N
N

N

HAL

open science

Apports et Potentiels de la Programmation par
Contraintes en Optimisation Globale sous Contraintes
Michel Rueher

» To cite this version:

Michel Rueher. Apports et Potentiels de la Programmation par Contraintes en Optimisation Globale
sous Contraintes. JFPC 2010 - Sixiemes Journées Francophones de Programmation par Contraintes,

Jun 2010, Caen, France. hal-00742227

HAL Id: hal-00742227
https://inria.hal.science/hal-00742227

Submitted on 16 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00742227
https://hal.archives-ouvertes.fr

Apports et Potentiels de la
Programmation par Contraintes en
Optimisation Globale sous Contraintes

Michel RUEHER

Université de Nice Sophia-Antipolis / CNRS - I3S , France

CPAIOR Workshop on Hybrid Methods for NLP

15/06/10

CSP &
Optimisation

Globale

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain

CSP &

Outline Optimisation

Globale

Motivations

Basics

A Global Constraint for Safe Linear Relaxation

Computing
R e . “sharp” upper
Computing “sharp” upper bounds bounds
Using CSP to
boost safe
OBR

Using CSP to boost safe OBR
A challenging finite-domain optimization application

Conclusion

The Problem et

Globale

We consider the continuous global optimisation problem

Motivations
min f(x
P = sc. gi(x)=0,j=1.k A Global
G(x) <0, j=k+1.m o
X< x< i Relaxation
- B Computing
. oo
with
» X = [x,X]: a vector of intervals of R TS
oost safe
>f:R”—>Randgj:F{”—>R OEL

. . . . A challenging
» Functions f and g;: are continuously differentiable on X finte-domain

Trends in global optimisation

» Performance

Most successful systems (Baron, aBB, ...) use local
methods and linear relaxations
— not rigorous (work with floats)

» Rigour

Mainly rely on interval computation
... available systems (e.g., Globsol) are quite slow

» Challenge: to combine the advantages of both
approaches in an efficient and rigorous global
optimisation framework

CSP &
Optimisation
Globale

Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

Example of flaw due to a lack of rigour

Consider the following optimisation problem:

min x
s.t. y—x>>0
y—x2x(x-2)+107%<0 y

X,y €[-10,+10]

Baron 6.0 and Baron 7.2 find 0 as the minimum . ..

A

CSP &
Optimisation
Globale

Motivations

Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain

Basics

» Branch and Bound Algorithm

» Basics on Numeric CSP

CSP &
Optimisation
Globale

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

Branch and Bound Algorithm

» BB Algorithm:

While £ # () do %L initialized with the input box
Select a box B from the set of current boxes £
Reduction (filtering or tightening) of B
Lower bounding of f in box B
Upper bounding of f in box B
Update of f and f
Splitting of B (if not empty)

» Upper Bounding — Critical issue:
to prove the existence of a feasible
point in a reduced box

» Lower Bounding — Critical issue:
to achieve an efficient pruning

CSP &
Optimisation

Globale

Motivations

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

Numeric CSP

» X ={xq,...,Xn} is a set of variables

» X ={Xy,...,X} is a set of domains
(X; contains all acceptable values for variable x;)

X; = [&,X_,]

» C={cy,...,Cn} is a set of constraints

CSP &
Optimisation
Globale

onstraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging

Numeric CSP: Overall scheme

A Branch & Prune schema:

1. Pruning the search space

2. Making a choice to generate two (or more)
sub-problems

» The pruning step — filtering techniques to reduce
the size of the intervals

» The branching step — splits the intervals (uses
heuristics to choose the variable to split)

CSP &
Optimisation
Globale

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

Local consistencies

» 2B—consistency only requires to check the
Arc—Consistency property for each bound of the

intervals
Variable x with X = [x, X] is 2B—consistent for constraint
f(x,x1,...,Xn) = 0 if X and X are the leftmost and the

rightmost zero of f(x, x1,...,Xp)

» Box-consistency :

— coarser relaxation of AC than 2B—consistency
— better filtering

Variable x with X = [x, X] is Box-Consistent for constraint
f(x,x1,...,Xn) = 0if X and X are the leftmost and the
rightmost zero of F(x, X1,. .., Xs), the optimal interval

extension of f(x, xq, ..., Xp)

CSP &
Optimisation

Globale

Rueher

Motivations

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

Filtering

o 2B-filtering Algorithms ~~ projection functions

« Box-filtering Algorithms ~~ monovariate version
of the interval Newton method

e Based on Interval Arithmetic

CSP &
Optimisation
Globale

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization

Limits of Interval Arithmetic

» Wrapping effect: overestimate by a unique interval
the image of f over an interval vector

» Dependency problem: independence the different
occurences of some variable during the evaluation of
an expression

Consider X = [0, 5]
X—-X=1[0-5,5-0] =[-5,5] instead of [0,0] !
X2 — X =[0,25] - [0,5] = [-5,25]
X(X —1) = [0,5]([0, 5] - [1,1])
=[0,5][-1,4] = [-5,20]

CSP &
Optimisation
Globale

Motivations

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

Limits of Local Consistencies

» A constraint is handled as a black-box by local
consistencies (2B,BOX,...)
¢ No way to catch the dependencies between constraints

(amplified by constraint decomposition)
e Splitting is behind the success for small dimensions

» Higher consistencies (KB—filtering,Bound-filtering)
— capture some dependencies between constraints
— visiting numerous combinations

= A global constraint to handle a linear approximation
with LP solvers
— safe linear relaxations

CSP &
Optimisation

Globale

uenher

Motivations

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

A Global Constraint for Safe Linear
Relaxation

» works on quadratic terms and bilinear terms
— to rewrite power terms and product terms

» quadrification technique derived from Sheraldi
techniques

» Critical issue: to find a good trade off between a tight
relaxation and the number of generated terms

» Quadratic terms and bilinear terms are approximated
by tight redundant constraints

CSP &
Optimisation
Globale

Motivations

Basics

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

CSP &

The QUAD process Opiimisation

Globale

» Reformulation

e capture the linear part
— replace non linear terms
by new variable

eg x2 by y;

» Linearisation

\s‘

\\\

Computing
« introduce redundant linear bouns T
constraints Using CSP to
— tight approximations (RLT) o puocteat

» Computing min(X) = x; and A challenging
max(X) = x; in LP / i optimization
N

L4 /Y

feasible space

— z-xp=0

Reformulation for x2 o

Globale

y = x2 with x € [-4, 5]
Li(y,) =y > 2ax — o?

A Global
Constraint for

Li(y,—4):y> —8x—16
Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

Li(y,5):y > 10x — 25

La(y) =y < (X + X)X — X * X

La(y) :y <x+20

Quad filtering algorithm

Function Quad_filtering (IN: X, C, €) return X’

1. Reformulation
— linear inequalities L; for the nonlinear terms in C
2. Linearisation/relaxation of the whole system
— a linear system LR

3. X =X
4. Pruning:
While reduction of some bound > ¢ and () ¢ X’ Do

4.1 Reduce the lower and upper bounds x; and X; of each
initial variable x; € X
— Computing min and max of X; with a LP solver

4.2 Update the coefficients of L; according to the new
bounds

CSP &
Optimisation
Globale

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

CSP &

Issues in the use of linear relaxation Optimisation

Globale

» Coefficients of linear relaxations are scalars
= computed with floating point numbers

» Efficient implementations of the simplex algorithm Computing

“sharp” upper

= use floating point numbers bounds

Using CSP to
boost safe
OBR

» All the computations with floating point numbers PR

require right corrections geLmzaes

Safe approximations of L,

Li(y,a) =y > 2ax —a?

Effects of rounding:
» rounding of 2«
= rotation on y axis
» rounding of o
= translation on y axis

CSP &
Optimisation

Globale

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging

Correction of the Simplex algorithm

Consider the following LP :
minimise ¢’ x
subjecttob < Ax <b

Solution = vector xg € R"
LP solver computes a vector xg € F" +# XR

xf is safe for the objective if ¢"xg > ¢"xg

Neumaier & Shcherbina
— cheap method to obtain a rigorous bound of the
objective
(use of the approximation solution of the dual)

20

CSP &
Optimisation
Globale

Basics

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Computing “sharp” upper bounds

» Upper bounding
¢ local search
— approximate feasible
POINt Xapprox
o epsilon inflation process

and proof
— provide a feasible box Xpoveq

o compute ¥ = min(f(Xproveq), T)

» Critical issue: to prove the existence of a feasible
point in a reduced box
e Singularities
e Guess point too far from a feasible region (local search
works with floats)

21

CSP &
Optimisation
Globale

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

Using the lower bound to get an
upper-bound

Y U
? L L

X

Branch&Bound step where P is the set of feasible points
and R is the linear relaxation

Idea: modify the safe lower bound ...
to get an upper-bound !

22

CSP &
Optimisation

Globale

A Global
Constraint for
Safe Linear
Relaxation

Using CSP to
boost safe
OBR

A challenging
finite-domain

Lower bound: a good starting point to find
a feasible upper-bound ?

y Set of feasible points

R4 F . ® A feasible point
£ N leemmcean R Approximate feasible point
Set of non feasible points

X

N, optimal solution of R, not a feasible point of P but (may
be) a good starting point:

» BB splits the domains at each iteration:
smaller box ~~ N nearest from the optima of P

» Proof process inflates a box around the guess point ~~
compensate the distance from the feasible region

23

CSP &
Optimisation
Globale

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

Method

» Correction procedure to get a better feasible point
from a given approximate feasible point

— to exploit Newton-Raphson for under-constrained
systems of equations (and Moore-Penrose inverse)

Good convergence when the starting point is nearly
feasible

24

CSP &
Optimisation
Globale

A Global
Constraint for
Safe Linear
Relaxation

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization

Handling square systems of equations

» g=1(91,---,9m): B" — R (n=m)
— Newton-Raphson step
x(H+1) — x() _ Jg (x(’)) (x (i))
Converges well if the exact solution to be
approximated is not singular

25

CSP &
Optimisation

Globale

Constraint for
Safe Linear
Relaxation

Using CSP to
boost safe
OBR

A challenging
finite-domain

Handling under-constrained systems of Optimisation

Globale

equations

Manifold of solutions

— linear system /(x) = 0 is under- - A Global
constrained Constraint for
— Choose a solution x() of /(x) = 0 . Safe Linear
Relaxation
Best choice:
Solution of /(x) = 0 close to x(©)
Can easily be computed with the ;
Moore-Penrose inverse: SR
.)) . OBR
XD = x() — A (x()g(x))) o P
finite-domain
Aj € R™™M is the Moore-Penrose in- imizati
verse of Ay, solution of the equation prec e

which minimizes [|x(") — x(©]))

26

Handling under-constrained systems of
equations and inequalities

P Under-constrained systems of equations and inequalities
~~ introduce slack variables

» Initial values for the slack variables have to be provided

Slightly positive value
— to break the symmetry
— good convergence

X X

27

CSP &
Optimisation

Globale

Relaxation

Using CSP to
boost safe
OBR

CSP &

A new upper bounding strategie Optmisation

Globale

Function UpperBounding(IN X, X/p; INOUTS’)

% S': list of proven feasible boxes

% X/p: the optimal solution of the LP relaxation of P(x) Constraint for
Sl . (Z) Safe Linear
= o .) o Relaxation
X0 = FeasibilityCorrection(x;s) % Improving x;» feasibility
Xp = InflateAndProve (x5, X)
if x, # 0 then
P Using CSP to
S =SU Xp boost safe
endif o
/ A challenging
return S finite-domain

28

Experiments

» Significant set of benchmarks of the COCONUT
project

» Selection of 35 benchmarks where Icos did find the
global minimum while relying on an unsafe local search

» 31 benchmarks are solved and proved within a 30s
time out

» Almost all benchmarks are solved in much less time
and with much more proven solutions

29

CSP &
Optimisation
Globale

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion

Experiments (2)

Name (n,m) LS: t(s) UB/LB: t(s)
alkyl (14,7) - 154
circle (3,10) 1.98 0.84
ex14_1_2 (6,9) - 1.74
ex14 1.3 (3,4) - 0.42
ex14_1.6 (9, 15) - 12.44
ex14_1_8 (3,4) - -
ex2_1_1 (5,1) 0.09 0.04
ex2_1_2 6,2) - 0.24
ex2_1_3 (13,9) - 1.32
ex2_1_4 (6,5) 0.52 0.43
ex2_1_6 (10, 5) 1.61 0.35
ex3_1_3 (6, 6) 1.03 0.29
ex3 1_4 (3,3) 6.51 0.14
ex4_1_2 (1,0) 18.84 17.03
ex4_ 1.6 (1,0) 0.11 14.28
ex4 1.7 (1,0) 0.07 0.01
ex5_4 2 (8, 6) - 18.15
ex6_1_2 (4,3) 0.51 0.52
ex6_1_4 (6, 4) 7.45 8.92
ex7 3.5 (13, 15) - -
ex8 1.6 (2,0) - 0.39
ex9 1.1 (13,12) - -
ex9_1_10 (14,12) - 3.76
ex9_1_4 (10,9) - 0.49
ex9_1.5 (13,12) - 2.68
ex9_1_8 (14,12) - 3.76
ex9 2 1 (10,9) - 0.68
ex9 2 4 8,7) 2.94 0.69
ex9 2. 5 8,7) - -
ex9 2 7 (10, 9) - 0.68
ex9 2 8 (6, 5) - 0.53
house (8, 8) - 0.90
nemhaus (5, 5) 0:.;&2 0.01

CSP &
Optimisation
Globale

A Global
Constraint for
Safe Linear
Relaxation

Using CSP to
boost safe
OBR

A challenging
finite-domain

Using CSP to boost safe OBR

» OBR (optimal based reduction):
known bounds of the objective function — to reduce
the size of the domains

» Refutation techniques — boosting safe OBR

31

CSP &
Optimisation
Globale

Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

A challenging
finite-domain

Lower bounding Optimisation

Globale

» Relaxing the problem
e linear relaxation R of P

Basics

A Global
Constraint for
Safe Linear
Relaxation

min dTx
st. Ax<b

Computing
“sharp” upper
bounds

o LP solver —f*

— numerous splitting

A challenging
finite-domain
optimization
application

» OBR is a way to speed up the reduction process

32

Optimality Base Reduction

» Introduced by Ryoo and Sahinidis

o to take advantage of the known bounds of the
objective function to reduce the size of the domains

o uses a well known property of the saddle point to
compute new bounds for the domains with the known
bounds of the objective function

33

CSP &
Optimisation
Globale

Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

A challenging
finite-domain
optimization
application

Theorems of OBR

» Let [L, U] be the domain of f:
» U is an upper-bound of the intial problem P
» Lis a lower-bound of a convex relaxation R of P
If the constraint x; — X; < 0 is active at the optimal
solution of R and has a corresponding multiplier A7 > 0
(A* is the optimal solution of the dual of R), then

U-L
Af

X; > Xi with x; = X; —

if x; > X;, the domain of x; can be shrinked to [x, X;]
without loss of any global optima

» similar theorems for x; — x; < 0 and g;(x) < 0.

34

CSP &
Optimisation

Globale

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

A challenging
finite-domain
optimization
application

Conclusion

OBR: intuitions
» Ryoo & Sahinidis 96

L u
I
X=%-5% X=X+ 5t
Xi -
X Xi
1
— r—
Uu-L
/ H I .
X; > X; with X; = X; %

o does not modify the very branch and bound
process

o almost for free !

CSP &
Optimisation
Globale

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

A challenging
finite-domain

OBR Issues

» Critical issue: basic OBR algorithm is unsafe

e it uses the dual solution of the linear relaxation

o Efficient LP solvers work with floats —
the available dual solution A* is an approximation
if used in OBR ...
.. — OBR may remove actual optimum !

» Solutions: two ways to take advantage of OBR

1. prove dual solution (Kearfott): combininig the dual of
linear relaxation with the Kuhn-Tucker conditions
2. validate the reduction proposed by OBR with CP !

36

CSP &
Optimisation

Globale

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

A challenging
finite-domain
optimization
application

Conclusion

CP approach: intuition

» Essential observation: if the constraint system

L<f(x)<U
gi(x)=0, i=1.k
gi(x) <0, j=k+1.m

has no solution when the domain of x is set to [x;, x|,
the reduction computed by OBR is valid

» Try to reject [x;, x]] with classical filtering

techniques;
otherwise add this box to the list of boxes to process

37

CSP &
Optimisation
Globale

Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

A challenging
finite-domain
optimization
application

CP algorithm

Lr =0 % set of potential non-solution boxes

for each variable x; do
Apply OBR
and add the generated potential non-solution boxes to £,

for each box B; in £, do
B := 2B-filtering(B)
if B{ = 0 then reduce the domain of x;
else B{ := QUAD-filtering(B/)
if B/’ = 0 then reduce the domain of x;
else add B; to global list of box to be handled endif
endif

Compute f with QUAD_SOLVER in X

38

Experiments

» Compares 4 versions of the branch and bound
algorithm:

o without OBR

e with unsafe OBR

e with safe OBR based on Kearfott’s approach
o with safe OBR based on CP techniques

implemented with Icos using Coin/CLP and
Coin/lpOpt

» On 78 benches (from Ryoo & Sahinidis 1995, Audet
thesis and the coconut library)

» All experiments have been done on
PC-Notebook/1Ghz.

39

Experimental Results (2): Synthesis Optimistion

Globale

Synthesis of the results:

Motivations
ZI(S) %SaVing Basics
no OBR 2384.36 - .
unsafe OBR 881.51 | 63.03% S
safe OBR Kearfott || 1975.95 | 17.13% ot
safe OBR CP 454.73 | 80.93% (Sharp” upper
(with a timeout of 500s)
A challenging
Safe CP-based OBR faster than unsafe OBR ! 235;?13’35?
application
Conclusion

... because wrong domains reductions prevent the
upper-bounding process from improving the current upper
bound !!

40

Finite domains CSP & Global Optimisation
Handling software upgradeability problems

» A critical issue in modern operating systems

— Finding the “best” solution to install, remove or upgrade
packages in a given installation.

— The complexity of the upgradeability problem itself is
NP complete

— modern OS contain a huge number of packages (often
more than 20 000 packages in a Linux distribution)

» Several optimisation criteria have to be considered,
e.g., stability, memory efficiency, network efficiency

» Mancoosi project (FP7/2007-2013,

http://www.mancoosi.org/)

41

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
sharp” upper
bounds

Using CSP to
boost safe
OBR

Conclusion

http://www.mancoosi.org/

CSP &

Solving software upgradeability problems [

Globale

Rueher

Computing a final package configuration from an intial one

Motivations
Basics
» A configuration states which package is installed and A Global
which package is not installed: Coen
» Problem (in CUDF): list of package descriptions (with Heaon
their status) & a set of packages to bl
rp” upper
install/remove/upgrade bounds
» Final configuration: list of installed packages Using CSP to
(uninstalled packages are not listed) e

» Expected Answer: best solution according to
multiple criteria

Conclusion

42

A Problem: list of package descriptions &
requests (1)

A package description provides:

» the package name and package version
» pi; = (package name p;, package version v;) is unique
for each problem in CUDF
» The p;; are basic variables
— solvers have to instantiate p; ; with true or false

» Package dependencies and conflicts: set of
contraints between the p; ; (CNF formula)

» Provided features: if package p; depends on feature
f\ provided by g; and q», then installing gy or go will
fulfill p;’s dependency on f.

43

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
sharp” upper
bounds

Using CSP to
boost safe
OBR

Conclusion

A Problem: list of package descriptions &
requests (2)

» Requests are:

» Commands/actions on the initial configuration:
install, remove and/or upgrade package instructions

» install p: at least one version of p must be installed in
the final configuration

» remove p: no version of p must be installed in the final
configuration

> upgrade p: let p, be the highest version installed in the
initial configuration, then p;, with v/ > v must be the
only version installed in the final configuration

» Mandatory: the final configuration must fulfill all the
requests (otherwise there is no solution to the problem)

» Requests induce additional constraints on the
problem to solve

44

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
sharp” upper
bounds

Using CSP to
boost safe
OBR

Conclusion

Finding the best solution

» Best solution

— multiple criteria, e.g.,

» minimize the number of removed packages, and,
» minimize the number of changed packages

» Mono criteria optimization solvers

— using a linear combination of the criteria
— solving each criteria sequentially

45

CSP &
Optimisation
Globale

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

MILP model: handling dependencies

1. Conjunction:

n n
Depend(p,) = \pi ~ —n«p,+> pi>=0

i=1 i=1

if p, = 1 (installed), then all p; = 1; if p, = 0 (not installed),

then the p; can take any value

2. Disjunction

Depend(p,) = \/pk e —pv+Zpk> 0

thus, if p, =1, at Ieast one of the py will be mstalled.

46

CSP &
Optimisation
Globale

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

MILP model: handling conflicts

Conflict property: a simple conjunction of packages
— inequality:

n’xpy + Z pc <=n
pc € Conflict(py)

where Conflict(py) is the set of package conflicting with p,
and " = Card(Conflict(p,))

— if py is installed, none of the p, conflicting packages
can be installed

— if py is not installed, then the conflicting packages can
freely be either installed or not

47

CSP &
Optimisation
Globale

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

Conclusion

CSP &

MILP model: handling multi criteria (1) Qptimisation
Assume the following 2 criteria:
» First criterion: minimize the number of removed

Globale

functionalities among the installed ones Motivations
H Basics
min —
Z p A Global
P € F znstalled Constraint for

. . . . Safe Linear

where F 7psiaeq i the set of installed functionalities Relaxation

» Second criterion: minimize the number of computing

“sharp” upper

modifications; if package p, version i is installed keep "o

it installed, if package p version u it is not installed Jsing GSP to
keep it uninstalled OBR
min > —pi + > pu
pi € P znstalled Pu € P yninstalled

Conclusion

where P 1nsianeq i the set of installed versioned
packages and Py ninstaied 1S the set of uninstalled
versioned packages.

48

MILP model: handling multi criteria (2) Optimisaton

Globale

» Handling these criteria in a lexical order

Basics

— criteria are aggregated in the following way:

A Global
Constraint for
_ . Safe Linear
E Card(P)xp + g pi + E Pu Relaxation
P € F znstatied Pi € P znstalied Pu € P uninstatied Computing

“sharp” upper
— bound:
where P = P zpstaied U P uninstalied e
Using CSP to
boost safe
OBR

Multiplying first criterion coefficients by Card(P)
lets any of them have a higher value than any
combination of the second criterion

49

Experiments Optimisation

Globale

» A set of 200 problems, ranging from random problems
to real one and from 20000 up to 50000 packages

Basics

A Global

» MILP solvers & Pseudo boolean solvers Sl
IBM SCIP | WBO Relaxation
CPLEX 11.1 1.2 Computing
Time out 0 0 1 “sharp” upper
No sol 58 58 58 bounds
Min time (s) 0.54 0.54 0.53 lt.)Jsing C?P to
Max time (s) 7.83 | 193.73 | 300 posieae
Geometric
Mean time (s) 2.5 10.29 23.6

Conclusion

» IBM CP : could not find any solution within 300s

50

Examples of optimization criteria (ongoing
solver competition)

» paranoid:
minimizing the packages removed in the solution
&
minimizing packages changed by the solution

» trendy:
minimizing packages removed in the solution
:ﬂnimizing outdated packages in the solution
iinimizing package recommendations not satisfied
iinimizing extra packages installed.

51

CSP &
Optimisation
Globale

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

Conclusion

Open questions

» How to boost CP ?

» Taking advantage of the dependency graph

» Combining CP and MILP

» Better handling of preferences ?

52

CSP &
Optimisation

Globale

Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

inite-domain
optimization
application

Conclusion

+ CSP refutation techniques

» allow a safe and efficient implementation of OBR
» can outperform standard mathematical methods
» might be suitable for other unsafe methods

+ Safe global constraints

» provide an efficient alternative to local search:
— good starting point for a Newton method ~ feasible
region

» drastically improve the performances of the
upper-bounding process

CP and Robustness

?
? Large finite-domain
optimization problems

53

CSP &
Optimisation

Globale

Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

	Motivations
	The Problem
	Trends in global optimisation
	Example of flaw due to a lack of rigour

	Basics
	Numeric CSP
	Local consistencies
	Filtering

	A Global Constraint for Safe Linear Relaxation
	Computing ``sharp'' upper bounds
	Newton for under-constrained systems
	New upper bounding strategie
	Experiments

	Using CSP to boost safe OBR
	OBR: intuitions & theorems
	CP: intuition
	Experiments

	A challenging finite-domain optimization application
	 Conclusion

