table 1 as a running example. It contains 4
data sequences over the set of items I = {a, b, c, d}. Sequence 〈{a}{b}{c, d}〉 is a subsequence of

Inria

On Measuring Similarity for Sequences of Itemsets 5

Dex =

S1 〈{a}{a, b}{e}{c, d}{b, d}〉
S2 〈{a}{b, c, d}{a, d}〉
S3 〈{a}{b, d}{c}{a, d}〉
S4 〈{a}{a, b, d}{a, b, c}{b, d}〉

Table 1: The sequence database used as the running example

S1 = 〈{a}{a, b}{e}{c, d}{b, d}〉. The 3-prefix of S1, denoted S3
1 , is 〈{a}{a, b}{e}〉 and S1[2], the

second itemset in sequence S1, is {a, b}.
The set of all subsequences of S2

4 is

ϕ(S2
4) = {〈〉, 〈{a}〉 , 〈{b}〉 , 〈{d}〉 , 〈{a, b}〉 , 〈{a, d}〉 , 〈{b, d}〉 , 〈{a, b, d}〉 , 〈{a}{a}〉 , 〈{a}{a, b}〉 ,

〈{a}{d}〉 , 〈{a}{b}〉 , 〈{a}{a, d}〉 , 〈{a}{b, d}〉 , 〈{a}{a, b, d}〉}

Hence, φ(S2
4) = 15.

The concatenation of the sequence S2
4 with the itemset {a, b, c}, denoted as S2

4 ◦{a, b, c}, is the
sequence 〈{a}{a, b, d}{a, b, c}〉. 〈{a, b}〉 ◦ P≥1({c, d}) denotes the set of sequences {〈{a, b}{c}〉,
〈{a, b}{d}〉, 〈{a, b}{c, d}〉}.

The set of all common subsequences of S4
1 and S3

2 is

ϕ(S4
1 , S

3
2) = {〈〉, 〈{a}〉 , 〈{b}〉 , 〈{d}〉 , 〈{c}〉 , 〈{c, d}〉 , 〈{a}{a}〉 , 〈{a}{b}〉 , 〈{a}{c}〉 , 〈{a}{d}〉 ,

〈{a}{c, d}〉 , 〈{b}{d}〉 , 〈{a}{b}{d}〉}

4 Counting All Distinct Subsequences
In this section, we present an efficient technique to count the number φ(S) of all distinct sub-
sequences for a given sequence S. We emphasize the fact that the studied sequences are not
simple sequences that are discussed in length in the bio-informatics literature for which efficient
approaches exist, but rather an ordered list of itemsets. As we will show, this is a highly non-
trivial extension as it implies new combinatorial aspects. In this section, we introduce a dynamic
programming algorithm to count the number of distinct subsequences for a given sequence S.
Before stating the main result, we present the intuition behind the proposed dynamic program-
ming approach. Suppose that we extend a given sequence S = 〈X1 · · ·Xn〉 with an itemset Y
and we observe the relation between φ(S) and φ(S ◦ Y). Two cases may appear:

1. Y is disjoint with any itemset in S; i.e., for all i = 1 . . . n, Y ∩Xi = ∅, then the number of
distinct subsequences of S◦Y equals |ϕ(S)| ·2|Y |, since for all T ∈ ϕ(S), and Y1, Y2 ∈ P(Y),
T ◦ Y1 6= T ◦ Y2. For example, φ(〈{a, b}{c}〉 ◦ {d, e}) = 8 · 22 = 32.

2. At least one item of Y appears in an itemset of S; i.e., ∃i ∈ [1, n] : Y ∩Xi 6= ∅. In this case,
|ϕ(S ◦X)| is smaller than |ϕ(S)| ·2|Y |, because not every combination of a sequence in ϕ(S)
with an element from the power set of Y results in a unique subsequence. For example, if
S = 〈{a, b}〉 and Y = {a, b}, the sequence 〈{a}〉 can be obtained by either extending the
empty sequence 〈〉 with the itemset {a}, or by extending 〈{a}〉 with ∅.
Therefore, we need to define a method to remove the repetitions from the count. Formally,
|ϕ(S◦Y)| = |ϕ(S)|·2|Y |−R(S, Y) whereR(S, Y) represents a correction term that equals the
number of repetitions of subsequences that should be suppressed for a given S concatenated
with the itemset Y .

RR n° 8086

6 Egho & others

We illustrate the second case with an example.

Example 2 Consider sequence S4 from our toy data set. S2
4 = 〈{a}{a, b, d}〉 is the 2-prefix of

S4. Recall from Example 1 that the total number of subsequences of S2
4 is φ(S2

4) = 15. Now
suppose that we extend this sequence S2

4 with the itemset Y = {a, b, c}. Clearly, concatenating
each sequence from ϕ(S2

4) with each element in the power set of {a, b, c} will generate some
subsequences multiple times. For instance, the subsequence 〈{a}{b}〉 is generated twice: 〈{a}〉◦{b}
and 〈{a}{b}〉 ◦ ∅. The same applies to other subsequences 〈{a}〉, 〈{b}〉, 〈{a, b}〉, 〈{a}{a}〉 and
〈{a}{ab}〉. Thus, making a total of 6 subsequences that are counted twice. In this case, the correct
number of distinct subsequences for S2

4 ◦ Y = 〈{a}{a, b, d}{a, b, c}〉 is |ϕ(S2
4)| · 2|Y | −R(S2

4 , Y) =
15 · 23 − 6 = 114.

As illustrated by the above example, the actual challenge is the computation of the value of
the correction term R(S, Y). The general idea is to compensate the repeated concatenation of
subsequences from S by the power set of Y . The problem occurs with sequences in ϕ(S)◦P≥1(Y)
that are already in ϕ(S). Suppose T is such a sequence, then T must be decomposable as T ′ ◦Y ′,
where T ′ ∈ ϕ(Si) for some i = 0 . . . n − 1, and Y ′ ⊆ Y ∩ S[j], for some j ∈ i + 1 . . . n. The
following definition introduces the position set that will capture those positions in S that generate
duplicates:

Definition 5 (Position set) Given an itemset Y and a sequence S = 〈X1 · · ·Xn〉, L(S, Y) is
the set of all maximal positions where the itemset Y has a maximal intersection with the dif-
ferent itemsets Xi, i = 1 . . . n. Formally,

L(S, Y) = {i | Y ∩Xi 6= ∅, and (@ j ; j > i and Y ∩Xi ⊆ Y ∩Xj)} (1)

Notice that if there are multiple positions that generate the same duplicates, we only consider
the last one.

Example 3 Let S4 = 〈{a}{a, b, d}{a, b, c}{b, d}〉 be the studied sequence.
L(〈〉 , {a})=∅, L(〈{a}〉 , {a, b, d})={1}, L(〈{a}{a, b, d}〉 , {abc})={2},
L(〈{a}{a, b, d}{a, b, c}〉 , {b, d})={2, 3}.

The following lemma now formalizes the observation that we only need to consider the sets Xi

for i in the position set.

Lemma 1 Let S be a sequence, and Y an itemset. Then φ(S ◦ Y) = φ(S) · 2|Y | −R(S, Y), with

R(S, Y) =

∣∣∣∣∣∣
⋃

`∈L(S,Y)

{
ϕ(S`−1) ◦ P≥1(S[`] ∩ Y)

}∣∣∣∣∣∣
See Appendix.

Notice, however, that the sets ϕ(S`−1) ◦ P≥1(S[`] ∩ Y) are not necessarily disjoint; consider,
e.g., S = 〈{a, b}, {b, c}〉 and Y = {a, b, c}. Then L(S, Y) = {1, 2}, and 〈{b}〉 appears in both
ϕ(S0) ◦ P≥1(S[1] ∩ Y) and ϕ(S1) ◦ P≥1(S[2] ∩ Y). To incorporate this overlap, we compute
the cardinality of the union in Lemma 1 using the inclusion-exclusion principle, leading to the
following theorem:

Theorem 1 Let S = 〈X1...Xn〉 and Y an itemset. Then,

φ(S ◦ Y) = 2|Y | · φ(S)−R(S, Y) (2)

Inria

On Measuring Similarity for Sequences of Itemsets 7

with
R(S, Y) =

∑
K⊆L(S,Y)

(−1)|K|+1 ·D(S, Y,K)

where
D(S, Y,K) = φ(Smin(K)−1) ·

(
2|(
⋂

j∈K Xj)∩Y | − 1
)

See Appendix.
We illustrate the counting process with sequence S3

4 . The position set of this sequence is
given in Example 3.

φ(〈〉) = 1

φ(〈{a}〉) = 2|{a}| · φ(〈〉) = 2

φ(〈{a}{a, b, d}〉) = 2|{a,b,d}|φ(〈{a}〉)
−(2|{a,b,d}∩{a}| − 1) · φ(〈〉)

= 23 · 2− (21 − 1) · 1 = 15

φ(〈{a}{a, b, d}{a, b, c}〉)
= 2|{a,b,c}| · φ(〈{a}{a, b, d}〉)
−(2|{a,b,d}∩{a,b,c}| − 1) · φ(〈{a}〉)

= 23 · 15− (22 − 1) · 2 = 114

5 Counting All Common Subsequences

In this section, we will extend the previous results to count all common distinct subsequences
between two sequences S and T . Again, we discuss the basic intuition and then present the main
result. Suppose that we extend the sequence S with an itemset Y and we observe the relation
between ϕ(S, T) and ϕ(S ◦ Y, T), two cases may appear:

1. If no items in Y appear in any itemset of S and T then the concatenation of the itemset
Y with the sequence S has no effect on the the set ϕ(S, T).

2. If at least an item in Y appears in either one of the sequences S or T (or both) then it can
be observed that new common subsequences will appear in ϕ(S, T). As for the counting
method of the distinct subsequences of a unique sequence S, repetitions may occur and a
generalized correction term for both S and T needs to be defined. Formally,

|ϕ(S ◦ Y, T)| = |ϕ(S, T)|+A(S, T, Y)−R(S, T, Y) (3)

where A(S, T, Y) represents the number of extra common subsequences that should be
added and R(S, T, Y) is the correction term.

Similarly to the distinct subsequence problem, the position set will index the positions that
generate duplicate sequences. The following lemma formalizes this observation:

Lemma 2 Let S = 〈X1...Xn〉, T = 〈X ′1...X ′m〉 and Y an itemset.

A(S, T, Y) =

∣∣∣∣∣∣
⋃

`∈L(T,Y)

{
ϕ(S, T `−1) ◦ P≥1(T [`] ∩ Y)

}∣∣∣∣∣∣
RR n° 8086

8 Egho & others

R(S, T, Y) =

∣∣∣∣∣∣
⋃

`∈L(S,Y)

 ⋃
`′∈L(T,Y)

ϕ(S`−1, T `
′
−1) ◦ P≥1(S[`] ∩ T [`

′
] ∩ Y)


∣∣∣∣∣∣

Example 4 Consider the sequences S1 and S2 from our running example. Let S4
1 = 〈{a}

{a, b}{e}{c, d}〉 be the 4-prefix of S1, and let S3
2 = 〈{a}{b, c, d}{a, d}〉 be the 3-prefix of S2. Sup-

pose that we extend S4
1 with the itemset Y = {b, d} and count all distinct common subsequences

between S4
1 ◦ {b, d} and S3

2 . Notice that the itemset {b, d} appears two times in the sequence
S3
2 : in the itemsets {b, c, d} and {a, d}. Thus, L(S3

2 , {b, d}) = {2, 3} and A(S4
1 , S

3
2 , {b, d}) =

|{ϕ(S4
1 , S

1
2) ◦ P≥1({b, d} ∩ {b, c, d})} ∪ {ϕ(S4

1 , S
2
2) ◦ P≥1({b, d} ∩ {a, d})}| = 14. Notice also

that L(S4
1 , {b, d}) = {2, 4}. In this case, adding the values A(S4

1 , S
3
2 , {b, d}) to φ(S4

1 , S
3
2) will

overcount some subsequences. For instance, the subsequences 〈{a}{b}{d}〉 and 〈{b}{d}〉 are
counted twice: once in ϕ(S4

1 , S
3
2) and when all sequences of the set ϕ(S4

1 , S
2
2) are extended

with {b, d} ∩ {a, d}. The same remark applies to other subsequences: 〈{b}〉, 〈{a}{b}〉 and
〈{a}{d}〉. In this case, the correct number of all common subsequences between S4

1 ◦ {b, d}
and S3

2 is |ϕ(S4
1 , S

2
2)| + A(S4

1 , S
3
2 , {b, d}) − R(S4

1 , S
3
2 , {b, d}) = 13 + 14 − R(S4

1 , S
3
2 , {b, d}) with

R(S, T, Y) = |{ϕ(S1
1 , S

1
2) ◦ P≥1({a, b} ∩ {b, c, d} ∩ {b, d})} ∪ {ϕ(S1

1 , S
2
2) ◦ P≥1({a, b} ∩ {a, d} ∩

{b, d})}∪{ϕ(S3
1 , S

1
2)◦P≥1({c, d}∩{b, c, d}∩{b, d})}∪{ϕ(S3

1 , S
2
2)◦P≥1({c, d}∩{a, d}∩{b, d})}| = 6.

Thus, φ(S4
1 ◦ {b, d}, S3

2) = 21.

Similarly to Lemma 1 and as illustrated in the above example, the computation of the car-
dinality of the unions in Lemma 2 implies the usage of the inclusion-exclusion principle. This
remark leads to the second theorem:

Theorem 2 Let S = 〈X1...Xn〉, T = 〈X ′1...X ′m〉 and Y an itemset. Then,

φ(S ◦ Y, T) = φ(S, T) +A(S, T, Y)−R(S, T, Y) (4)

with

A(S, T, Y) =
∑

K⊆L(T,Y)

(−1)|K|+1 · φ(S, Tmin(K)−1) ·
(
2

∣∣∣(⋂j∈K X
′
j

)
∩Y
∣∣∣ − 1

)
(5)

and
R(S, T, Y) =

∑
K⊆L(S,Y)

(−1)|K|+1 ·
∑

K′⊆L(T,Y)

(−1)|K
′
|+1 ·D(S, T, Y,K,K

′
) (6)

where

D(S, T, Y,K,K
′
) = φ(Smin(K)−1, Tmin(K

′
)−1) · 2

∣∣∣(⋂j∈K Xj)∩
(⋂

j
′∈K

′ X
′

j
′

)
∩Y
∣∣∣ − 1

See Appendix.

5.1 Dynamic Programming

Theorem 2 implies a simple dynamic programming algorithm. For two given sequences S and T ,
such that |S| = n and |T | = m, the program produces a n ×m matrix, denoted M, where the
Mi,j cell corresponds to all common subsequences between Si and T j ,Mi,j = φ(Si, T j).

Inria

On Measuring Similarity for Sequences of Itemsets 9

{∅} {a} {b, c, d} {a, d}
{∅} 1 1 1 1
{a} 1 2 2 2
{a, b} 1 2 4 5
{e} 1 2 4 5
{c, d} 1 2 10 13
{b, d} 1 2 12 21

Table 2: Matrix for counting all common subsequences between S1 and S2

Example 5 Consider the two sequences S1 = 〈{a}{a, b}{e}{c, d}{b, d}〉 and S2 = 〈{a}{b, c, d}{a, d}〉.
φ(S1, S2) = 21 and the set of all common subsequences of S1 and S2 is:

ϕ(S1, S2) = {∅, 〈{a}〉 , 〈{b}〉 , 〈{c}〉 , 〈{d}〉 , 〈{cd}〉 , 〈{bd}〉 , 〈{a}{a}〉 , 〈{a}{b}〉 ,
〈{a}{c}〉 , 〈{a}{d}〉 , 〈{b}{d}〉 , 〈{c}{d}〉 , 〈{d}{d}〉 , 〈{a}{cd}〉 , 〈{a}{bd}〉 ,
〈{cd}{d}〉 , 〈{a}{d}{d}〉 , 〈{a}{b}{d}〉 , 〈{a}{c}{d}〉 , 〈{a}{cd}{d}〉}

We detail the computation of the cell M2,1 with the position set L(S1
2 , {a, b}) = {1} and

L(S1
1 , {a, b}) = {1}:

M({a, b}, {a}) = φ(〈{a}{a, b}〉 , 〈{a}〉)
= M({a}, {a})

+(2|{a}∩{a,b}| − 1) · M({a}, {∅})
−(2|{a}∩{a}∩{a,b}| − 1) · M({∅}, {∅})

= 2 + 1− 1 = 2

The entire computation for φ(S1, S2) is illustrated in Table 2.

6 Experiments

6.1 Protein folding: a relationship between sequence and structure

Protein-protein interactions are involved in almost all biological processes. Their function mostly
depends on their 3-dimensional (3D) structure which helps understanding how proteins interact
and how they can be regulated in case of pathology[12].

Our first batch of experiments focus on using our ACS similarity measure for the problem of
homology modeling of proteins [3]. This problem can be stated as follows: can we compare the
3D-structure of two proteins based on the 2D-structure and additional structural information?
The solution based on our similarity is novel from a biological point of view and intuitively easier
than the usual methods for 3D-structures in bio-informatics. In this experiment we consider
the primary structure (or sequence) corresponding to the linear assembling of amino-acid (20)
residues along with their chemical properties. In addition, we use the secondary structure which

RR n° 8086

10 Egho & others

1GZX: OXY T-state HAEMOGLOBIN
Structural alignement of

 Haemoglobin (chain B) vs
 Myoglobin

α1

β1

α2

β2

β2

Figure 1: On the left, the 3D-structure of haemoglobin protein with surface representation of
the four chains α1, α2, β1, β2 are represented. On the right, the overall structure superposition
of chain β2 of haemoglobin and the single chain myoglobin protein is shown.

is a local refinement of the primary structure into periodic folders which corresponds to the
itemsets in our sequence model.

For comparing two proteins and measuring their similarity, the alphabet of 20 residues was
reduced to 6 elements referring to 6 categories related to their chemical similarities: small
(AGSTCP), aromatic (YW), aliphatic (IFMLV), polar (NQ), negatively (DE) and positively
(HKR) charged. An additional information was associated to each residue: the possible mem-
bership to a secondary structure motif. Accordingly, the primary structure of a protein is con-
sidered as a sequence S = {k1, k2 . . . km}, where each ki corresponds to one of the six categories
introduced above and where each itemset of S is a representation of the secondary structure.
The following problem has been chosen for testing the ACS similarity. A well-known limit of
homology modeling concerns two proteins, namely myoglobin and haemoglobin (Hgb), both in-
volved in oxygen transport of almost all vertebrates. Haemoglobin is composed of two chains
commonly annotated α (α1, α2) and two chains β (β1, β2) as shown in Figure 1. The right
part of Figure 1 shows that the β2 chain of haemoglobin fits the myoglobin structure. However,
the usual measure of similarity separate the α and β chains of haemoglobin and myoglobin as
shown in Figure 2a. In comparison, the result of ACS is reported on Figure 2b. The myoglobin
structure is quite similar to both α and β chains of haemoglobin. In biological terms, this means
that even if haemoglobin and myoglobin are different, their secondary 3D-structure and their
chemical characteristics are in correspondence.

6.2 Protein Families

In this experiment, two sets of proteins were considered. Two families of proteins which are
distinct in term of function, structurally different among the two sets but similar inside each
set. The number of proteins for each family was set to 5. The ACS similarity measure was
computed between the protein sequences and results are reported below Figure 3. The cross-
similarity matrix reveals a correct separation between the two sets of proteins. The interest
for biologists with this similarity measure is to focus on proteins which biologically unknown

Inria

On Measuring Similarity for Sequences of Itemsets 11

α2 β1β2α1

(a) Primary Sequence Similarity

α2 β1β2α1

(b) ACS Similarity

Figure 2: Comparison of results based on primary sequence similarity only, and with ACS
algorithm. On each tree, proteins 1 and 4 correspond to α proteins of haemoglobin, and proteins
3 and 5 to β proteins. Protein 2 corresponds to the myoglobin protein.

"Matrix_finess_2fam.csv" matrix

 0 1 2 3 4 5 6 7 8 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 50

 100

 150

 200

 250

 300

Figure 3: ACS similarity matrix. Gradient colors corresponding to the ln(ACS) between two
sequences and to the ln(ADS) on the diagonal element of the matrix. The two sets of proteins
appear along the diagonal matrix

RR n° 8086

12 Egho & others

Experiments Dataset Sequences Length Itemset Length Nb-Sequence

stage1

data1

50

25

1000
data2 20
data3 15
data4 10
data5 5

stage2

data1 80

15 1000
data2 60
data3 40
data4 20

stage3

data1

25 15

1000
data2 2000

...
...

data10 10000

Table 3: Synthetic Datasets

functions potentially infer them based on the number of common subsequences.

6.3 Experiments on Synthetic Datasets

In the following, we study the scalability of our measure computation. We assess the different
runtimes with respect to three different parameters:

1. The average number of itemsets in a sequence.

2. The average number of items in each itemset of a sequence.

3. The total number of sequences that are processed through the similarity computation.

We carry out our experiments on three stages, each focusing on one of the previously listed
parameters. Table 3 describes the synthetic datasets that were generated and used in our exper-
iments.

The similarity matrix computation was parallelized, and up to 4 cores were fully allocated to
compute the different subregions of the matrix. Each of our experiments was repeated five times
and all the trials are plotted in Figures 4, 5 and 6.

Figure 4 represents the evolution of the runtime for each subregion of the similarity matrix
w.r.t the average number of items in each itemset. We run this test on five types of sequences:
the sequences with 5 items in their itemsets, with 10 , 15 , 20 and sequences with an average
cardinality of 25 items in their itemsets. The boxplots represent the variations of the running
time, considering the interval of sequences [1, 50] then [50, 100], [100, 150], until the last block
which represents the sequences in the interval [950, 1000]. For example, the average calculation
time for the first subregion of similarity matrix between the 1st and 50th performs 50·51

2 +(1000−
50) · 50 = 48775 similarity comparisons and needs 1231 seconds to do that. We can also notice
that the running time decreases for each processed subregion in the matrix. For example, the
average calculation time for the last part of matrix between the 950th and 1000th sequence is
only 48 seconds.

In Figure 5, we show the performance of our similarity measure w.r.t the average length of
the sequences. We run this test on four types of data sequences: sequences with 80, 60, 40 and
20 itemsets. As expected, and noticed in the figure, the runtime increases with the length of the
sequence. For example, the yellow boxplot represents the variations of the runtime for generating
each subregion of the matrix for sequences of average length 60. The red boxplot represents the

Inria

On Measuring Similarity for Sequences of Itemsets 13

variations of the running time for sequences with length 80, the calculation time increases by a
almost a factor of two, but remains acceptable, when we increase the average length of sequence.

Figure 6 shows the results of our experimnets on the total number of processed sequences.
We simply calculate the similarity measure for 2 sequences. We note that the running time is
increasing linearly. For example, the time needed to compute the similarities of 1000 pairs of
sequences is 9.589 seconds and the calculation time for 2000 pairs is 18.467 seconds.

These experiments highlight the fact that our measure is efficient in term of runtime for a
large panel of sequences with different varying parameters.

0
20
0

40
0

60
0

80
0

10
00

12
00

14
00

Matrix calculation time for 1000 sequences of fixed length 50
 with varying itemsets' cardinalities

Number of sequences

R
un

 T
im

e
(s

ec
on

d)

0-50 100-150 250-300 400-450 550-600 700-750 850-900

25 items
20 items
15 items
10 items
5 items

Figure 4: Boxplots showing the variations of the running time when calculating the similarity
matrix for sequences depending on the number of items.

7 Conclusion
In this paper, we study the problem of counting all common subsequences between two sequences
of itemsets. We present an efficient dynamic programming algorithm (ACS) to count the number
of common subsequences between two sequences. This solution allows us to define in a simple
and intuitive manner a similarity measure between two sequences S and T . This similarity has
been successfully applied for the analysis of real-world biological data and for synthetic datasets.
An ongoing work is on the approximation of the number of all common subsequences to speed
up the computation for long biological sequences.

References
[1] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence matching in time-

series databases,” in SIGMOD Conference, R. T. Snodgrass and M. Winslett, Eds. ACM
Press, 1994, pp. 419–429.

[2] C. Sander and R. Schneider, “Database of homology-derived protein structures and the
structural meaning of sequence alignment,” Proteins, vol. 1, no. 9, pp. 56–68, 1991.

RR n° 8086

14 Egho & others

0
50
0

10
00

15
00

20
00

Matrix calculation time for 1000 sequences of fixed itemset 15
 with varying sequences' length

Number of sequences

R
un

 T
im

e
(s

ec
on

d)

0-50 100-150 250-300 400-450 550-600 700-750 850-900

80 itemset
60 itemset
40 itemset
20 itemset

Figure 5: Boxplots showing the variations of the running time when calculating the similarity
matrix for sequences depending on the number of itemsets.

20
40

60
80

Calculation time sequences vs sequences

Number sequences

R
un

 T
im

e
(s

ec
on

ds
)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 6: Calculation time of similarity measure for sequences vers sequences.

Inria

On Measuring Similarity for Sequences of Itemsets 15

[3] C. Chothia and M. Gerstein, “Protein evolution. how far can sequences diverge?” Nature,
vol. 6617, no. 385, pp. 579–581, 1997.

[4] Q. Yang and H. H. Zhang, “Web-log mining for predictive web caching,” IEEE Trans. Knowl.
Data Eng., vol. 15, no. 4, pp. 1050–1053, 2003.

[5] J. Serrà, H. Kantz, X. Serra, and R. G. Andrzejak, “Predictability of music descriptor time
series and its application to cover song detection,” IEEE Transactions on Audio, Speech &
Language Processing, vol. 20, no. 2, pp. 514–525, 2012.

[6] C. S. Leslie, E. Eskin, and W. S. Noble, “The spectrum kernel: A string kernel for svm
protein classification,” in Pacific Symposium on Biocomputing, 2002, pp. 566–575.

[7] T. Xiong, S. Wang, Q. Jiang, and J. Z. Huang, “A new markov model for clustering cate-
gorical sequences,” in ICDM, D. J. Cook, J. Pei, W. Wang, O. R. Zaïane, and X. Wu, Eds.
IEEE, 2011, pp. 854–863.

[8] V. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,”
Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966.

[9] J. Herranz, J. Nin, and M. Sole, “Optimal symbol alignment distance: A new distance for
sequences of symbols,” IEEE Transactions on Knowledge and Data Engineering, vol. 23, pp.
1541–1554, 2011.

[10] E. Keogh, “Exact indexing of dynamic time warping,” in Proceedings of the 28th international
conference on Very Large Data Bases, ser. VLDB ’02, 2002, pp. 406–417.

[11] H. Wang, Z. Lin, and G. Gediga, “Counting all common subsequences to order alternatives,”
in RSKT, 2007, pp. 566–573.

[12] S. Wodak and J. Janin, “Structural basis of macromolecular recognition.” Adv Protein Chem,
vol. 61, pp. 9–73, 2002.

[13] J. Oncina and M. Sebban, “Learning stochastic edit distance: Application in handwritten
character recognition,” Pattern Recogn., vol. 39, no. 9, pp. 1575–1587, Sep. 2006.

[14] F. Muzaffar, B. Mohsin, F. Naz, and L. F. Jawed, “Dsp implementation of voice recognition
using dynamic time warping algorithm,” IEEE Explore, pp. 1–7, 2005.

[15] M. J. Z. Karlton Sequeira, “Admit: Anomaly-base data mining for intrusions,” in 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Jul 2002.

[16] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. J. Keogh, “Indexing multi-
dimensional time-series with support for multiple distance measures,” in KDD, 2003, pp.
216–225.

[17] C. Elzinga, S. Rahmann, and H. Wang, “Algorithms for subsequence combinatorics,” Theor.
Comput. Sci., vol. 409, no. 3, pp. 394–404, 2008.

RR n° 8086

16 Egho & others

Proof of Lemma 1

Let T = 〈T1, . . . , Tm〉 be a sequence that is counted multiple times; i.e., T ∈ (ϕ(S) ◦ P≥1(Y)) ∩
ϕ(S). Clearly Tm ∈ P≥1(Y) as otherwise T would not have been in ϕ(S)◦P≥1(Y). Let k denote
max{j|Tm ⊆ S[j]}. Since T ∈ ϕ(S), such k must exist. Then, k ∈ L(S, Y), since k is the largest
index for which S[k]∩Y includes Tm. Therefore, T ∈ ϕ(Sk−1)◦P≥1(S[k]∩Y) for a k ∈ L(S, Y).

2

Proof of Theorem 1

The proof is a simple application of the inclusion-exclusion principle to compute the cardinality
of the union of Lemma 1:

R(S, Y) =

∣∣∣∣∣∣
⋃

`∈L(S,Y)

{
ϕ(S`−1) ◦ P≥1(S[`] ∩ Y)

}∣∣∣∣∣∣
R(S, Y) =

∑
K⊆L(S,Y)

(−1)|K|+1

∣∣∣∣∣ ⋂
`∈K

{
ϕ(S`−1) ◦ P≥1(S[`] ∩ Y)

}∣∣∣∣∣
The proof is completed by the following two observations:

setK :=
⋂
`∈K

{
ϕ(S`−1) ◦ P≥1(S[`] ∩ Y)

}
= ϕ(Smin(K)−1) ◦ P≥1((∩k∈KS[k]) ∩ Y)

Indeed; any sequence of length m in setK has Tm−1 ∈ Smin(K)−1, and Tm ∈ P≥1(S[k] ∩ Y), for
all k ∈ K. And, the second observation:

|setK | = φ(Smin(K)−1) ·
(
2|(∩k∈KS[k])∩Y | − 1

)
2

Proof of Theorem 2

1. No items in Y appear in any itemset of S and T , in this case the set of all common distinct
subsequences between S ◦ Y and T is exactly the same set of all common distinct subse-
quences between S and T . Hence, φ(S ◦ Y, T) = φ(S, T).

2. If at least an item in Y appears in either one of the sequences S or T (or both), then
ϕ(S◦Y, T) is expressed as the union of the set of all common distinct subsequences between
S and T with the set of added sequences A without the set of repeated sequences R.
Formally,

ϕ(S ◦ Y, T) = ϕ(S, T) ∪ A\R (7)

with

A =

 ⋃
`′∈L(T,Y)

ϕ(S, T `
′
−1) ◦ P≥1(T [`

′
] ∩ Y)

 (8)

Inria

On Measuring Similarity for Sequences of Itemsets 17

and

R =

 ⋃
`∈L(S,Y)

 ⋃
`′∈L(T,Y)

ϕ(S`−1, T `
′
−1) ◦ P≥1(S[`] ∩ T [`

′
] ∩ Y)


 (9)

Notice that because these three sets are disjoint, the cardinality of ϕ(S◦Y, T) can be simply
expressed as |ϕ(S ◦ Y, T)| = |ϕ(S, T)|+ |A| − |R|. Using the inclusion-exclusion principle,
|A|, denoted as A(S, T, Y) can be written as,

A(S, T, Y) =

∣∣∣∣∣∣
⋃

`∈L(T,Y)

{
ϕ(S, T `−1) ◦ P≥1(T [`] ∩ Y)

}∣∣∣∣∣∣
=

∑
K⊆L(T,Y)

(−1)|K|+1 |setK |

where
setK =

⋂
`∈K

{
ϕ(S, T `−1) ◦ P≥1(T [`] ∩ Y)

}
A(S, T, Y) is completed by the following two observations:

setK :=
⋂
`∈K

{
ϕ(S, T `−1) ◦ P≥1(T [`] ∩ Y)

}
= ϕ(S, Tmin(K)−1) ◦ P≥1((∩k∈KT [k]) ∩ Y)

And, the second observation:

|setK | = φ(S, Tmin(K)−1) ·
(
2|(∩k∈KT [k])∩Y | − 1

)
A(S, T, Y) can be written as,

A(S, T, Y) =
∑

K⊆L(T,Y)

(−1)|K|+1 · φ(S, Tmin(K)−1) ·
(
2

∣∣∣(⋂j∈K X
′
j

)
∩Y
∣∣∣ − 1

)
(10)

The same inclusion-exclusion reasoning applies to the cardinality of R, denoted R(S, T, Y)

R(S, T, Y) =

∣∣∣∣∣∣
 ⋃

`∈L(S,Y)

 ⋃
`′∈L(T,Y)

D`,`′



∣∣∣∣∣∣

=
∑

K⊆L(S,Y)

(−1)|K|+1 ·
∑

K′⊆L(T,Y)

(−1)|K
′
|+1 ·

∣∣∣setK,K′

∣∣∣
and

setK,K′ =
⋂
`∈K

⋂
`′∈K′

ϕ(S`−1, T `
′
−1) ◦ P≥1(S[`] ∩ T [`

′
] ∩ Y)

RR n° 8086

18 Egho & others

The final result follows after noticing that,

setK,K′ =
⋂
`∈K

⋂
`′∈K′

ϕ(S`−1, T `
′
−1) ◦ P≥1(S[`] ∩ T [`

′
] ∩ Y)

setK,K′ = ϕ(Smin(K)−1, Tmin(K
′
)−1) ◦ P≥1

(
(∩k∈KS[k]) ∩ (∩k′∈K′T [k

′
]) ∩ Y

)
R(S, T, Y) can be written as,

R(S, T, Y) =
∑

K⊆L(S,Y)

(−1)|K|+1 ·
∑

K′⊆L(T,Y)

(−1)|K
′
|+1 ·D(S, T, Y,K,K

′
) (11)

where

D(S, T, Y,K,K
′
) = φ(Smin(K)−1, Tmin(K

′
)−1) · 2

∣∣∣(⋂j∈K Xj)∩
(⋂

j
′∈K

′ X
′

j
′

)
∩Y
∣∣∣ − 1

2

Inria

On Measuring Similarity for Sequences of Itemsets 19

Contents
1 Introduction 3

2 Related Work 3

3 Preliminaries 4

4 Counting All Distinct Subsequences 5

5 Counting All Common Subsequences 7
5.1 Dynamic Programming . 8

6 Experiments 9
6.1 Protein folding: a relationship between sequence and structure 9
6.2 Protein Families . 10
6.3 Experiments on Synthetic Datasets . 12

7 Conclusion 13

RR n° 8086

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Preliminaries
	Counting All Distinct Subsequences
	Counting All Common Subsequences
	Dynamic Programming

	Experiments
	Protein folding: a relationship between sequence and structure
	Protein Families
	Experiments on Synthetic Datasets

	Conclusion

