A. J. Baddeley and M. V. Lieshout, Stochastic geometry models in high-level vision, Journal of Applied Statistics, vol.55, issue.5-6, 1993.
DOI : 10.1098/rsta.1990.0127

X. Descombes, R. Minlos, and E. Zhizhina, Object Extraction Using a Stochastic Birth-and-Death Dynamics in Continuum, Journal of Mathematical Imaging and Vision, vol.21, issue.3, 2009.
DOI : 10.1007/s10851-008-0117-y

URL : https://hal.archives-ouvertes.fr/inria-00422411

W. Ge and R. Collins, Marked point processes for crowd counting, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206621

F. Lafarge, G. Gimel-'farb, and X. Descombes, Geometric feature extraction by a multi-marked point process, PAMI, vol.32, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00503140

M. V. Lieshout, Depth Map Calculation for a Variable Number of Moving Objects using Markov Sequential Object Processes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.7, 2008.
DOI : 10.1109/TPAMI.2008.45

C. Mallet, F. Lafarge, M. Roux, U. Soergel, F. Bretar et al., A marked point process for modeling lidar waveforms, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00503149

C. Lacoste, X. Descombe, and J. Zerubia, Point processes for unsupervised line network extraction in remote sensing, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.10, 2005.
DOI : 10.1109/TPAMI.2005.206

K. Sun, N. Sang, and T. Zhang, Marked point process for vasculartree extraction on angiogram, 2007.

A. Utasi and C. Benedek, A 3-D marked point process model for multi-view people detection, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995699

P. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, vol.82, issue.4, 1995.
DOI : 10.1093/biomet/82.4.711

W. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, 1970.
DOI : 10.1093/biomet/57.1.97

F. Han, Z. W. Tu, and S. Zhu, Range image segmentation by an effective jumpdiffusion method, PAMI, vol.26, 2004.

A. Srivastava, U. Grenander, G. Jensen, and M. Miller, Jump???diffusion Markov processes on orthogonal groups for object pose estimation, Journal of Statistical Planning and Inference, vol.103, issue.1-2, 2002.
DOI : 10.1016/S0378-3758(01)00195-1

Z. Tu and S. Zhu, Image Segmentation by Data-Driven Markov Chain Monte Carlo, PAMI, vol.24, 2002.

M. Harkness and P. Green, Parallel chains, delayed rejection and reversible jump mcmc for object recognition, 2000.

J. Byrd, S. Jarvis, and A. Bhalerao, On the parallelisation of MCMC-based image processing, 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010.
DOI : 10.1109/IPDPSW.2010.5470896

J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin, Parallel Gibbs sampling: From colored fields to thin junction trees, Journal of Machine Learning Research, 2011.

Y. Verdié and F. Lafarge, Towards the parallelization of Reversible Jump Markov Chain Monte Carlo algorithms for vision problems, Research report INRIA, vol.8016, 2012.

M. Rochery, I. Jermyn, and J. Zerubia, Higher Order Active Contours, International Journal of Computer Vision, vol.24, issue.12, p.69, 2006.
DOI : 10.1007/s11263-006-6851-y

URL : https://hal.archives-ouvertes.fr/inria-00070352