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The Problem et

Globale

We consider the continuous global optimisation problem

Motivations
min  f(x
P = sc. gi(x)=0,j=1.k A Global
G(x) <0, j=k+1.m o
X< x< i Relaxation
- B Computing
. oo
with
» X = [x,X]: a vector of intervals of R TS
oost safe
>f:R”—>Randgj:F{”—>R OEL

. . . . A challenging
» Functions f and g;: are continuously differentiable on X finte-domain




Trends in global optimisation

» Performance

Most successful systems (Baron, aBB, ...) use local
methods and linear relaxations
— not rigorous (work with floats)

» Rigour

Mainly rely on interval computation
... available systems (e.g., Globsol) are quite slow

» Challenge: to combine the advantages of both
approaches in an efficient and rigorous global
optimisation framework
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Example of flaw due to a lack of rigour

Consider the following optimisation problem:

min  x
s.t. y—x>>0
y—x2x(x-2)+107%<0 y

X,y €[-10,+10]

Baron 6.0 and Baron 7.2 find 0 as the minimum . ..
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Basics

» Branch and Bound Algorithm

» Basics on Numeric CSP
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Branch and Bound Algorithm

» BB Algorithm:

While £ # () do %L initialized with the input box
Select a box B from the set of current boxes £
Reduction (filtering or tightening) of B
Lower bounding of f in box B
Upper bounding of f in box B
Update of f and f
Splitting of B (if not empty)

» Upper Bounding — Critical issue:
to prove the existence of a feasible
point in a reduced box

» Lower Bounding — Critical issue:
to achieve an efficient pruning
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Numeric CSP

» X ={xq,...,Xn} is a set of variables

» X ={Xy,...,X} is a set of domains
(X; contains all acceptable values for variable x;)

X; = [&,X_,]

» C={cy,...,Cn} is a set of constraints
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Numeric CSP: Overall scheme

A Branch & Prune schema:

1. Pruning the search space

2. Making a choice to generate two (or more)
sub-problems

» The pruning step — filtering techniques to reduce
the size of the intervals

» The branching step — splits the intervals (uses
heuristics to choose the variable to split)
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Local consistencies

» 2B—consistency only requires to check the
Arc—Consistency property for each bound of the

intervals
Variable x with X = [x, X] is 2B—consistent for constraint
f(x,x1,...,Xn) = 0 if X and X are the leftmost and the

rightmost zero of f(x, x1,...,Xp)

» Box-consistency :

— coarser relaxation of AC than 2B—consistency
— better filtering

Variable x with X = [x, X] is Box-Consistent for constraint
f(x,x1,...,Xn) = 0if X and X are the leftmost and the
rightmost zero of F(x, X1,. .., Xs), the optimal interval

extension of f(x, xq, ..., Xp)
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Filtering

o 2B-filtering Algorithms ~~ projection functions

« Box-filtering Algorithms ~~ monovariate version
of the interval Newton method

e Based on Interval Arithmetic
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Limits of Interval Arithmetic

» Wrapping effect: overestimate by a unique interval
the image of f over an interval vector

» Dependency problem: independence the different
occurences of some variable during the evaluation of
an expression

Consider X = [0, 5]
X—-X=1[0-5,5-0] =[-5,5] instead of [0,0] !
X2 — X =[0,25] - [0,5] = [-5,25]
X(X —1) = [0,5]([0, 5] - [1,1])
=[0,5][-1,4] = [-5,20]
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Limits of Local Consistencies

» A constraint is handled as a black-box by local
consistencies (2B,BOX,...)
¢ No way to catch the dependencies between constraints

(amplified by constraint decomposition)
e Splitting is behind the success for small dimensions

» Higher consistencies (KB—filtering,Bound-filtering)
— capture some dependencies between constraints
— visiting numerous combinations

= A global constraint to handle a linear approximation
with LP solvers
— safe linear relaxations

CSP &
Optimisation

Globale

uenher

Motivations

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

A challenging
finite-domain
optimization
application

Conclusion




A Global Constraint for Safe Linear
Relaxation

» works on quadratic terms and bilinear terms
— to rewrite power terms and product terms

» quadrification technique derived from Sheraldi
techniques

» Critical issue: to find a good trade off between a tight
relaxation and the number of generated terms

» Quadratic terms and bilinear terms are approximated
by tight redundant constraints
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CSP &

The QUAD process Opiimisation

Globale

» Reformulation

e capture the linear part
— replace non linear terms
by new variable

eg x2 by y;

» Linearisation

\s‘

\\\

Computing
« introduce redundant linear bouns T
constraints Using CSP to
— tight approximations (RLT) o puocteat

» Computing min(X) = x; and A challenging
max(X) = x; in LP / i optimization
N

L4 /Y

feasible space

— z-xp=0



Reformulation for x2 o

Globale

y = x2 with x € [-4, 5]
Li(y,) =y > 2ax — o?

A Global
Constraint for

Li(y,—4):y> —8x—16
Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

Li(y,5):y > 10x — 25

La(y) =y < (X + X)X — X * X

La(y) :y <x+20




Quad filtering algorithm

Function Quad_filtering (IN: X, C, €) return X’

1. Reformulation
— linear inequalities L; for the nonlinear terms in C
2. Linearisation/relaxation of the whole system
— a linear system LR

3. X =X
4. Pruning:
While reduction of some bound > ¢ and () ¢ X’ Do

4.1 Reduce the lower and upper bounds x; and X; of each
initial variable x; € X
— Computing min and max of X; with a LP solver

4.2 Update the coefficients of L; according to the new
bounds
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Issues in the use of linear relaxation Optimisation

Globale

» Coefficients of linear relaxations are scalars
= computed with floating point numbers

» Efficient implementations of the simplex algorithm Computing

“sharp” upper

= use floating point numbers bounds

Using CSP to
boost safe
OBR

» All the computations with floating point numbers PR

require right corrections geLmzaes




Safe approximations of L,

Li(y,a) =y > 2ax —a?

Effects of rounding:
» rounding of 2«
= rotation on y axis
» rounding of o
= translation on y axis
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Correction of the Simplex algorithm

Consider the following LP :
minimise ¢’ x
subjecttob < Ax <b

Solution = vector xg € R"
LP solver computes a vector xg € F" +# XR

xf is safe for the objective if ¢"xg > ¢"xg

Neumaier & Shcherbina
— cheap method to obtain a rigorous bound of the
objective
(use of the approximation solution of the dual)

20
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Computing “sharp” upper bounds

» Upper bounding
¢ local search
— approximate feasible
POINt Xapprox
o epsilon inflation process

and proof
— provide a feasible box Xpoveq

o compute ¥ = min(f(Xproveq), T )

» Critical issue: to prove the existence of a feasible
point in a reduced box
e Singularities
e Guess point too far from a feasible region (local search
works with floats)

21
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Using the lower bound to get an
upper-bound

Y U
? L L

X

Branch&Bound step where P is the set of feasible points
and R is the linear relaxation

Idea: modify the safe lower bound ...
to get an upper-bound !

22
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Lower bound: a good starting point to find
a feasible upper-bound ?

y Set of feasible points

R4 F . ® A feasible point
£ N leemmcean R Approximate feasible point
Set of non feasible points

X

N, optimal solution of R, not a feasible point of P but (may
be) a good starting point:

» BB splits the domains at each iteration:
smaller box ~~ N nearest from the optima of P

» Proof process inflates a box around the guess point ~~
compensate the distance from the feasible region

23
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Method

» Correction procedure to get a better feasible point
from a given approximate feasible point

— to exploit Newton-Raphson for under-constrained
systems of equations (and Moore-Penrose inverse)

Good convergence when the starting point is nearly
feasible

24
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Handling square systems of equations

» g=1(91,---,9m): B" — R (n=m)
— Newton-Raphson step
x(H+1) — x() _ Jg (x(’)) (x (i))
Converges well if the exact solution to be
approximated is not singular

25
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Handling under-constrained systems of Optimisation

Globale

equations

Manifold of solutions

— linear system /(x) = 0 is under- - A Global
constrained Constraint for
— Choose a solution x() of /(x) = 0 . Safe Linear
Relaxation
Best choice:
Solution of /(x) = 0 close to x(©)
Can easily be computed with the ;
Moore-Penrose inverse: SR
. ) ) . OBR
XD = x() — A (x()g(x) ) ) o P
finite-domain
Aj € R™™M is the Moore-Penrose in- imizati
verse of Ay, solution of the equation prec e

which minimizes [|x(") — x(©]))

26



Handling under-constrained systems of
equations and inequalities

P Under-constrained systems of equations and inequalities
~~ introduce slack variables

» Initial values for the slack variables have to be provided

Slightly positive value
— to break the symmetry
— good convergence

X X
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CSP &

A new upper bounding strategie Optmisation

Globale

Function UpperBounding(IN X, X/p; INOUTS’)

% S': list of proven feasible boxes

% X/p: the optimal solution of the LP relaxation of P(x) Constraint for
Sl . (Z) Safe Linear
= o . ) o Relaxation
X0 = FeasibilityCorrection(x;s) % Improving x;» feasibility
Xp = InflateAndProve (x5, X)
if x, # 0 then
P Using CSP to
S =SU Xp boost safe
endif o
/ A challenging
return S finite-domain
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Experiments

» Significant set of benchmarks of the COCONUT
project

» Selection of 35 benchmarks where Icos did find the
global minimum while relying on an unsafe local search

» 31 benchmarks are solved and proved within a 30s
time out

» Almost all benchmarks are solved in much less time
and with much more proven solutions

29
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Experiments (2)

Name (n,m) LS: t(s) UB/LB: t(s)
alkyl (14,7) - 154
circle (3,10) 1.98 0.84
ex14_1_2 (6,9) - 1.74
ex14 1.3 (3,4) - 0.42
ex14_1.6 (9, 15) - 12.44
ex14_1_8 (3,4) - -
ex2_1_1 (5,1) 0.09 0.04
ex2_1_2 6,2) - 0.24
ex2_1_3 (13,9) - 1.32
ex2_1_4 (6,5) 0.52 0.43
ex2_1_6 (10, 5) 1.61 0.35
ex3_1_3 (6, 6) 1.03 0.29
ex3 1_4 (3,3) 6.51 0.14
ex4_1_2 (1,0) 18.84 17.03
ex4_ 1.6 (1,0) 0.11 14.28
ex4 1.7 (1,0) 0.07 0.01
ex5_4 2 (8, 6) - 18.15
ex6_1_2 (4,3) 0.51 0.52
ex6_1_4 (6, 4) 7.45 8.92
ex7 3.5 (13, 15) - -
ex8 1.6 (2,0) - 0.39
ex9 1.1 (13,12) - -
ex9_1_10 (14,12) - 3.76
ex9_1_4 (10,9) - 0.49
ex9_1.5 (13,12) - 2.68
ex9_1_8 (14,12) - 3.76
ex9 2 1 (10,9) - 0.68
ex9 2 4 8,7) 2.94 0.69
ex9 2. 5 8,7) - -
ex9 2 7 (10, 9) - 0.68
ex9 2 8 (6, 5) - 0.53
house (8, 8) - 0.90
nemhaus (5, 5) 0:.;&2 0.01
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Using CSP to boost safe OBR

» OBR (optimal based reduction):
known bounds of the objective function — to reduce
the size of the domains

» Refutation techniques — boosting safe OBR

31
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Lower bounding Optimisation

Globale

» Relaxing the problem
e linear relaxation R of P

Basics

A Global
Constraint for
Safe Linear
Relaxation

min dTx
st. Ax<b

Computing
“sharp” upper
bounds

o LP solver —f*

— numerous splitting

A challenging
finite-domain
optimization
application

» OBR is a way to speed up the reduction process
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Optimality Base Reduction

» Introduced by Ryoo and Sahinidis

o to take advantage of the known bounds of the
objective function to reduce the size of the domains

o uses a well known property of the saddle point to
compute new bounds for the domains with the known
bounds of the objective function

33
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Theorems of OBR

» Let [L, U] be the domain of f:
» U is an upper-bound of the intial problem P
» Lis a lower-bound of a convex relaxation R of P
If the constraint x; — X; < 0 is active at the optimal
solution of R and has a corresponding multiplier A7 > 0
(A\* is the optimal solution of the dual of R), then

U-L
Af

X; > Xi with x; = X; —

if x; > X;, the domain of x; can be shrinked to [x, X;]
without loss of any global optima

» similar theorems for x; — x; < 0 and g;(x) < 0.
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OBR: intuitions
» Ryoo & Sahinidis 96

L u
I
X=%-5% X=X+ 5t
Xi -
X Xi
1
— r—
Uu-L
/ H I .
X; > X; with X; = X; %

o does not modify the very branch and bound
process

o almost for free !
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OBR Issues

» Critical issue: basic OBR algorithm is unsafe

e it uses the dual solution of the linear relaxation

o Efficient LP solvers work with floats —
the available dual solution A* is an approximation
if used in OBR ...
.. — OBR may remove actual optimum !

» Solutions: two ways to take advantage of OBR

1. prove dual solution (Kearfott): combininig the dual of
linear relaxation with the Kuhn-Tucker conditions
2. validate the reduction proposed by OBR with CP !

36
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CP approach: intuition

» Essential observation: if the constraint system

L<f(x)<U
gi(x)=0, i=1.k
gi(x) <0, j=k+1.m

has no solution when the domain of x is set to [x;, x|,
the reduction computed by OBR is valid

» Try to reject [x;, x]] with classical filtering

techniques;
otherwise add this box to the list of boxes to process

37
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CP algorithm

Lr =0 % set of potential non-solution boxes

for each variable x; do
Apply OBR
and add the generated potential non-solution boxes to £,

for each box B; in £, do
B := 2B-filtering(B)
if B{ = 0 then reduce the domain of x;
else B{ := QUAD-filtering(B/)
if B/’ = 0 then reduce the domain of x;
else add B; to global list of box to be handled endif
endif

Compute f with QUAD_SOLVER in X

38



Experiments

» Compares 4 versions of the branch and bound
algorithm:

o without OBR

e with unsafe OBR

e with safe OBR based on Kearfott’s approach
o with safe OBR based on CP techniques

implemented with Icos using Coin/CLP and
Coin/lpOpt

» On 78 benches (from Ryoo & Sahinidis 1995, Audet
thesis and the coconut library)

» All experiments have been done on
PC-Notebook/1Ghz.

39



Experimental Results (2): Synthesis Optimistion

Globale

Synthesis of the results:

Motivations
ZI(S) %SaVing Basics
no OBR 2384.36 - .
unsafe OBR 881.51 | 63.03% S
safe OBR Kearfott || 1975.95 | 17.13% ot
safe OBR CP 454.73 | 80.93% (Sharp” upper
(with a timeout of 500s)
A challenging
Safe CP-based OBR faster than unsafe OBR ! 235;?13’35?
application
Conclusion

... because wrong domains reductions prevent the
upper-bounding process from improving the current upper
bound !!

40




Finite domains CSP & Global Optimisation
Handling software upgradeability problems

» A critical issue in modern operating systems

— Finding the “best” solution to install, remove or upgrade
packages in a given installation.

— The complexity of the upgradeability problem itself is
NP complete

— modern OS contain a huge number of packages (often
more than 20 000 packages in a Linux distribution)

» Several optimisation criteria have to be considered,
e.g., stability, memory efficiency, network efficiency

» Mancoosi project (FP7/2007-2013,

http://www.mancoosi.org/)
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CSP &

Solving software upgradeability problems [

Globale

Rueher

Computing a final package configuration from an intial one

Motivations
Basics
» A configuration states which package is installed and A Global
which package is not installed: Coen
» Problem (in CUDF): list of package descriptions (with Heaon
their status) & a set of packages to bl
rp” upper
install/remove/upgrade bounds
» Final configuration: list of installed packages Using CSP to
(uninstalled packages are not listed) e

» Expected Answer: best solution according to
multiple criteria

Conclusion
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A Problem: list of package descriptions &
requests (1)

A package description provides:

» the package name and package version
» pi; = (package name p;, package version v;) is unique
for each problem in CUDF
» The p;; are basic variables
— solvers have to instantiate p; ; with true or false

» Package dependencies and conflicts: set of
contraints between the p; ; (CNF formula)

» Provided features: if package p; depends on feature
f\ provided by g; and q», then installing gy or go will
fulfill p;’s dependency on f.
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A Problem: list of package descriptions &
requests (2)

» Requests are:

» Commands/actions on the initial configuration:
install, remove and/or upgrade package instructions

» install p: at least one version of p must be installed in
the final configuration

» remove p: no version of p must be installed in the final
configuration

> upgrade p: let p, be the highest version installed in the
initial configuration, then p;, with v/ > v must be the
only version installed in the final configuration

» Mandatory: the final configuration must fulfill all the
requests (otherwise there is no solution to the problem)

» Requests induce additional constraints on the
problem to solve
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Finding the best solution

» Best solution

— multiple criteria, e.g.,

» minimize the number of removed packages, and,
» minimize the number of changed packages

» Mono criteria optimization solvers

— using a linear combination of the criteria
— solving each criteria sequentially

45
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MILP model: handling dependencies

1. Conjunction:

n n
Depend(p,) = \pi ~ —n«p,+> pi>=0

i=1 i=1

if p, = 1 (installed), then all p; = 1; if p, = 0 (not installed),

then the p; can take any value

2. Disjunction

Depend(p,) = \/pk e —pv+Zpk> 0

thus, if p, =1, at Ieast one of the py will be mstalled.
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MILP model: handling conflicts

Conflict property: a simple conjunction of packages
— inequality:

n’xpy + Z pc <=n
pc € Conflict(py)

where Conflict(py) is the set of package conflicting with p,
and " = Card(Conflict(p,))

— if py is installed, none of the p, conflicting packages
can be installed

— if py is not installed, then the conflicting packages can
freely be either installed or not

47

CSP &
Optimisation
Globale

Motivations
Basics

A Global
Constraint for
Safe Linear
Relaxation

Computing
“sharp” upper
bounds

Using CSP to
boost safe
OBR

Conclusion




CSP &

MILP model: handling multi criteria (1) Qptimisation
Assume the following 2 criteria:
» First criterion: minimize the number of removed

Globale

functionalities among the installed ones Motivations
H Basics
min —
Z p A Global
P € F znstalled Constraint for

. . . . Safe Linear

where F 7psiaeq i the set of installed functionalities Relaxation

» Second criterion: minimize the number of computing

“sharp” upper

modifications; if package p, version i is installed keep "o

it installed, if package p version u it is not installed Jsing GSP to
keep it uninstalled OBR
min > —pi + > pu
pi € P znstalled Pu € P yninstalled

Conclusion

where P 1nsianeq i the set of installed versioned
packages and Py ninstaied 1S the set of uninstalled
versioned packages.
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MILP model: handling multi criteria (2) Optimisaton

Globale

» Handling these criteria in a lexical order

Basics

— criteria are aggregated in the following way:

A Global
Constraint for
_ . Safe Linear
E Card(P)xp + g pi + E Pu Relaxation
P € F znstatied Pi € P znstalied Pu € P uninstatied Computing

“sharp” upper
— bound:
where P = P zpstaied U P uninstalied e
Using CSP to
boost safe
OBR

Multiplying first criterion coefficients by Card(P)
lets any of them have a higher value than any
combination of the second criterion
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Experiments Optimisation

Globale

» A set of 200 problems, ranging from random problems
to real one and from 20000 up to 50000 packages

Basics

A Global

» MILP solvers & Pseudo boolean solvers Sl
IBM SCIP | WBO Relaxation
CPLEX 11.1 1.2 Computing
Time out 0 0 1 “sharp” upper
No sol 58 58 58 bounds
Min time (s) 0.54 0.54 0.53 lt.)Jsing C?P to
Max time (s) 7.83 | 193.73 | 300 posieae
Geometric
Mean time (s) 2.5 10.29 23.6

Conclusion

» IBM CP : could not find any solution within 300s
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Examples of optimization criteria (ongoing
solver competition)

» paranoid:
minimizing the packages removed in the solution
&
minimizing packages changed by the solution

» trendy:
minimizing packages removed in the solution
:ﬂnimizing outdated packages in the solution
iinimizing package recommendations not satisfied
iinimizing extra packages installed.
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Open questions

» How to boost CP ?

» Taking advantage of the dependency graph

» Combining CP and MILP

» Better handling of preferences ?
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Conclusion

+ CSP refutation techniques

» allow a safe and efficient implementation of OBR
» can outperform standard mathematical methods
» might be suitable for other unsafe methods

+ Safe global constraints

» provide an efficient alternative to local search:
— good starting point for a Newton method ~ feasible
region

» drastically improve the performances of the
upper-bounding process

CP and Robustness

?
? Large finite-domain
optimization problems
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