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Abstract. We propose a spike sorting method for multi-channel recordings. When
applied in neural recordings, the performance of the Independent Component Analysis
(ICA) algorithm is known to be limited, since the number of recording sites is much
lower than the number of neurons. The proposed method uses an iterative application
of ICA and a de
ation technique in two nested loops. In each iteration of the external
loop, the spiking activity of one neuron is singled out and then de
ated from the
recordings. The internal loop implements a sequence of ICA and sorting for removing
the noise and all the spikes that are not �red by the targeted neuron. Then a �nal step
is appended to the two nested loops in order to separate simultaneously �red spikes.
We solve this problem by taking all possible pairs of the sorted neurons and apply ICA
only on the segments of the signal during which at least one of the neurons in a given
pair was active. We validate the performance of the proposed method on simulated
recordings, but also on a speci�c type of real recordings: simultaneous extracellular-
intracellular. We quantify the sorting results on the extracellular recordings for the
spikes that come from the neurons recorded intracellularly. The results suggest that
the proposed solution signi�cantly improves the performance of ICA in spike sorting.
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1. Introduction

Information between neurons is transmitted using electrochemical signaling, which
includes communication through action potentials (AP).

Multi-site electrodes with an increasing number of channel recordings are being
more and more used for accessing neural activity (see, e.g., [1] where 100-channels
recording system, described in [2], has been used). Each recording site will capture
a mixture of activities from a number of neurons around.

Finding the �ring instants of individual neurons form extracellular recordings is a
very challenging problem in neuroscience, known as spike sorting (when recorded with
extracellular electrodes action potentials are usually called spikes). For reviews and
comparison of the existing spike sorting methods, we refer to [3], [4] and [5] to name a
few.

A preliminary step before actually sorting the spikes is to �nd and extract them
from the original noisy measurement. This is the spike detection problem. For recordings
with good Signal to Noise Ratio (SNR) spike detection can be solved by a simple
thresholding [6]. When the SNR is not good enough, di�erent spike detection algorithms
can be applied, e.g.: [7], [8] and [9]. In general, only spikes with high enough amplitude
can be detected. These correspond to the activity of the neurons closest to the recording
sites. We mention however that, since the medium around the electrodes is not isotropic
in general, the term closest does not always translate in the sense of minimum distance.
So here and in all the remaining, closest neurons means neurons that are most visible
in terms of current 
ow at the recording points during APs. The cumulative activity
of all remote (in the sense above) neurons is considered as an undesired perturbation
in the recorded signal, forming the background noise. And even for the neurons close
to the electrodes, not all of their spikes are detected: some are inevitably lost due to
the background noise corruption. However, analyzing the performance in spike sorting,
we can say that missing some spikes (not detected spikes or spikes left unsorted) is less
problematic than assigning spikes into a wrong cluster. We refer to [10] for detailed
argumentation of this statement.

Commonly, spike sorting techniques use spike shape and amplitude as discriminative
factors: even though all the neurons �re almost the same action potential waveform,
due to the propagation and the velocity e�ects, spikes recorded with an extracellular
electrode have di�erent shapes and amplitudes if they are coming from di�erent neurons
[11]. Thus, after spike detection, feature extraction techniques such as Principal
Component Analysis (PCA) [12], wavelet based feature extraction [13], [14] or some
others [15], [16] are commonly applied on the detected spikes.

Spikes are then sorted into di�erent clusters, depending on the extracted features.
A large number of clustering algorithms have been proposed for spike sorting. K-means
[17], EM [18], template matching [19], Bayesian clustering [20] and super-paramagnetic
clustering [13] are just some popular/recent examples. The number of clusters is often
determined manually. However, sometimes some unsupervised procedures are used. As



Neural spike sorting using iterative ICA and de
ation based approach 3

examples we mention Basysian Information Criterion (BIC) (e.g. [21] and [22]) as well
as some simple ad-hoc procedures, such as �nding the maximal density of the spikes in
the feature vector space [23]. The essential problem in spike sorting arises from the fact
that the activities of neurons close to the electrode are often signi�cantly destroyed by
the background noise. Thus, very often di�erent spikes �red by the same neuron appear
in a recording as very di�erent waveforms and it is very hard to recognize that they
should be sorted into the same cluster.

In multi-channel (multi-site) recordings, the activity of each neuron in the
neighborhood is captured by several recording sites. The principle of many spike sorting
algorithms is to exploit such information redundancy. This is actually a Blind Source
Separation (BSS) problem which is commonly approached via Independent Component
Analysis (ICA). It allows one to �nd a new basis of data representation in which the
mutual information between the induced virtual recording sites is minimized [24], [25],
[17] and [26]. For further reading, we refer to [27] for a nice tutorial on ICA (see
also [28]). Unfortunately, the contribution of ICA is limited by several characteristics
of neural recordings. The foremost is that the number of electrodes is much smaller
than the number of neurons around. Also, the activities of di�erent neurons are not
independent. Consequently, ICA alone can not fully separate neural activities, but it
can often transform the recorded signal so that the sorting is easier. Thus in general ICA
is followed by some classical spike sorting algorithm (such as those we have mentioned
in the previous paragraph).

In this paper we present a new algorithm for spike sorting from multi-channel
extracellular recordings. The algorithm is iterative and consists of two nested loops.
We use a de
ation technique to improve the performance of ICA: after we separate
the �ring instants of a single neuron (using ICA and some spike sorting method), we
remove them from the original recording and repeat the procedure until the algorithm
becomes unable to separate any more neurons or until a prescribed number of neurons
is obtained. Moreover, within each iteration we implement, in an internal loop, another
iterative algorithm for removing the noise and all the spikes that are not coming from
the neuron which is the closest to (the most visible by) the electrode. This neuron is
identi�ed as the one whose activity has the largest projection on the recording sites.

More precisely, the iteration of the internal loop consists of a sequence of ICA, and
spike sorting. For the classical sorting algorithm we devised a simple greedy method,
described in [23]. The algorithm is based on the observation that the distribution
of a neural signal deviates signi�cantly from the uniform distribution and is rather
unimodal. The detected spikes to be sorted are �rst processed with some feature
extraction technique and then represented in a space with reduced dimension by keeping
only a few most important features. The resulting space is next �ltered in order to
emphasis the di�erences between the centers and the borders of the clusters. Using
some prior knowledge on the lowest level activity of a neuron, as, e.g., the minimal
�ring rate, we �nd the number of clusters and the center of each cluster. The spikes are
then sorted using a simple greedy algorithm which grabs the nearest neighbors. This
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sorting method is selected for two reasons: 1) It does not require manual supervision,
which would not be suited for an iterative algorithm. 2) It gives a good measure of
distance between the clusters which, as we will see later, helps to determine which
spikes can be de
ated.

At the end of the external loop, we sort the overlapped spikes. This is done by
taking all the possible pairs of the separated neurons and applying ICA only on the
segments of the signal during which at least one of the neurons in a given pair was
active.

The paper is organized as follows. In section 2 we describe two types of signal that
we use in the simulations to come: 1) An arti�cially created neural mixture, where we
simulate a four-channel extracellular recording in population of 1000 neurons distributed
around the electrode. 2) A real simultaneous intracellular-extracellular recording [11] -
we test the sorting algorithms on the extracellular recording and use the intracellular to
verify the results for the intracellularly recorded neuron. In section 3 we give a step-by-
step description of the proposed algorithm. In section 4 we give the complete results of
the simulations for each step of the proposed algorithm. Concluding discussion is given
in section 5.

2. Simulation settings

In this section we will describe the simulated and the real signal that we will use for the
demonstration of the proposed algorithm in section 3 and for quantifying the results in
section 4. With the simulated recordings we can validate the sorting accuracy for all
the separated neurons, while with the real recordings we can validate the accuracy only
for a single neuron - the one which was simultaneously recorded with the intracellular
electrode.

2.1. Simulated neural recordings

To describe the proposed algorithm in an illustrative way we will use the simulated
extracellular neural recording, in order to have the precise knowledge of which neuron
�red which spikes. In this way we are able to clearly demonstrate the performance of
the proposed algorithm. Also, using such signal, we are able to precisely measure the
sorting accuracy and the sorting detection and thus compare the proposed approach
with the other approaches.

To create the recording we �rst generate spatial positions for 1000 arti�cial neurons.
We distribute the neurons randomly in a 3D space, respecting some constraints about
their minimal and maximal mutual distances. We place an electrode with four virtual
recordings sites at four di�erent locations around the middle of the space. Distance
between two neighboring sites is set to be equal to an average distance between two
neighboring neurons. To emulate the e�ect of extracellular medium on propagating
action potentials we simulate attenuation of the amplitude, but also a moderate
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waveform smoothing which arises from a lowpass �ltering properties of the medium [29].
We consider the smoothing between the recording sites to be negligible and simulate
only the smoothing which happens during the action potential propagation between
neurons and the electrode. We assume that the action potentials �red by the same
neuron are always recorded as spikes of the same shape. Moreover, since the smoothing
is generally moderate, we assume that the 1000 simulated neurons exhibit only 32
di�erent spike shapes.. The 32 shapes are in fact templates generated by averaging
spikes coming from 32 di�erent neurons, recorded by real extracellular recordings (the
recordings will be described in the next subsection). The length of each template is 60
samples, corresponding to 4ms real time. For each neuron we �rst generate a random
�ring rate between 5Hz and 10Hz and then generate Poisson distributed �ring times.

To make the simulated signal more realistic, we have to simulate the sampling
e�ects. Indeed, in real recordings spikes coming from a particular neuron generally
look di�erent, because they are sampled at di�erent time instants with respect to the
beginning of each spike. We simulate this e�ect by upsampling the spike templates by
a factor of 100. Then we associate the spike templates with the corresponding time
locations in the signal. Finally we subsample back to the original recording rate.

Assuming an isotropic setting, the extracellular potential typically decays as 1=rk,
where r is the Euclidian distance between the �ring neuron and the recording site.
Depending on the position and orientation, the power k can take the value 1 (monopole
model, near the soma), 2 or higher (dipole model or multipole model, far-�eld). For sake
of simplicity, we consider k = 1 in our simulation. The �rst column on �gure 2 shows
an example of the simulated recording obtained in this way. We refer to [30] and [31]
for further discussions on the propagation of action potentials through the extracellular
medium.

2.2. Real neural recording

A drawback of the validation using the simulated signal lies in the complexity of a real
neural mixture, which is very hard to reproduce arti�cially. Real recordings, depending
on the tissue in which the recording is taken, consist of superposed activity of up to
millions of neurons. The neurons interact through the large number of dendrites and
axons, what makes the spatial con�guration extremely complex. Thus, the simulated
signal is often not a truthful counterpart of the real signal.

Apart from the simulated signal we examine the proposed algorithm using the real
neural recordings. We use the simultaneous intracellular-extracellular recordings from
a rat hippocampal area CA1 done by Henze et al., and described in [11]. When the
extracellular electrode is close to the intracellular, the activity of the neuron recorded
intracellularly will be also visible in the extracellular recording. Of course, with the
extracellular electrode activities of a vast number of neurons are recorded, so to separate
the activity of individual neurons we have to do spike sorting. Figure 1 shows a part
of such simultaneous recording. The four top plots show the extracellular recording
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with tetrode and the bottom plot shows the corresponding intracellular recording. The
action potentials �red by the neuron recorded intracellularly are clearly visible on all
four extracellularly recorded channels. This indicates that the recording sites are located
very close to each other.
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Figure 1. Simultaneous extracellular{intracellular recording. The four recording
sites are very close, so the action potentials recorded with the intracellular electrode
are clearly visible on all four extracellularly recorded channels.

On the plots of the extracellular channels we can also see the activity of other
neurons that are around the extracellular electrode. Notice that many spikes from the
other neurons have amplitudes similar to those of the spikes that come from the neuron
recorded intracellularly. Thus, the task of spike sorting is obviously not trivial in this
case.

3. The algorithm description

In this section we describe the proposed algorithm for multi-channel spike sorting.
The algorithm iteractively removes the activities of distant neurons from the original
recording as well as the activities of the neurons close to the electrode, once they are
separated from the mixture. By doing so we reduce the number of sources, which brings
the application of ICA in a more comfortable setting.

Apart from the recorded signal, to use the algorithm we only need to provide a
lower bound for the �ring rate, call it G, and the spike detection threshold level. This
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lower bound is usually easy to set since, generally, we are not interested in separating
the activities of neurons that �red only a few spikes. A more detailed discussion on
how to chose G is given in our previous paper on spike sorting [23]. The choice of the
threshold level, on the other side, is not very critical, since we will simply neglect all the
spikes that belong to the cluster which has the lowest average peak-to-peak amplitude of
the spikes. This will make the algorithm more reliable, since the spikes with the lowest
amplitudes usually come from many di�erent neurons, whose activity is only partially
detected.

We assume that a four-channel recording is given, but the algorithm is the same
for any number of channels. The four recorded signals are labeled as E1, E2, E3 and
E4. An example of a part of the simulated four-channel recording is shown on �gure
2 and of the four-channel real recording on �gure 3. Spikes from the neuron recorded
intracellularly are marked with the red stars.

Figure 2. 5000 samples from the simulated four-channel extracellular recording (�rst
column). 2D feature vector space with the extracted spikes - positive peak amplitude
vs negative peak amplitude (second column). Results of sorting algorithm from [23]
are given in the third column (only one cluster was detected for each channel).

To demonstrate that spike sorting is very di�cult for such recording we apply
directly the greedy based spike sorting method described in [23]. First, we detect the
spikes using the spike detection method described in [9] and [32]. We then project
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Figure 3. 5000 samples from the real four-channel extracellular recording (�rst
column). 2D feature vector space with the extracted spikes - positive peak amplitude vs
negative peak amplitude (second column). Spikes that come from the neuron recorded
intracellularly are labeled with the red stars, while the rest of the spikes are labeled
with the blue dots. Results of sorting algorithm from [23] are given in the third column,
where the black dots marks are the detected centers of the clusters.

the spikes in a 2D vector space by keeping only two features per spike: the positive
and the negative peak amplitudes. Notice that one could also use, e.g., the two �rst
principal components. In the particular case, better (generally more reliable) results
were obtained when the positive and the negative peak amplitude were used as the
features, instead of the commonly applied PCA. The plots of the features are shown
next to the corresponding signals, in the second column on �gures 2 and 3. In the third
column on �gures 2 and 3 we give the outputs of the algorithm from [23]. The spikes
that are left unsorted by the algorithm are automatically eliminated and not plotted.
Note that the colors/symbols chosen for the representation of the clusters for the plots
in the second column are not related to the one in the third column. It is evident that
from such feature vector space it is not possible to do an accurate spike sorting.

We will now demonstrate the performance of the proposed algorithm using step-
by-step description. The 
owchart that describes the proposed algorithm is shown on
�gure 4.
� Step 1: ICA. We process the input signal with the FastICA algorithm described
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ICA

E1 E2 E3 E4

Remove everything but spikes
from E1, E2, E3 and E4. Set:
TrackOneNeuron=false.

IC1 IC2 IC3 IC4

ICA

E1� E2� E3� E4�

Find which IC is the most suitable for the
further processing.

IC1� IC2� IC3� IC4�

IC�

The IC� contains
at least two
clusters?

Remove spikes from
the cluster which is
the furthest from
the cluster that con-
tains the spikes
with the largest
amplitudes; Track-
OneNeuron=true.

Yes

TrackOneNeuron = true?

No

Neuron(i)=IC�;
Remove spikes �red
by ith neuron; Set:
i=i+1

Yes

Find overlapped spikes and update Neuron

No

Figure 4. Flowchart of the proposed multi-channel spike sorting algorithm.

in [28] (we used the default parameters given within the FastICA MATLAB package)
and obtain IC1, IC2, IC3 and IC4 as the outputs (�gures 5 and 6). The second and
the third column on the both �gures are again shown only to give an illustration of
what the results would be if the feature extraction based sorting method was directly
applied on the outputs of the ICA algorithm. The di�erence between the clusters is
more obvious than on �gures 2 and 3.
� Step 2: Remove everything but spikes from E1, E2, E3 and E4. Set:

k=false. We �rst want to �nd which one of the four ICs contains the largest projection
of the spikes from neurons close to the electrode. The criterion we set to determine
this IC is spike dynamics. As a measure of the spike dynamics we use the average
di�erence between the positive and the negative peak. Since spikes naturally contain
a large peak, such di�erence should be a good measure of the dynamics. We �rst �nd
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Figure 5. Result of applying ICA on the recording shown on �gure 2. The four
ICs are shown in the �rst column (5000 samples). 2D feature vector space with the
spikes extracted from the ICs are in the second column. The plots in the third column
display the results of applying the algorithm from [23] on the vector space from the
second column. The red rectangle marks the IC that has the largest spike dynamics.

all the spikes from all four IC using the method described in [9] and [32]. Then, we
calculate the corresponding spike dynamics for each IC and consider as actual spikes
only those detected from the IC with the largest spike dynamics. Next, from all the 4
input recordings we remove (set to zero) all but the actual spikes. We assume that the
removed parts of the signal correspond only to the noise and the cumulative activity of
the neurons that are distant from the electrode. The outputs are called E1�, E2�, E3�

and E4�.
� Step 3: ICA. We apply ICA on E1�, E2�, E3� and E4�. The resulting ICs,

called IC1�, IC2�, IC3� and IC4�, are shown on �gure 7 for the simulated signal and
on �gure 8 for the real signal. To demonstrate the results as before, we plot the spikes
in the feature vector space (second column) and output of the greedy sorting algorithm
from [23] (third column). As the number of the sources is now lower, the ICA algorithm
performed a little better and a little bigger di�erence between the clusters is visible, in
comparison with the results from �gures 5 and 6.
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Figure 6. Result of applying ICA on the recording shown on �gure 3. The four
ICs are shown in the �rst column (5000 samples). 2D feature vector space with the
spikes extracted from the ICs are in the second column. The plots in the third column
display the results of applying the algorithm from [23] on the vector space from the
second column. The red rectangle marks the IC that has the largest spike dynamics.

� Step 4: Find which IC is the most suitable for the further processing.
In the further steps we will need only one IC. Thus in this step we want to chose the
one which contains well preserved spike waveforms. It is likely that a good choice would
be the one for which the detected spikes have the largest dynamics. We calculate the
spike dynamics in the same way as in the step 2. For the further processing we chose
the IC which has the largest value of the dynamics and call it IC�.
� Condition 1: The IC� contains at least two clusters?
� If Condition 1 is true: Remove spikes from the cluster which is the

furthest from the cluster that contains the spikes with the largest amplitudes;
TrackOneNeuron=true. In this step we have to apply the spike sorting algorithm
proposed in [23], this time it is not only for demonstration, but to �nd which spikes
we can remove from the signal. For each cluster we compute the spike dynamics as
the average of peak-to-peak amplitudes from the �rst G spikes. The spikes that have
been classi�ed in the cluster furthest from the one with the largest spike dynamics are
now removed from E1�, E2�, E3� and E4�. Next, the algorithm goes back to step
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Figure 7. Result of applying ICA on the simulated recording after all but spikes was
removed from the signal (set to zero) - 5000 samples are displayed. The four ICs are
shown in the �rst column. 2D feature vector spaces with the spikes extracted from
the ICs are in the second column. The plots in the third column display the results
of applying the algorithm from [23] on the vector space from the second column.
IC that has been chosen for the further processing is marked with a red rectangle.
The black triangle, with the tip pointing up, marks the center of the cluster that
contains the spikes with the largest dynamics. Opposite, the black triangle with the
tip pointing down marks the center of the cluster that contains the spikes with the
smallest dynamics.

3. We show on �gures 9 and 10 the outputs after applying ICA on the new E1�, E2�,
E3� and E4� for the simulated and the real recording respectively. From the simulated
recording (�gure 9) we have detected only one cluster on each of four IC. We use the
same criterion as before to chose which IC we should keep. Since the condition 1 is
now false, the algorithm will continue to the condition 2. Notice that almost all the
remaining spikes are �red by the same neuron. From the real recording (�gure 10) we
have detected more than one cluster on IC1� and IC2�; for the further processing we
will use IC1�. The cluster that will be removed is the one labeled with a black triangle
whose tip is pointing down. After that cluster is removed, spikes from the neuron
recorded intracellularly will be almost the only one remaining in the signal. Only a
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Figure 8. Result of applying ICA on the real recording after all but spikes was
removed from the signal (set to zero) - 5000 samples are displayed. The four ICs are
shown in the �rst column. 2D feature vector spaces with the spikes extracted from
the ICs are in the second column. The plots in the third column display the results
of applying the algorithm from [23] on the vector space from the second column. All
the labels are the same as for �gure 7.

few spikes from the intracellularly recorded neuron were removed. We set in this step
the 
ag TrackOneNeuron, in order to track if the algorithm converged just after a
new neuron is separated, what would indicate generally that no more neurons can be
separated from the given recording.
� If Condition 1 is false: Condition 2: TrackOneNeuron = true?
� If Condition 2 is true: Neuron(i)=IC�; Remove the spikes �red by

the ith neuron; Set: i = i+ 1. If TrackOneNeuron is true that means that we have
detected more than one cluster in the previous iteration so now, since only one cluster is
left (the condition 1 was false), we assume that the remaining spikes are coming from
the same neuron. This is the ith separated neuron. To continue our iterative algorithm
we set to zero all the samples from the recording (from E1, E2, E3 and E4) when any
of the already detected neurons (Neuron(1), Neuron(2),...,Neuron(i)) was active and
go back to step 1. By doing this we removed an important high amplitude sources.
� If Condition 2 is false: Find the overlapped spikes and update
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Figure 9. Result of applying ICA on the simulated recording, after removing (setting
to zero) of the low amplitude spikes (see �gure 7) from E1� , E2� , E3� and E4� (5000
samples). The four ICs are shown in the �rst column. 2D feature vector spaces with
the spikes extracted from the ICs are in the second column. The plots in the third
column display the results of applying the algorithm from [23] on the vector spaces
from the second column. All the labels are the same as for �gure 7.

Neuron. This is the last step of the proposed algorithm. We address now a very
important problem in spike sorting: simultaneous �ring. The proposed de
ation based
algorithm is obviously not able to detect simultaneous �ring, since once a spike has been
sorted the corresponding part of the signal is set to zero for the following iterations.
Thus, if two or more neurons �red at approximately the same time, the spike will be
assigned only to one of these neurons. To �nd the simultaneously �red spikes we analyze
the activity of the sorted neurons two by two, for all possible pairs of the detected
neurons. When analyzing the activity of each pair, we keep in the recording only the
segments when one of the neurons in the pair �red a spike. Each such recording, call it
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Figure 10. Result of applying ICA on the real recording, after removing (setting to
zero) of the low amplitude spikes (see �gure 8) from E1� , E2� , E3� and E4� (5000
samples). The four ICs are shown in the �rst column. 2D feature vector spaces with
the spikes extracted from the ICs are in the second column. The plots in the third
column display the results of applying the algorithm from [23] on the vector spaces
from the second column. All the labels are the same as for �gure 7.

~si;j, where i = 1; :::; S � 1 and j = i+ 1; :::; S can be expressedz as:

~si;j = si + sj + (1� �(jsij+ jsjj))
SX

k=1;k 6=i;j

sk;

where S is the number of sorted neurons and where �(u) takes the value 1 for u = 0
and 0 elsewhere. Notice that we use absolute values of si and sj to exclude the pairs i; j
such that si = �sj 6= 0. It is obvious that most of the energy in any ~si;j comes
from si and sj. Thus, applying ICA on ~si;j leads to the separation of si and sj:
one IC will represent mostly si, another one sj and the remaining ICs will represent
(1 � �(jsij + jsjj))

P S
k=1;k 6=i;j sk. Since the activity of si and sj will be separated, any

z For notational simplicity, we drop the time argument and write sk instead of sk (t) for the recorded
activity of neuron #k. Note that sk (t) is a sparse signal: We have sk (t) = 0 except for intervals
[�; � +T ] when an action potential is emitted from time � . The length T of the interval corresponds to
the duration of an action potential.
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spikes �red simultaneously by these two neurons should be visible on both of the ICs
that represent the activity of these neurons. We demonstrate this by an example shown
in �gure 11. In the �rst two rows we plot part of the activity of two simulated neurons
that �red three spikes simultaneously. The next four plots show four channels of the
simulated recording. The activity of the two neurons is visible, but hard to recognize,
especially to separate. We remove from the four channels everything but the segments
when any of the two neurons was active and apply ICA on such sparse signal. The
result of ICA is shown on four bottom plots on the same �gure. Since this is the last
step of the proposed algorithm, we already have the estimation of the activity of all the
separated neurons. Thus, it is easy to �nd, from the result of ICA, that in this example
IC2 represents the activity of Neuron 1 and that IC3 represents the activity of Neuron
2. All the overlapped spikes are visible on both IC2 and IC3. They are now very easy
to localize and to update the detected activity of the separated neurons.

4. Results

We apply the algorithm described in the previous section on 5 real recordings and
on 10 simulated recordings. The results are given in tables 1 and 2. There are four
key-operations in the proposed algorithm: 1) removing of the noise (Noise rem.); 2)
removing of the spikes from the clusters far from the one that contains the spikes which
show the largest average peak-to-peak amplitude (Clus. rem.); 3) removing of the spikes
from already separated neurons (Sorted rem); 4) detection of the overlapped spikes
(Over. det.). We analyze contribution of each of these steps by simply comparing the
proposed algorithm to the algorithms which perform none, only one or more of these
steps. Namely, we compare the proposed algorithm with the following:

(i) Only the spike sorting algorithm, without performing ICA (Spike sor.).
(ii) ICA and spike sorting

(iii) ICA, spike sorting and removal of the spikes from already separated neurons.
(iv) As 3, but with removal of everything but spikes (step 2 of the algorithm).
(v) As 4, but with removal of clusters that generally contain spikes small in the

amplitude (clusters which are far from the one that contains the spikes which show
the largest average peak-to-peak amplitude).

The proposed algorithm is actually an extension of the algorithm (v), with a sequence
for the detection of the overlapped spikes.

We express the results through two parameters: 1) sorting accuracy (SA(%)) which
we de�ne as ratio of accurately sorted spikes and total number of detected spikes and
2) sorting detection (SD(%)) which we de�ne as ratio of accurately sorted spikes and
total number of spikes in the signal.
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Figure 11. The �rst two plots show part of the activity of the two simulated neurons.
The following four plots show the part of the four-channel simulated recording. The
four plots at the bottom show the results of applying ICA on the four channels. Before
applying ICA the recording was modi�ed by setting to zero all but the segments
where one of the two neurons was active. It appears that the activity of Neuron 1
is represented by IC3 and the activity of Neuron 2 is represented by IC1. The three
arrows on the top of the �gure point out the overlapped spikes from the two neurons.
All of the three overlapped spikes are successfully sorted.

4.1. Results of the spike sorting on the real signal

For the real recordings we can quantify the results only for one neuron per recording,
the one which was simultaneously recorded intracellularly. Thus SA and SD are very



Neural spike sorting using iterative ICA and de
ation based approach 18

Table 1. Comparison of di�erent spike sorting algorithms for 5 real recordings, in
terms of sorting accuracy (SA) and sorting detection (SD).

Spike sorting Spike sorting Spike sorting Spike sorting Spike sorting Spike sorting
ICA ICA ICA ICA ICA

Sorted rem. Sorted rem. Sorted rem. Sorted rem.
Noise rem. Noise rem. Noise rem.

Clus. rem. Clus. rem.
Recording Over. det.

SA SD SA SD SA SD SA SD SA SD SA SD
% % % % % % % % % % % %

d561102 79 64 83 93 83 93 90 92 93 92 93 92
d561103 32 97 48 95 52 85 83 83 89 80 89 86
d561104 21 98 33 96 49 88 75 87 83 84 84 89
d533101 73 33 64 74 64 74 78 72 80 73 80 73
d533102 64 48 80 87 80 87 88 85 92 82 92 83

simple to calculate: SA(%) = 100 �C=(F +C) and SD(%) = 100 �C=T . Here C is the
largest number of the spikes from the neuron recorded intracellularly, which are sorted
into the same cluster (correct detections). F is the number of spikes from other neurons
which are wrongly placed into the same cluster for which C is calculated (false spikes).
T is the total number of spikes �red by the intracellularly recorded neuron.

In table 1 and on �gure 12 we give SA and SD for each of the real recordings.
Names of the recordings are kept from [11]. Durations of the recordings were from 60
to 120 seconds with the sampling frequency of 10kHz for some recordings and 20kHz
for others. The total number of the detected spikes per recording was from 800 to 2000,
while the number of the spikes �red by the intracellularly recorded neuron was from 200
to 500.

The results suggest that the proposed approach improves signi�cantly the sorting
results in comparison with the basic spike sorting algorithm and the ICA algorithm.
It generally decreases the number of falsely sorted spikes and increases the number of
spikes that are left unsorted (missed spikes). As we mentioned in the introduction, in
the trade-o� between the number of missed spikes and the number of false spikes it is
generally highly preferable to have more missed spikes.

When the intracellularly recorded neuron is sorted �rst (recordings d561102,
d533101 and d533102) there is no bene�t from the removal of the spikes from already
sorted neurons (results in the third and the fourth column of table 1 are the same in
such cases). Also, for those recordings contribution from detection of the overlapped
spikes is very small, since most of the overlapped spikes were initially correctly assigned
to the intracellularly recorded neuron (results in the last two columns of table 1 are the
same/similar in such cases).

4.2. Results of the spike sorting on the simulated signal

Using simulated recordings we can quantify the results for more than one neuron and
also we can easily perform several simulations and average their results. For each
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Figure 12. Comparison of di�erent spike sorting algorithms for 5 real recordings, in
terms of sorting accuracy (SA) and sorting detection (SD).

simulated recording we set the maximum number of outer loops (sorted neurons) to
6. However, in some situations (especially for simpler methods like the basic spike
sorting and combination of the basic spike sorting with ICA) less than 6 neurons have
been found.

Here we do a computation of SA and SD in a slightly di�erent way than for the
real signal. We compute the average �SA and the average �SD over 10 simulations for
each jth sorted neuron, where j goes from 1 to 6, which is the maximum number of the
sorted neurons:

�SAj =
P Nj

i=1 SAi;j

Nj
; �SDj =

P Nj
i=1 SDi;j

Nj

where Nj is the number of iterations in which at least j neurons were detected. We give
also a standard deviation (sd) of �SA and �SD in order to quantify the robustness of each
algorithm.

The results are given in table 2 and on �gure 13. Even though the results vary
signi�cantly from neuron to neuron (spikes from the neurons close to the electrode are,
as expected, sorted much more accurately that from the more distant ones), we can say
again that overall each step of the proposed algorithm leads to signi�cant improvement
of the �nal results.

An important property of the proposed algorithm is that increasing SA is paid by
decreasing SD as well, as is even more evident than on the �gure 12. However, the
last step (detection of overlapped spikes) increases SD, especially as j increases, since
for the larger j (more distant neurons) many spikes were not detected because they
overlapped spikes from the closer neurons (which correspond to the lower j).

The standard deviation is larger for the neurons further from the electrode and tends
to decrease as a more complex algorithm is used. The standard deviation illustrates the
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Table 2. Comparison of di�erent spike sorting algorithms in terms of average sorting
accuracy ( �SA), average sorting detection ( �SD) and their standard deviations (sd) for
the �rst 6 sorted neurons.

Spike sorting Spike sorting Spike sorting Spike sorting Spike sorting Spike sorting
ICA ICA ICA ICA ICA

Sorted rem. Sorted rem. Sorted rem. Sorted rem.
Noise rem. Noise rem. Noise rem.

Clus. rem. Clus. rem.
j Over. det.

�SAsd �SDsd N �SAsd �SDsd N �SAsd �SDsd N �SAsd �SDsd N �SAsd �SDsd N �SAsd �SDsd N
% % % % % % % % % % % %

1 18 15 97 5 10 68 12 93 9 10 76 10 91 7 10 85 8 90 7 10 88 6 87 6 10 88 6 88 6 10
2 45 7 80 7 2 62 13 90 10 10 74 11 86 8 10 84 8 84 7 10 86 7 81 6 10 86 7 84 6 10
3 0 0 0 0 0 54 14 85 18 5 69 13 79 11 10 78 9 78 10 10 81 7 75 8 10 82 7 80 8 10
4 0 0 0 0 0 44 16 82 12 2 60 15 77 12 10 72 11 76 12 10 78 9 72 11 10 79 9 76 10 10
5 0 0 0 0 0 0 0 0 0 0 54 16 74 16 9 68 14 72 15 10 74 11 71 11 10 75 11 74 11 10
6 0 0 0 0 0 0 0 0 0 0 39 17 70 18 7 65 15 67 17 9 72 11 66 12 9 73 11 70 12 9

stability of the results, e.g., for distant neurons sometimes the sorting results are good,
but sometimes they are quite bad, indicated by larger standard deviation. On the other
hand results for neurons very close to the electrode are always relatively good, thus the
standard deviation of the results is lower.
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neuron  #1 neuron  #2 neuron  #3 neuron  #4 neuron  #5 neuron  #6

Figure 13. Comparison of di�erent spike sorting algorithms in terms of average sorting
accuracy ( �SA) and average sorting detection ( �SD) for the �rst 6 sorted neurons. The
length of the perpendicular lines corresponds with the standard deviation of �SA or �SD
for the particular algorithm and the particular neuron. The neurons are labeled with
respect to their minimum distance to the electrodes.
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5. Discussion

In this paper we proposed a new algorithm for spike sorting from multi-channel
recordings. We use iterative application of ICA and de
ation to sort the spikes. Activity
at the recording sites is mutually highly dependant, while the activity of single neurons
is mutually much less dependant. This naturally suggests application of ICA to separate
the neural mixture.

A condition that the number of sensors should be equal or greater than the number
of sources appears as the major problem and limitation for application of ICA on neural
recordings. The proposed algorithm uses de
ation to eliminate or at least to reduce the
contribution of di�erent sources. In particular, we remove: 1) everything but spikes,
2) spikes which have already been sorted and 3) spikes which belong to the clusters far
from the one which contains the spikes of the largest average peak-to-peak amplitude.

Such de
ation would result in inability of the algorithm to detect spikes �red by
di�erent neurons at approximately the same time - simultaneous �ring. Only one spike
per simultaneous �ring could be detected. The solution to this problem is implemented
as the last step of the proposed algorithm. We take two of the separated neurons and
keep in the recording only the segments in which one of these two neurons was active.
Then we apply ICA on such sparse signal. Since we have only two high-energy sources
in the signal, ICA will, in most situations, be able to separate the activity of the two
neurons, including simultaneously �red spikes. We repeat this procedure for all the
possible pairs of the separated neurons.

The results given in tables 1 and 2 suggest that each step of the algorithm improves
the �nal sorting results. Overall, the algorithm signi�cantly increases the number of
correctly sorted spikes while increasing the number of missed spikes by a relatively
small amount. ICA alone was not su�cient to obtain reliable results. It is important
to mention that if a recording is very noisy, the proposed algorithm will not be able to
detect any cluster.

In some particular cases, such as multi-electrode recordings from peripheral nerve
interfaces, the spike waveforms can arrive to the di�erent recording sites with time delays
up to 0:1ms [33], [34]. FastICA algorithm is not adapted for such mixtures. In its present
form, the proposed algorithm is therefore not suitable for those cases. Nonetheless, the
proposed de
ation methodology would still be useful if FastICA is replaced by some
convolutive version of ICA. In the convolutive case [35], [36], the recorded mixture is
described by an FIR �lter model of the mixing process. Such model could be bene�cial
in this particular case of spike sorting for two reasons: 1) Ability to account for di�erent
delays of the source components; 2) Ability to account for echoes coming from di�erent
parts of a nerve around the electrode.

As spike features we used simply positive and negative peak amplitude. However,
we could use practically any feature extraction method. Methods that can make the
di�erence between the spikes �red by di�erent neurons more evident will of course lead
to better performance of the proposed algorithm, in terms of the number of sorted
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neurons and the sorting accuracy. Nevertheless, no matter how good the chosen feature
extraction technique is, the proposed algorithm should always improve the �nal sorting
results when they are compared to the results obtained with only ICA algorithm. Finally
we can say that the obtained results suggest that the proposed algorithm gives better
sorting results as compared to ICA.
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