Synthetic Handwritten Gesture Generation Using Sigma-Lognormal Model for Evolving Handwriting Classifiers - Archive ouverte HAL Access content directly
Conference Papers Year : 2011

Synthetic Handwritten Gesture Generation Using Sigma-Lognormal Model for Evolving Handwriting Classifiers

(1) , (1) , (2) , (2)
1
2

Abstract

We show in this paper the importance of using handwriting generation in the context of online and incremental learning of a handwriting classifier. In order to obtain realistic synthetic gestures, we apply controlled deformations on the extracted sigma-lognormal parameters of the real gesture, and we then generate synthetic gestures using the modified parameters. Results show the impact of integrating these synthetic samples generation in our learning algorithm on the classification performance.
Fichier principal
Vignette du fichier
IGS_paper.pdf (469.43 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00741573 , version 1 (14-10-2012)

Identifiers

  • HAL Id : hal-00741573 , version 1

Cite

Abdullah Almaksour, Eric Anquetil, Réjean Plamondon, Christian O'Reilly. Synthetic Handwritten Gesture Generation Using Sigma-Lognormal Model for Evolving Handwriting Classifiers. 15th Biennial Conference of the International Graphonomics Society, 2011, cancun, Mexico. ⟨hal-00741573⟩
411 View
394 Download

Share

Gmail Facebook Twitter LinkedIn More