J. D. Simeral, S. Kim, M. J. Black, J. P. Donoghue, and L. R. Hochberg, Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array, Journal of Neural Engineering, vol.8, issue.2, 2011.
DOI : 10.1088/1741-2560/8/2/025027

M. S. Lewicki, A review of methods for spike sorting: the detection and classification of neural action potentials, Network: Computation in Neural Systems, vol.9, issue.4, pp.53-78, 1998.
DOI : 10.1088/0954-898X_9_4_001

S. Gibson, J. W. Judy, and D. Markovic, Comparison of spike-sorting algorithms for future hardware implementation, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.5015-5035, 2008.
DOI : 10.1109/IEMBS.2008.4650340

E. N. Brown, R. E. Kass, and P. P. Mitra, Multiple neural spike train data analysis: state-of-the-art and future challenges, Nature Neuroscience, vol.7, issue.5, pp.456-461, 2004.
DOI : 10.1038/nn1228

C. Pouzat, O. Mazor, and G. Laurent, Using noise signature to optimize spike-sorting and to assess neuronal classification quality, Journal of Neuroscience Methods, vol.122, issue.1, pp.43-57, 2002.
DOI : 10.1016/S0165-0270(02)00276-5

URL : https://hal.archives-ouvertes.fr/hal-00005005

K. H. Kim and S. J. Kim, Neural Spike Sorting Under Nearly 0-dB Signal-to-Noise Ratio Using Nonlinear Energy Operator and Artificial Neural-Network Classifier, IEEE Transactions on Biomedical Engineering, issue.10, pp.471406-1411, 2000.

Z. Nenadic and J. W. Burdick, Spike Detection Using the Continuous Wavelet Transform, IEEE Transactions on Biomedical Engineering, vol.52, issue.1, pp.74-87, 2005.
DOI : 10.1109/TBME.2004.839800

Z. Tiganj and M. Mboup, Spike Detection and Sorting: Combining Algebraic Differentiations with ICA, Independent Component Analysis and Signal Separation, 8th International Conference, pp.475-482, 2009.
DOI : 10.1017/CBO9780511815706

URL : https://hal.archives-ouvertes.fr/inria-00430438

N. G. Ilan and H. J. Don, Information theoretic bounds on neural prosthesis effectiveness: The importance of spike sorting, ICASSP, pp.5204-5207, 2008.

D. A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K. D. Harris et al., Intracellular features predicted by extracellular recordings in the hippocampus in vivo, Journal of Neurophysiology, vol.84, issue.1, pp.390-400, 2000.

D. A. Adamos, E. K. Kosmidis, and G. Theophilidis, Performance evaluation of PCA-based spike sorting algorithms, Computer Methods and Programs in Biomedicine, vol.91, issue.3, pp.232-244, 2008.
DOI : 10.1016/j.cmpb.2008.04.011

R. Q. Quiroga, Z. Nadasdy, and Y. B. Shaul, Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering, Neural Computation, vol.84, issue.8, pp.1661-1687, 2004.
DOI : 10.1016/0370-2693(89)91563-3

URL : http://authors.library.caltech.edu/13699/1/QUInc04.pdf

E. Hulata, R. Segev, and E. Ben-jacob, A method for spike sorting and detection based on wavelet packets and Shannon's mutual information, Journal of Neuroscience Methods, vol.117, issue.1, pp.1-12, 2002.
DOI : 10.1016/S0165-0270(02)00032-8

Y. Ghanbari, L. Spence, and P. Papamichalis, A graph-laplacian-based feature extraction algorithm for neural spike sorting, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3142-3147, 2009.
DOI : 10.1109/IEMBS.2009.5332571

E. Chah, V. Hok, A. Della-chiesa, J. J. Miller, S. M. O-'mara et al., Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering, Journal of neural engineering, vol.8, issue.1, 2011.
DOI : 10.1088/1741-2560/8/1/016006

S. Takahashi, Y. Anzai, and Y. Sakurai, A new approach to spike sorting for multi-neuronal activities recorded with a tetrode???how ICA can be practical, Neuroscience Research, vol.46, issue.3, pp.265-272, 2003.
DOI : 10.1016/S0168-0102(03)00103-2

F. Wood, M. Fellows, J. Donoghue, and M. Black, Automatic spike sorting for neural decoding, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.4009-4012, 2004.
DOI : 10.1109/IEMBS.2004.1404120

C. Vargas-irwin and J. P. Donoghue, Automated spike sorting using density grid contour clustering and subtractive waveform decomposition, Journal of Neuroscience Methods, vol.164, issue.1, pp.1-18, 2007.
DOI : 10.1016/j.jneumeth.2007.03.025

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2104515

J. S. Prentice, J. Homann, K. D. Simmons, G. Tka?ik, V. Balasubramanian et al., Fast, Scalable, Bayesian Spike Identification for Multi-Electrode Arrays, PLoS ONE, vol.107, issue.7, p.19884, 2011.
DOI : 10.1371/journal.pone.0019884.s001

URL : http://doi.org/10.1016/j.bpj.2010.12.723

D. Novak, J. Wild, T. Sieger, and R. Jech, Identifying number of neurons in extracellular recording, 2009 4th International IEEE/EMBS Conference on Neural Engineering, pp.742-745, 2009.
DOI : 10.1109/NER.2009.5109403

C. Fraley and A. E. Raftery, How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis, The Computer Journal, vol.41, issue.8, pp.578-588, 1998.
DOI : 10.1093/comjnl/41.8.578

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5035

Z. Tiganj and M. Mboup, A non-parametric method for automatic neural spike clustering based on the non-uniform distribution of the data, Journal of Neural Engineering, vol.8, issue.6, p.66014, 2011.
DOI : 10.1088/1741-2560/8/6/066014

Y. Shiraishi, N. Katayama, T. Takahashi, A. Karashima, and M. Nakao, Multi-neuron action potentials recorded with tetrode are not instantaneous mixtures of single neuronal action potentials, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.4019-4022, 2009.
DOI : 10.1109/IEMBS.2009.5333505

G. D. Brown, S. Yamada, and T. J. Sejnowski, Independent component analysis at the neural cocktail party, Trends in Neurosciences, vol.24, issue.1, pp.54-63, 2001.
DOI : 10.1016/S0166-2236(00)01683-0

S. Takahashi, Y. Anzai, and Y. Sakurai, Automatic Sorting for Multi-Neuronal Activity Recorded With Tetrodes in the Presence of Overlapping Spikes, Journal of Neurophysiology, vol.89, issue.4, pp.2245-2258, 2003.
DOI : 10.1152/jn.00827.2002

P. Comon and C. Jutten, Handbook of Blind Source Separation, Independent Component Analysis and Applications, p.2010
URL : https://hal.archives-ouvertes.fr/hal-00460653

A. Hyvärinen and E. Oja, Independent component analysis: algorithms and applications, Neural Networks, vol.13, issue.4-5, pp.411-430, 2000.
DOI : 10.1016/S0893-6080(00)00026-5

C. Bedard, H. Kroger, and A. Destexhe, Modeling Extracellular Field Potentials and the Frequency-Filtering Properties of Extracellular Space, Biophysical Journal, vol.86, issue.3, pp.1829-1842, 2004.
DOI : 10.1016/S0006-3495(04)74250-2

URL : https://hal.archives-ouvertes.fr/hal-00018678

K. D. Harris, D. A. Henze, J. Csicsvari, H. Hirase, and G. Buzsáki, Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements, Journal of Neurophysiology, vol.84, pp.401-414, 2000.

K. H. Pettersen, H. Linden, A. M. Dale, and E. G. , Extracellular spikes and current-source density, Handbook of Neural Activity Measurement, 2012.

M. Mboup, A Volterra filter for neuronal spike detection, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00347048

L. Citi, J. Carpaneto, K. Yoshida, K. P. Hoffmann, K. P. Koch et al., Characterization of tfLIFE Neural Response for the Control of a Cybernetic Hand, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006., pp.477-482, 2006.
DOI : 10.1109/BIOROB.2006.1639134

L. Citi, J. Carpaneto, K. Yoshida, K. P. Hoffmann, K. P. Koch et al., On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes, Journal of Neuroscience Methods, vol.172, issue.2, pp.294-302, 2008.
DOI : 10.1016/j.jneumeth.2008.04.025

J. Thomas, Y. Deville, and S. Hosseini, Time-domain fast fixed-point algorithms for convolutive ICA, IEEE Signal Processing Letters, vol.13, issue.4, pp.228-231, 2006.
DOI : 10.1109/LSP.2005.863638

URL : https://hal.archives-ouvertes.fr/hal-00288945

M. Dyrholm, S. Makeig, and L. K. Hansen, Model selection for convolutive ICA with an application to spatio-temporal analysis of EEG, Neural Computation, 2006.