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(Isabelle.Herlin@inria.fr)
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Abstract Simulation models and image data are simultaneously available for numerous

scientific domains, such as oceanography and meteorology. They are indeed two com-

plementary descriptions of the same complex system. Data Assimilation is a well-known

mathematical technique used, in environmental sciences, to improve forecasts obtained

from the simulation models, thanks to the observation data. One class of data assimila-

tion algorithms, named 4D-Var, globally adjusts the model output to the observations, that

are available over a period of time. The question of how to derive accurate characteristic

features from images, with an optimal use of the simulation model, is of major interest

for the image processing community. In this article, we consider applying data assimila-

tion methods for motion estimation on a sequence of satellite images acquired over the

ocean. We describe various strategies that can be derived in the framework of variational

data assimilation (4D-Var). They mostly depend on the choice of the state vector itself.

According to this definition, the dynamics has to be described and observation operators

specified in order to characterize the information displayed by the image sequence. We

detail the mathematical setting of these strategies and analyze their properties. Results

are provided on twin experiments to quantify the methods and on satellite acquisitions

acquired over the Black Sea.
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1 INTRODUCTION

Simulation models and image data are simultaneously available for numerous scientific

domains such as oceanography, meteorology, hydrology, glaciology, atmosphere chem-

istry, engineering, biology, and medicine. In all cases, complex numerical models have

been settled, and huge amounts of different kinds of data, including image acquisitions,

provide a deep insight on the observed phenomenon. Models and images are indeed

two complementary descriptions of the same reality. Two questions arise from that re-

mark. From the model viewpoint: how to improve the forecasts obtained by a simulation

model with a better use of the image information? From the image viewpoint: how to

derive accurate characteristic features from images by making an optimal use of these

models? The paper focuses on this last question and describes the available options

to be settled in order to define the best strategy for image assimilation according to the

applicative context. The discussion is illustrated on the geophysical fluid flow motion es-

timation issue. Reader is referred to Ruhnau et al. [2007] for a short survey of fluid flow

motion estimation methods.
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Let x = (x, y) denote the spatial location on 2D image data and t denote time. As

explained in Béréziat and Herlin [2011], an ill-posed image processing problem, such

as estimating the motion field W(x, t) from an image sequence I(x, t), is successfully

solved in the data assimilation framework if the following information is available:

• a dynamic model, also named evolution equation, for W(x, t),

• an equation linking W(x, t) and the image data I(x, t), even in an implicit way:

■(W(x, t), I(x, t)) = 0.

Several data assimilation systems can be derived from these two equations. They corre-

spond to various definitions of the state vector and observation operator. Each formula-

tion is a strategy for combining images and model, whose performances depend on the

studied problem and on image properties.

The article is organized as follows. Section 2 briefly presents the variational data assimi-

lation concepts. Section 3 discusses the pros and cons of involving pseudo-images in the

state vector. Illustration is given in Section 4 on the issue of motion estimation from an

image sequence. Observation operators are described in the same section. Experimen-

tal results are discussed in Section 5. Section 6 ends the paper with some conclusions

and perspectives on the image assimilation issue.

2 VARIATIONAL DATA ASSIMILATION

Let us first summarize the major principles of variational data assimilation.

2.1 Equations of the data assimilation system

Let X being a state vector depending on the spatial location x and time t. X is defined

on A = Ω× [t0, t1], Ω being the bounded spatial domain and [t0, t1] the temporal domain.

We assume that X is evolving in time according to:

∂X

∂t
(x, t) +▼(X)(x, t) = 0 (1)

▼ is the evolution model, supposed differentiable. This model is derived from the physical

equations that describe the studied system.

Observation images I(x, t) are available. They are linked to the state vector through an

observation equation:

❍(X, I)(x, t) = 0 (2)

❍ is the observation operator, supposed differentiable.

We consider having some knowledge on the initial condition of the state vector at t = t0.

This is the background value Xb(x), that is given as initial condition of the state vector at

the beginning of the assimilation process:

X(x, t0)−Xb(x) = 0 (3)
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2.2 Variational formulation

In order to solve System (1,2,3), the following functional is defined and has to be mini-

mized:

E(X) =
1

2

∫

A

∫

A

(

∂X

∂t
+▼(X)

)T

(x, t)Q−1

(

∂X

∂t
+▼(X)

)

(x′, t′)dxdtdx′dt′

+
1

2

∫

A

∫

A

❍(X,Y)T (x, t)R−1(x, t,x′, t′)❍(X,Y)(x′, t′)dxdtdx′dt′

+
1

2

∫

Ω

∫

Ω

(

X(x, t0)−Xb(x)
)T

B−1(x,x′)
(

X(x′, t0)−Xb(x
′)
)

dxdx′

(4)

E(X) expresses that each one of Equations (1) to (3) is not exactly verified: the right

terms are not null and usually modeled by Gaussian error variables, Tarantola [2005].

Q, R and B represent their respective covariance matrices. The first term of E(X)
means that even the evolution equation is not exactly verified: the model is said im-

perfect, Tremolet [2006]. Minimization of E is carried out with an incremental method,

that is extensively described in Béréziat and Herlin [2011].

3 DEFINITION OF X. WITH OR WITHOUT PSEUDO-IMAGES?

One core discussion of the paper concerns the involvement of pseudo-images in the

state vector. Let first define some notations. Consider that our problem is to estimate

a quantity Z from an image sequence I and is described by the following mathematical

relation between I and Z:

■(Z, I)(x, t) = 0 (5)

at each space-time location. This is an implicit formulation of image processing problems,

such as, for instance, optical flow estimation, curves matching and tracking of objects.

When applying image assimilation methods, the first issues to be considered are the

definition of the state vector X and of its evolution model ▼.

Two main options are available at first look.

First, the state vector, denoted X1, is equal to the studied quantity Z and the model ▼1

describes its dynamics. The observation vector Y1 is the sequence of images, I, and

the inverse problem equation (5) is chosen as observation equation (2). This is the direct

assimilation of images, described by the system:

X1(x, t) =Z(x, t)

Y1 =I

❍1(X1,Y1) =■(Z, I)

(6)

Discussions on the operator ❍1 is given in Section 4 in case of motion estimation.

Second, the state vector, denoted X2, includes an additional component Is(x, t), named

pseudo-image, that is similar to the observed images and evolves in time according to the

same heuristics. The observation vector Y is again the sequence of observed images I.

However, the comparison of the state vector with the image observations becomes the

difference of the pseudo-image with the real one at acquisition dates. The corresponding

assimilation system is:

X2(x, t) =(Z(x, t) Is(x, t))
T

Y2 =I

❍2(X2,Y2) =Ps(X2)−Y2 = Is − I

(7)
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with T the transpose operator and Ps the projection on the Is-component. This is named

pseudo-image approach.

Having involved a pseudo-image in the state vector, a number of new strategies are now

available to the user. The question is: is it better to assimilate the image data I or to

assimilate pseudo-observations derived from them? In that last case, a transform T is

first applied to the observe images and a new data assimilation system is obtained:

X3(x, t) =(Z(x, t) Is(x, t))
T

Y3 =T (I)

❍3(X3,Y3) =d(T (Ps(X3)),Y3) = d(T (Is), T (I))

(8)

d being a measure of the discrepancy between the transform of Is and that of I in the

space of transform coefficients. This is, for instance, applied by Titaud et al. [2010],

with T being the curvelet transform. In the general case, T is used to quantify major

characteristics of the image data and to filter noise that occured during the acquisition,

in order to improve the retrieval of Z from the images I. The data that are assimilated in

the model are no more the raw observations, but pseudo-observations computed by the

numerical process associated with T . In this case, performances of T strongly impact the

results. This is named pseudo-image approach with assimilation of pseudo-observations.

Reader should refer to Titaud et al. [2010] for a full description of the method, that is no

more discussed in the following.

The pseudo-image approach is attractive, due to the simple observation operator in-

volved in System (7). An evolution equation of Is is however required, based on the

knowledge on the evolution of image acquisitions:

∂Is

∂t
(x, t) +❋(Is)(x, t) = 0 (9)

The evolution model of X2 is equal to (▼1 ❋)T , ▼1 being the dynamic model of Z. ❋

is often chosen as the transport equation, as described in Horn and Schunk [1981]:

∂Is

∂t
(x, t) +∇Is(x, t) ·W(x, t) = 0 (10)

with W(x, t) being the motion field on the space-time domain, ∇Is(x, t) being the spatial

gradient of Is, and · denoting the dot product.

4 MOTION ESTIMATION ISSUE

In this section, the direct assimilation of images and the pseudo-image approach are

discussed for the motion estimation issue. The problem is to retrieve the motion field

W(x, t) from an image sequence I(x, t), assuming that grey level values are advected

by the motion field:

■(W, I)(x, t) =
∂I

∂t
(x, t) +∇I(x, t) ·W(x, t) = 0 (11)

Direct assimilation of images is first implemented. By identifying with System (6), we get:

X1(x, t) = W(x, t)

Y1(x, t) = I(x, t)

❍1(X1,Y1)(x, t) =
∂I

∂t
(x, t) +∇I(x, t) ·W(x, t)
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The Lagrangian constancy of velocity,
dW

dt
= 0, is taken as dynamic model▼1 of W:

dW

dt
=

∂W

∂t
+ (W · ∇)W = 0 (12)

Applying the direct assimilation approach requires first having processed the image se-

quence and computed the space and time gradients used in the observation equation.

This makes the process highly dependent on the quality of this preprocessing. Moreover,

Eq. (11) assumes that motion is constant over the time interval used for computing the

temporal gradient
∂I

∂t
(x, t). This is incoherent with using a dynamic model ▼1 for W.

This inconsistency in the data assimilation system has a negative impact on results as it

will be shown in the next section. Last, Eq. (11) is a linearized version of the brightness

transport equation, and is only valid if the time interval between two observation images

is small enough. If not, Eq. (11) is no more correctly handling the dynamics visualized

by the image sequence: displacements between frames are too large to be modeled by

that equation.

In the pseudo-image approach, we identify with System (7) and get:

X2(x, t) = (W(x, t) Is(x, t))
T

Y2(x, t) = I(x, t)

❍2(X2,Y2)(x, t) = Is(x, t)− I(x, t)

The pseudo-image Is has the same dynamics than the observations I: advection of grey

level values by the motion field. As the time step dt of the simulation process is controlled

by the user, the equation remains valid during the temporal integration, even if the time

interval between image acquisitions is large. The evolution of X2 is described by:

∂W

∂t
+ (W · ∇)W = 0 (13)

∂Is

∂t
+W · ∇Is = 0 (14)

and the evolution model is:

▼2(X2) =
(

▼1(X2) ❋(X2)
)T

=
(

(W · ∇)W W · ∇Is
)T

5 RESULTS

5.1 Twin experiments

The direct assimilation of images is compared to the pseudo-image approach on twin

experiments in order to quantify differences. A synthetic image sequence is obtained

from the initial conditions, displayed in Figure 1, using the transport of brightness and

Lagrangian constancy of motion equations. Six images of that simulation are used as

observations for image assimilation and displayed on Figure 2.
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Figure 1. Left: initial motion field. Right: initial value of Is.

.

Figure 2. Observations.

The direct assimilation of images is named IME (Image Model External) as the images

are External to the state vector, while the pseudo-image approach is named IMI (Image

Model Included) as pseudo-images Is are Included in the state vector. The same obser-

vations are used for both assimilations. Results are displayed on Figure 3 and compared

to the effective motion field. Statistics are given in Table 1. The first column is the av-

erage of the relative error of the euclidian norm. The second column is the average of

the absolute value of orientation error. Better results are obtained with IMI, due to its

improved comparison of the state vector with the observations. The advantage of IMI is

even more visible if the time interval between observation increases.

5.2 Satellite data

Image assimilation is then applied to retrieve surface currents on Sea Surface Temper-

ature data (SST). The satellite images have been acquired by NOAA-AVHRR sensors,

over the Black Sea, and displayed on Fig. 4. The two image assimilation methods are

Table 1. Error statistics.

Norm (%) Orientation (in degree)

IME 27.9 2.128

IMI 9.8 0.792
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Figure 3. Left: Ground truth. Center: IME. Right: IMI.

.

Figure 4. Satellite observations.

used and the estimated motion fields are given on Fig. 5. Only qualitative comparison is

at hand, as no ground truth is available in that case. For instance, the counter-clockwise

rotational motion occurring in the bottom-left part of the image sequence is correctly

retrieved by IMI and missed by IME.

6 CONCLUSION

The paper describes issues that have to be considered, when applying image assimila-

tion to solve an image processing problem.

The first option is to decide including or not pseudo-images in the state vector: direct

assimilation of images or pseudo-image approach. These pseudo-images allow an easy

comparison with the image observations. However, they increase the memory required

for the assimilation process. Moreover, their dynamics has be be correctly handled. Oth-

erwise, the comparison with image observations is no more significant. If the transport

equation is valid, then the pseudo-image approach is the most advantageous, compared

to the direct assimilation of images. Indeed, it successfully processes sequences of im-

ages with large time interval between frames, if the user choices the correct time interval

dt of the simulation. In the paper, experiments have been described for motion estimation

on synthetic and real data. They proved the improvements that can be obtained with the

pseudo-image approach.

Perspectives of the work will first be to compare various dynamic equations of W for

direct assimilation of images and pseudo-image approach. In a second phase, these two

approaches will be compared on a new image processing issue such as curve tracking.
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