Risk Assessment at Road Intersections: Comparing Intention and Expectation

Abstract : Intersections are the most complex and hazardous areas of the road network. Statistics show that accidents at intersection are mostly caused by driver error. Based on this we propose a novel approach to risk assessment: in this work dangerous situations are identified by detecting conflicts between intention and expectation, i.e. between what a driver intends to do and what he is expected to do. Our approach is formulated as a Bayesian inference problem where intention and expectation are estimated jointly for the vehicles converging to the same intersection. This allows for a flexible and computationally efficient estimation of risk. This work exploits the sharing of information between vehicles using V2V wireless communication links. The proposed solution was validated by field experiments using passenger vehicles.
Type de document :
Communication dans un congrès
IEEE Intelligent Vehicles Symposium, Jun 2012, Alcala de Henares, Spain. pp.165-171, 2012
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00743219
Contributeur : Stéphanie Lefèvre <>
Soumis le : jeudi 18 octobre 2012 - 14:53:42
Dernière modification le : jeudi 11 octobre 2018 - 08:48:02
Document(s) archivé(s) le : samedi 19 janvier 2013 - 03:38:04

Fichier

Lefevre_IV_12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00743219, version 1

Collections

Citation

Stéphanie Lefèvre, Christian Laugier, Javier Ibañez-Guzmán. Risk Assessment at Road Intersections: Comparing Intention and Expectation. IEEE Intelligent Vehicles Symposium, Jun 2012, Alcala de Henares, Spain. pp.165-171, 2012. 〈hal-00743219〉

Partager

Métriques

Consultations de la notice

559

Téléchargements de fichiers

1195