R. Aiello and J. A. Sloboda, Musical perceptions, 1994.

M. Allan and C. K. Williams, Harmonising chorales by probabilistic inference, Advances in Neural Information Processing Systems, pp.25-32, 2005.

S. Chen, D. Beeferman, and R. Rosenfeld, Evaluation metrics for language models, Proc. DARPA Broadcast News Transcription and Understanding Workshop, 1998.

C. H. Chuan, A comparison of statistical and rule-based models for stylespecific harmonization, Proc. 12 th International Society for Music Information Retrieval Conference (ISMIR), pp.221-226, 2011.

C. H. Chuan and E. Chew, A hybrid system for automatic generation of style-specific accompaniment, Proc. 4 th International Joint Workshop on Computational Creativity, 2007.

M. Community, Music Information Retrieval Evaluation eXchange. http://www.music-ir.org/mirex, 2012.

U. S. Cunha and G. Ramalho, An intelligent hybrid model for chord prediction, Organised Sound, vol.4, issue.2, pp.115-119, 1999.
DOI : 10.1017/S1355771899002071

J. Downie, A. Ehmann, M. Bay, and M. Jones, The Music Information Retrieval Evaluation eXchange: Some Observations and Insights, Advances in Music Information Retrieval, pp.93-115, 2010.
DOI : 10.1007/978-3-642-11674-2_5

K. Ebcio?-glu, An expert system for chorale harmonization, Proc. National Conference in Artificial Intelligence (AAAI), 1986.

K. Ebcio?-glu, An Expert System for Harmonizing Four-Part Chorales, Computer Music Journal, vol.12, issue.3, pp.43-51, 1988.
DOI : 10.2307/3680335

S. Fukayama, K. Nakatsuma, S. Sako, T. Nishimoto, and S. Sagayama, Automatic song composition from the lyrics exploiting prosody of the Japanese language, Proc. 7 th Sound and Music Computing Conference (SMC), pp.299-302, 2010.

D. Gang, D. Lehman, and N. Wagner, Tuning a neural network for harmonizing melodies in real-time, Proc. International Computer Music Conference (ICMC), 1998.

I. Pg-music, Band-in-a-box, 2012.

T. Jaakkola, M. Diekhans, and D. Haussler, A Discriminative Framework for Detecting Remote Protein Homologies, Journal of Computational Biology, vol.7, issue.1-2, pp.95-114, 2000.
DOI : 10.1089/10665270050081405

T. Jebara, Machine Learning: Discriminative and Generative, volume 755 of The Springer International Series in Engineering and Computer Science, 2004.
DOI : 10.1007/978-1-4419-9011-2

F. Jelinek and R. L. Mercer, Interpolated estimation of Markov source parameters from sparse data, Proc. Workshop on Pattern Recognition in Practice, pp.381-397, 1980.

D. Jurafsky and J. H. Martin, Speech and Language Processing, 2008.

D. Klakow, Log-linear interpolation of language models, Proc. 5 th International Conference on Spoken Language Processing, pp.1695-1698, 1998.

H. R. Lee and J. S. Jang, i-Ring: A system for humming transcription and chord generation, Proc. IEEE International Conference on Multimedia and Expo (ICME), pp.1031-1034, 2004.

F. J. Och and H. Ney, Discriminative training and maximum entropy models for statistical machine translation, Proceedings of the 40th Annual Meeting on Association for Computational Linguistics , ACL '02, pp.295-302, 2002.
DOI : 10.3115/1073083.1073133

F. Pachet and P. Roy, Musical harmonization with constraints: A survey, Constraints, vol.6, issue.1, pp.7-19, 2001.
DOI : 10.1023/A:1009897225381

J. F. Paiement, D. Eck, and S. Bengio, Probabilistic Melodic Harmonization, Proc. 19th Canadian Conf. on Artificial Intelligence, pp.218-229, 2006.
DOI : 10.1007/11766247_19

H. Papadopoulos and G. Peeters, Large-Scale Study of Chord Estimation Algorithms Based on Chroma Representation and HMM, 2007 International Workshop on Content-Based Multimedia Indexing, pp.53-60, 2007.
DOI : 10.1109/CBMI.2007.385392

URL : https://hal.archives-ouvertes.fr/hal-00511437

S. Phon-amnuaisuk and G. Wiggins, The four-part harmonisation problem: a comparison between genetic algorithms and a rule-based system, Proc. Artificial Intelligence and Simulation of Behavior conference, pp.28-34, 1999.

R. Development and C. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2011.

C. Raphael and J. Stoddard, Functional Harmonic Analysis Using Probabilistic Models, Computer Music Journal, vol.28, issue.3, pp.45-52, 2004.
DOI : 10.1162/014892699559616

C. Rathinavelu and L. Deng, The trended HMM with discriminative training for phonetic classification, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96, pp.1049-1052, 1996.
DOI : 10.1109/ICSLP.1996.607785

J. Rennie and R. Rifkin, Improving multiclass text classification with the support vector machine, 2001.

R. Scholz, E. Vincent, and F. Bimbot, Robust modeling of musical chord sequences using probabilistic N-grams, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.53-56, 2009.
DOI : 10.1109/ICASSP.2009.4959518

URL : https://hal.archives-ouvertes.fr/inria-00544166

I. Simon, D. Morris, and S. Basu, MySong, Proceeding of the twenty-sixth annual CHI conference on Human factors in computing systems , CHI '08, pp.725-734, 2008.
DOI : 10.1145/1357054.1357169

L. Steels, Learning the craft of musical composition, Proc. International Computer Music Conference (ICMC), pp.27-31, 1986.

D. Temperley and D. Sleator, Modeling Meter and Harmony: A Preference-Rule Approach, Computer Music Journal, vol.6, issue.1, pp.10-27, 1999.
DOI : 10.2307/842885

D. Temperley and D. Sleator, Harmonic Analyzer, 2012.

P. C. Woodland and D. Povey, Large scale discriminative training of hidden Markov models for speech recognition, Computer Speech & Language, vol.16, issue.1, pp.25-47, 2002.
DOI : 10.1006/csla.2001.0182

C. Zhai and J. Lafferty, A study of smoothing methods for language models applied to information retrieval, ACM Transactions on Information Systems, vol.22, issue.2, pp.179-214, 2004.
DOI : 10.1145/984321.984322