
https://hal.inria.fr/hal-00743248v3
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
80

91
--

FR
+E

N
G

RESEARCH
REPORT
N° 8091
Janvier 2016

Project-Team Mascotte

Energy Ef�cient Content
Distribution
J. Araujo , F. Giroire , Yaning Liu , R. Modrzejewski, J. Moulierac





RESEARCH CENTRE
SOPHIA ANTIPOLIS � MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Energy E�cient Content Distribution *

J. Araujo � �, F. Giroire �, Yaning Liu §, R. Modrzejewski�, J.
Moulierac�

Project-Team Mascotte

Research Report n° 8091 | version 2 | initial version Janvier 2016 |
revised version Janvier 2016 | 35 pages
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Distribution des Donn�ees E�cace en �Energie
R�esum�e : Pour optimiser l’e�cacit�e �energ�etique dans un r�eseau, les op�erateurs
doivent �eteindre un nombre maximum d’�equipements r�eseau. R�ecemment, il a
�et�e propose de rajouter des caches �a l’int�erieur des n�uds r�eseaux dans l’objectif
d’am�eliorer la distribution de contenus et de r�eduire la congestion des r�eseaux.
Dans ce travail, nous �etudions l’impact de l’utilisation de caches r�eseaux (in- net-
work caches) et de leur coop�eration avec les Content Delivery Networks (CDN)
sur l’�energie consomm�ee par le routage. Nous mod�elisons ce probl�eme, la Distri-
bution de Donn�ees E�cace en �Energie, par un programme lin�eaire en nombres
entiers et proposons une heuristique en temps polynomial pour le r�esoudre
e�cacement. L’objectif est de trouver un routage r�ealisable qui minimise la
consommation �energ�etique du r�eseau tout en satisfaisant les demandes de conte-
nus. Nous exhibons les valeurs des param�etres (tailles des caches, popularit�es
des donn�ees, ...) pour lesquelles ces caches sont utiles. Des exp�erimentations
montrent qu’en pla�cant un cache sur chaque routeur d’un r�eseau backbone pour
stocker le contenu le plus populaire, ainsi qu’on choisissant le meilleur serveur
pour chaque demande �a un CDN, environ 20% de l’�energie du backbone peut
être sauv�ee, dont 16% du gain est du aux seuls caches.

Mots-cl�es : E�cacit�e �energ�etique, Programmation lin�eaire enti�ere, R�eseau
de Livraison de Donn�ees, Caches des r�eseau, Internet future
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1 Introduction
Energy e�ciency of networking systems is a growing concern due to both in-
creasing energy costs and worries about CO2 emissions. In [1] it is reported that
Information and Communication Technology sector is responsible for up to 10%
of global energy consumption and 51% of this amount is attributed to telecom-
munication infrastructure and data centers. Thus, backbone network operators
study the deployment of energy-e�cient routing solutions. The general princi-
ple is to aggregate tra�c in order to be able to turn o� as many networking
devices as possible [2{6].

On the other hand, to reduce the network load and improve the quality of
service, content providers and network operators have interest in disaggregating
tra�c by replicating their data in several points of the network in order to
reduce the distance between the required data and their users. Recent years
have seen, along the growing popularity of video over Internet, a huge raise of
tra�c served by Content Delivery Networks (CDNs). These kinds of networks
operate by replicating the content among its servers and serving it to the end
users from the nearest one. CDNs deliver nowadays a large part of the total
Internet tra�c: estimation ranges from 15% to 30% of all Web tra�c worldwide
for the single most popular CDN [7]. Chiaraviglio et al. [8, 9] have shown how
the choice of CDN servers impacts the backbone energy consumption. More
precisely, they aim at turning o� network devices by choosing, for each demand
from a client to a content provider, the best server of this CDN while being
energy aware.

Here, we go further on this idea by also considering the usage of caches on
each of the backbone routers, while still taking into account the choice of CDN
servers. It is important to mention that there have been several proposals for
developing global caching systems [10]. In particular, it was recently proposed
to use in-network storage and content-oriented routing to improve the e�ciency
of content distribution by future Internet architectures [11{14]. Among these
studies, we mention that in this paper we do not assume any speci�c technology
for future Internet architectures, nor anything else that would require major
overhaul of how the Internet works with no content routing among our caches.
We assume that a cache serves a single city, taking all of its contents from the
original provider. We consider that caches can be turned on or o�. Thus, there
is a trade-o� between the energy savings they allow by reducing network load
and by their own energy consumption.

We propose an Integer Linear Programming (ILP) formulation to reduce
energy consumption by using caches and properly choosing content provider
servers, for each demand. We implemented this formulation on the ILP solver
CPLEX [15] version 12 and made experiments on real network topologies that we
obtained from SNDlib [16] and we also tested on random instances generated
from Erd}os-R�enyi [17] graphs. We study the impact of di�erent parameters:
size of caches, demand intensity, network size, etc. In particular, we found that
e�cient energy gains can be achieved, in our scenarios, by caches of the order
of 1 TB and larger caches do not lead to signi�cantly better gains.

Experimental results show potential energy savings of around 20% by putting
devices to sleep during low-tra�c period. If CDN is considered but without
caches, there are 16% savings, and in the opposite, when caches are introduced
within the network without CDN, there are also around 16% savings. Fur-
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thermore, we observed that the impact of caches is more prominent in bigger
networks. To be able to quantify this e�ect, we propose an e�cient heuristic.
This heuristic, called Spanning Tree Heuristic, allows us to obtain feasible
solutions much faster than solving the ILP model we propose by using CPLEX.
Another advantage of the heuristic is that it accepts a parameter that controls
a speed/quality trade-o�.

The main take away of our work is that, by storing the most popular content
in caches at each router and by choosing the best content provider server, we
may save around 20% of power in backbone networks. Moreover, using caches
enables us to �nd feasible solutions where the no-cache algorithm fails as it would
need more bandwidth capacity on links to satisfy the same given demands.

The paper is organized as follows. We discuss the related work in Section 2.
We present the problem and its formulation in Section 3. Section 4 describes
how we build the instances that we used in our experimentations. Finally, we
present the experiments we did and we discuss the obtained results in Section 6.

2 Related Work
There are several studies on the literature proposing di�erent strategies to re-
duce energy consumption. For instance, a model that proposes to shut down
individual links, that are chosen by an algorithm that is similar to the one de-
scribed in this work, is studied in [6]. An interesting way of performing energy
savings in a distributed manner is shown in [5]. Energy e�cient CDNs have
also been studied recently. Authors in [18] propose to reduce the energy con-
sumption in CDN networks by turning o� CDN servers through considering user
SLAs. In order to optimize the power consumption of content servers in large-
scale content distribution platforms across multiple ISP domains, the strategy
proposed in [19] is to put servers into sleep mode without impacting on content
service capability. Our work is di�erent from all these previously mentioned
works, since they do not consider in-network caches.

Network caches have been used in global caching systems [10]. In recent
years, several Information Centric Networking architectures, such as Cache
and Forward Network (CNF) [11], Content Centric Networking (CCN) [13],
CacheShield [20] and NetInf [12], have exploited in-network caching. Their ob-
jectives are to explore new network architectures and protocols to support future
content-oriented services. Caching schemes have been investigated in these new
Internet architectures [11, 21{24]. A recent survey [25] on caching in informa-
tion centric networking presents ideas to reduce cache redundancy and improve
the availability of cached content. Similar to our work, these works also use
in-network caches, however they do not consider energy savings.

Energy e�ciency in content-oriented architectures with an in-network caching
has been recently studied [26{29]. In [26], the authors analyze the energy bene�t
of using CCN in comparison to CDN networks. In [28], the authors studied the
energy consumption of a regional network of telecom companies equipped with
storage capacities. A further work considered the impact of di�erent memory
technologies on energy consumption [29].

Two works also propose the addition of network caches to backbone routers
that work transparently with current Internet architecture and they have opti-
mal placement during peak hours for such caches in the access network [30,31].

RT n° 8091
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These works focus on the energy e�ciency considering data delivery and stor-
age, however, they do not take into account the energy savings by turning on/o�
network links. Authors in [27] extend GreenTE [2] to achieve a power-aware
tra�c engineering in CCN network.

The work from Chiaraviglio et al. [8,9] is, to the best of our knowledge, the
most related to ours. They propose to enable the cooperation between network
operators and content providers in order to optimize the total energy consump-
tion by using an ILP formulation for both sides. In this paper, we consider
an extension of this optimization problem formulation, through considering in-
network caching.

Part of this research report was published in [32,33].

3 Problem Modeling
We discuss in this section the model parameters, the formal de�nition of the
problem and a Mixed Integer Linear formulation.

Let us �rst informally recall the problem description and some of our as-
sumptions. Our goal is to save energy on a backbone network by aggregating
tra�c and turning o� as many devices as possible. We consider a set of de-
mands between pairs of routers and a set of demands from CDN servers to their
clients. We also consider that the tra�c from a CDN can be satis�ed by any of
its servers, which are placed in di�erent backbone routers. Thus, these demands
have a single destination, the client, but several possibilities for the source that
will be chosen among all the servers for the given CDN. Moreover, we suppose
that each backbone router has a cache, with a limited amount of storage, that
can only be used to satisfy demands to its router. Our goal is to satisfy the set
of all demands, under the capacity contraints of CDN servers, caches and links,
while minimizing the global energy used to power on the links and caches of the
network.

3.1 Parameters
We model the network as a graph G = (V;E), with a link capacity function
c : E ! R+. Each node v 2 V (G) represents a router (or set of routers)
located in a city and each edge represents a telecommunication link (or set of
links) between two cities. We are also given a set of content providers P , e.g,
Google, Amazon, etc. The subset of vertices of V (G) containing the servers of
content provider p 2 P is given by the function S(p) � V (G). We denote by sl

p
the server of content provider p placed in location l 2 S(p). It has a capacity
cap(sl

p). A summary of the notations used throughout the paper can be found
in Table 1.

We are given two kinds of demands: city to city and content provider to
city demands. A single demand model the aggregation of all the demands of
the clients within a city. We denote by Ds!t;8s; t 2 V , the tra�c that has to
be routed from city s to city t. We denote by Dp!t the tra�c that has to be
routed from content provider p to city t, for every t 2 V; p 2 P .

The data is replicated at each node of S(p) and a server of content provider
p can serve any demand to p.

RT n° 8091
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Notation Description
V set of cities
E set of links
P set of content providers (e.g. Google, Amazon, ...)
S(p) locations of the servers of content provider p, e.g. S(Google) = fBerlin;Munichg
� part of a demand can be provided from cache
� peak power consumption of a cache (link power consumption is normalized to 1)
 fraction of � that is consumed by idle cache.
Ds!t tra�c from city s to city t, 8s; t 2 V
Dp!t tra�c from content provider p to city t
cap(v) (bandwidth) capacity of cache v
cap(sl

p) capacity of the server of content provider p located in node l 2 S(p)
cap(uv) capacity of link uv

Variables
xuv link uv used or not (1 or 0)
yu cache u used of not (1 or 0)
zv load of the cache of router v (between 0 and 1)

cs!t cached part of tra�c Ds!t
cp!t cached part of tra�c Dp!t
f t

u;v ow on edge uv corresponding to tra�c going to t
dl

p!t demand served from server l for tra�c from p to t

Table 1 { Problem notations and variables of the model formulation.

Finally, each node v 2 V (G) in the network has a cache of bandwidth capac-
ity cap(v). Caches are characterized by parameters: � { what part of a demand
can be provided from cache; � { peak power consumption of a cache (link power
consumption is normalized to 1);  { fraction of � that is consumed by an idle
cache.

For in-network caches, there is still an important open question: if and
how they should be deployed. Therefore, we avoid making speci�c assumptions
about these details. Once this question is answered, the model we propose can
be updated to answer any possible speci�c concerns. However, the conclusions
can change, if the actual parameters vary heavily from our estimates.

Cache hit rate As we mentioned, we consider that there is a cache located
in each router that will keep the most popular content and it is going to save
a fraction of any demand to that router. This fraction is represented by the
parameter � and establishing a value for this fraction is a non-trivial task. Ac-
cording to [34], content popularity follows a Zipf-like distribution. In their study,
they considered a tra�c trace towards Youtube. This trace can be considered
as a good approximation of a typical tra�c because today’s tra�c is mostly due
to video tra�c. Cisco estimates that all forms of video tra�c will account to 80
and 90% of the total Internet tra�c by 2018 [35]. They computed the relation
between cache size and cache hit rate for the tra�c. Note that this relation does
not depend on the number of cache accesses, but it depends only on the relative
size of the cache and all the content collection. This relation is shown in �gure 1,
with the assumption that an average video is 100 MBytes. This �gure shows

RT n° 8091



Energy E�cient Content Distribution 7

1010 1011 1012 1013 1014

Cache size [bytes]

0
10
20
30
40
50
60
70
80
90

C
ac

he
hi

t
ra

te
[%

] LRU
Static

Figure 1 { Cache hit ratio for YouTube trace, assuming average video size
100MB, following the results in [34].

results for two algorithms: least recently used, a classic caching algorithm, and
static most popular, a simple algorithm proposed by the authors. For example
with a cache of around 800GB the expected hit rate is around 17.7% using LRU
and around 32.5% using the static algorithm, thus saving an equivalent fraction
of tra�c.

As the situation changes frequently, both regarding to the volume of popular
content and available storage, we leave this fraction as a parameter of the model:
� { the maximal part of any demand that can be served from a cache. Network
operator can establish it empirically, by means of measurements. Typically, we
consider � 2 [0:2; 0:35] for our experiments.

Note, that the legal issue for the operator of caching content provider’s tra�c
is discussed in Section 7.

Power usages In our model, we deal with two types of equipment: links and
caches. In practice, main energy drain of links are port cards and ampli�ers. As
can be seen in Powerlib [36], power requirements of single port cards suitable
for long haul networks are well over 100W, while other backbone cards can be
as few as a quarter of that.

For caches, we considered a possible implementation using SSD storage as
proposed in [37, 38]. Fast mass storage with current SSD or High Speed SSD
o�er 1TB (resp. 10TB) of storage accessed in 10000ns (resp. 1000ns) while
consuming below 10W (resp. 50W) of power.

Note that reported power consumptions vary in the literature. In [39], it
is reported a power consumption of 174W per Gbps for a whole core router
(chassis and line cards included), while [40] reports only 12.5W per Gbps. Since
there are di�erent numbers corresponding to di�erent materials and di�erent
experiments mentioned in the literature, and also to take into consideration
future evolution of the materials, we considered a range of power consumption
for caches and links. In our model, we use the ratio between the consumption
of caches and links as a parameter denoted by � { the power consumption of
a cache divided by the power consumption of a link. In our simulations, we
take � 2 [0:0; 2:5]. This interval takes into account the possible combinations of
values listed above.

RT n° 8091
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3.2 Energy E�cient Content Distribution: problem de�-
nition and formulation

Let us �rst formally de�ne our optimization problem, Energy Efficient Con-
tent Distribution. The goal of our problem is to �nd a feasible routing in
G satisfying all the demands Ds!t and Dp!s under the capacity constraints
c(u; v), cap(sl

p) and cap(v) while minimizing the total energy consumption of
the network. By total energy consumption, we mean the energy used by the
activated links plus the energy used by the activated caches. For each cache,
despite of a �xed energy cost of turning it on, we also consider an increased
usage of energy in terms of its load. Our optimization problem belongs to the
family of Location-Routing Problems, in which, given a set of clients, de-
mands, depots, vehicles and routes, a company has to determined which depots
to open and which routes to follow. We refer the reader to [41, 42] for surveys
on this problem.

We use a typical model, from the perspective of a backbone provider, where
aggregated tra�c between cities is expressed as a demand matrix. We augment
this matrix to represent not only cities, but also content providers. This is
motivated by the fact that content providers generate tra�c that can easily be
equal to the one of a entire city.

First, we de�ne a variable xuv to indicate if the link uv is turned on or
o�, for every fu; vg 2 E. We use a variable yv to indicate if the cache at
router v is turned on or o�, for every v 2 V , and this cache uses at most �
units of energy. Finally, we recognize that mass memory access can constitute a
signi�cant energy cost. Thus, we use a variable zv to indicate the load (fraction
of used bandwidth) of the cache in router v. We assume that an idle cache uses
fraction  of � and its power consumption grows linearly with load to reach �
once fully utilized. The objective function is then written formally as:

min
X

fu;vg2E

xuv +
X

v2V

�yv +
X

v2V

�(1� )zv:

Denote by Ds!t and Dp!t the tra�c to destination node t posed in the
problem instance, respectively from other cities s 2 V and content providers
p 2 P . A cache in a destination router t, when turned on, allows to save a
portion of any demand up to �, call these savings respectively cs!t and cp!t.
We will consider reduced demands, denoted R, which are the input demands
with the caching savings subtracted:

Rs!t = Ds!t � cs!t ;8s; t 2 V;
cs!t � �Ds!t ;8s; t 2 V;

Rp!t = Dp!t � cp!t ;8t 2 V; p 2 P;
cp!t � �Dp!t ;8t 2 V; p 2 P:

Then, we record the load of the cache at node t:
X

s2V

cs!t +
X

p2P

cp!t = zt ;8t 2 V:

Finally, the load cannot exceed the capacity and it needs to be zero if cache is
o�:

zt � ytcap(t) ;8t 2 V:

RT n° 8091
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Each node t 2 V demands from each provider p 2 P an amount of data ow
Rp!s � 0. The provider p has a set of servers located in a subset of nodes of
the network S(p) � V . We denote by sl

p the server of the provider p located in
node l 2 S(p). Each of those servers sends dl

p!t ow units to collectively satisfy
the demand: X

l2S(p)

dl
p!t = Rp!s ;8t 2 V; p 2 P:

Each server sl
p has a constrained capacity cap(sl

p), which limits the demands it
can satisfy: X

t2V

dl
p!t � cap(sl

p) ;8p 2 P; l 2 S(p):

For the ow constraints, we denote by f t
u;v the ow on edge fu; vg corresponding

to tra�c going to t. X

v2Nu

f t
v;u �

X

z2Nu

f t
u;z =

=

(
�

P
p2P Rp!t �

P
s2V Rs!t u = t

Rt!u +
P

fp2P ju2S(p)g du
p!t otherwise;

8t; u 2 V:

Finally, we consider capacities of links, denoted cap(uv). The constraints involve
both kinds of ows and the on/o� status of the links:

X

t2V

(f t
u;v + f t

v;u)+ � cap(uv)xuv ;8fu; vg 2 L:

The variable types are:

xuv 2 f0; 1g ;8fu; vg 2 E
yv 2 f0; 1g ;8v 2 V
zv 2 R+ ;8v 2 V

dl
p!s 2 R+ ;8p 2 P; l 2 S(p); s 2 V

cp!s 2 R+ ;8p 2 P; s 2 V
cs!t 2 R+ ;8s; t 2 V
fs

p;uv 2 R+ ;8p 2 P; s; u; v 2 V

fs
t;uv 2 R+ ;8s; t; u; v 2 V

Note that the problem also admits a fractional relaxation, where we consider
that xuv2[0; 1];8fu; vg 2 E and yv 2 [0; 1];8v 2 V . This relaxation is useful
in heuristic described in this paper. Note that this fractional relaxation has
O(jV j2jEj) variables and constraints in the formulation and thus it can be solved
in polynomial time by the well-known interior-point method.

RT n° 8091
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Popularity Server capacity Server locations

CDN1 40 0.3 Berlin Hamburg Duesseldorf
Frankfurt Muenchen Nuernberg

CDN2 20 0.45 Berlin Duesseldorf Frankfurt
Muenchen

CDN3 15 0.6 Berlin Frankfurt
CDN4 15 0.5 Hamburg Frankfurt Muenchen
CDN5 10 0.2 Berlin Duesseldorf Frankfurt

Hamburg Muenchen Nuernberg
Osnabrueck

Table 2 { Content Distribution Networks assumed for the Germany50 network.

3.3 Spanning tree heuristic
Since CPLEX was not able to solve the ILP model that we just described for
bigger instances, we describe here a polynomial-time heuristic to our problem.
For instance, for a random network with 150 cities and 300 links, CPLEX was
not able to produce any feasible solution within two hours, while the proposed
algorithm can give a good feasible solution within two minutes.

Our heuristic is an iterative algorithm that, at each step i � 0, computes
an optimal (fractional) solution si for the relaxation of our model and �xes the
value of some variables of the model corresponding to the usage of links and
caches (i.e. the integral variables xuv and yv). When we say that we �x a
variable x to a value c 2 f0; 1g at step i, we mean that we add a constraint
x = c to the model used to compute sj , for all j > i.

At the �rst step 0, our heuristic computes a solution s0 of relaxation of
the model. Then, by setting the weight of each edge to be the value of its
corresponding variable in s0, a maximum spanning tree T of the input network
graph G is computed and all the variables xuv of all the edges uv 2 E(T ) are
�xed to one.

After this initialization step, the heuristic solves, at each step i > 0, the
relaxation of the model (where several variables have already �xed values) to
get an optimal solution si. Then, if some other variables xuv or yv have value
v 2 f0; 1g in the solution si, these variables are �xed to this value v. Finally, at
least one most loaded device is forced to be turned on. To speed up the process,
the heuristic has a parameter S. At each step i, we also �x S fraction of the
highest value variables xuv or yv whose values v are in 0 < v < 1 to one. Once
all the integer variables are �xed, the relaxation is solved one last time. This
gives a valid solution to the Integer Linear Program.

The heuristic has been implemented in Java and it can be downloaded as
open source1. Note that we use CPLEX to solve the relaxations of the model
at each step of the heuristic. The performance of this heuristic is analyzed in
Section 6.

On the complexity of the heuristic algorithm The model we propose
has a polynomial number of constraints on the size of the input. It is well-

1https://github.com/lrem/GreenContentDistribution
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known that its relaxation can then be solved in polynomial time. The number
of devices whose variables have to be set to 0 or 1 by our heuristic is n caches
(one at each node) plus m edges. The �rst iteration puts n�1 edge variables to
1. When a variable is set to 0 or 1, it is not reconsidered during the algorithm
execution. Hence, the number of relaxations solved, i.e. of steps of the heuristic,
is bounded by m+ 1.

4 Instance generation
To validate our model and algorithms and to explore the potential energy sav-
ings, we needed to build realistic instances. That is we had to set up network
topologies, tra�c matrices, CDN infrastructure with server capacities and loca-
tions for these CDN servers inside the network topologies.

The Survivable �xed telecommunication Network Design (SND) Library
(SNDLib [16]) contains a set of real network topologies, and we use three of
them with considerably di�erent size for our simulations:

� Atlanta { jV j = 15; jEj = 22, unidenti�able cities
� Nobel-EU { jV j = 28; jEj = 41, major European cities
� Germany50 { jV j = 50; jEj = 88, major German cities

Usually, Content Distribution Networks locate their servers in Internet Ex-
changes and major Points of Presence, to minimize the network distance to
the end users. Locations of such points are publicly known. Thus, for topolo-
gies with clearly identi�able cities, we have ready sets of candidate locations for
CDN servers. The number of servers is heterogeneous and we try to arrange
it into distinct classes in regard to popularity/server capacity proportion, i.e.
there can be networks with many small servers, or few strong ones.

We used a population model to build the tra�c matrices of the demands
between cities. We assume that, in average, people among the cities behave
similarly. Thus, the total amount of demands originating from a city is pro-
portional to its population. If cities cannot be identi�ed, the population is
assumed to be distributed uniformly. There is roughly the same amount of
demands toward each content per thousand people everywhere. Similar unifor-
mity is assumed for demands between cities, bigger cities attract more demands
than the small ones. Then, we augmented matrices with the demands towards
content providers. Obtaining exact �gures about CDN market shares and op-
erational details is out of scope of this study. Still, we explored the publicly
available information, e.g. [7], to come up with a list of the major providers.
Each of the networks is assigned a popularity, which is based on market share
either claimed by the company or media.

Table 2 exempli�es CDN speci�cation used in the germany50 network. Server
capacity means what part of total demand towards a network can be satis�ed
by the infrastructure in a single location. For example, just two servers with
capacity 0:5 can satisfy all demands towards CDN4.

The process of obtaining the instance �les has been automated by a set of
Python scripts, which we make freely available2.First, one needs to provide a

2 http://www-sop.inria.fr/members/Remigiusz.Modrzejewski/software.html
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list of English names of the cities in the topology. Population data is pulled
automatically from Wikipedia.

Then, having the list of cities and their populations, user speci�es the total
amount of demands d originating from the most populous city m and percentage
of tra�c directed towards CDN o. It is more convenient to specify demands in
relation to link bandwidth l in the form of demand ratio r, such that d = l=r. The
remaining 100� o percentage is directed towards other cities. Total population
t of all cities is computed. For a city with population a its aggregate demand
towards another city with population b is equal to:

d �
a
m
�

b
t� a

� (100� o)%

Another part of input is CDN con�guration. It is comprised of a list of
entries containing name, popularity, server capacity and server locations. Total
popularity P of all CDNs is computed. For a city with population a its aggregate
demand towards an CDN with popularity p is equal to:

d �
a
m
�
p
P
� o%

5 Validation of the Heuristic Algorithm
In order to validate the Spanning Tree Heuristic, we compare its perfor-
mance to solving the integer model directly with CPLEX. We focus on showing
the impact of the parameter S, which governs the speed/quality trade-o�, on
the three chosen examples.

5.1 Comparison of the heuristic and the ILP
Table 3 displays the performance comparison using the values of the objective
function and also the wall-clock time taken by the computation on an Intel
i7-powered computer.

The � columns show, respectively, the ratio between ILP and heuristic for
the cost of the solution and for the computation time. The heuristic parameter
S is set to 0.2. This choice is discussed in the next section.

First, notice that for very small networks it is feasible to solve the ILP
optimally. This is exempli�ed by the 15-node Atlanta network. The optimal
solution is found within two seconds. Interestingly, the running time grows for
lower tra�c. Indeed, we believe that the set of feasible solutions for high values
is smaller and CPLEX can prove the optimality gap much faster. The solutions
that were given by the heuristic are close to the optimum, while the time needed
to �nd them is much shorter. Still, for networks of this size, we would strongly
recommend solving the ILP model directly.

For networks having up to 30 nodes it is still feasible to �nd optimal so-
lutions. However, the cost in terms of time to obtain an optimal solution is
rather high, while closing the gap to the lower bound becomes impractical for
low tra�c. Thus, we set a limit of 5 minutes to obtain near-optimal results.
On the other hand, Spanning Tree Heuristic provides its solutions in under
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two seconds. Again, by choosing the heuristic, we accept only a slight increase
in consumed energy. Precisely, for Nobel-EU, with high tra�c, the heuristic
obtains a solution within 12% of the optimum, while saving 99.8% of the com-
putation time.

In medium-sized networks, such as Germany50, �nding exact solution be-
comes impractical. Spanning Tree Heuristic obtains a slightly better solu-
tion than the ILP, while taking only 3% of the running time, in the case of high
tra�c. In the other cases it is still not far quality-wise, while taking negligible
time.

Finally, we take a big random instance. The topology is a 2-connected
Erd�os-Renyi graph, with 150 nodes, an average degree of four and one CDN
with �fteen servers. Each city issues demands only to seven other cities. The
overall tra�c level is medium (demand ratio 4.0), as these kind of instances
are prone to bottlenecks, which could render higher tra�c levels unrouteable.
It is infeasible to directly obtain any integer solution of the model. After two
hours CPLEX was not able to propose even a trivial solution (e.g. turning on
all the devices). Spanning Tree Heuristic, in just above two minutes, gives
a solution that is 35.8% over the trivial lower bound of a minimal connected
network.

To conclude, we say that the Spanning Tree Heuristic is clearly the
better choice for big networks. For small to medium-sized ones, its results are
always reasonably good, while its running time is very short. Therefore, it is a
viable choice whenever the computation time is an issue.

5.2 Speed/quality trade-o� of the Spanning Tree Heuris-
tic

As stated in Section 3.3, the parameter S governs an execution speed versus
quality of solution trade-o� for the Spanning Tree Heuristic. We investigate
its inuence in this section.

First, recall that S determines the fraction of undecided variables to be
�xed to an integer value within an iteration. Setting S to zero means turning
on devices one by one. It is easy to see how increasing S reduces the number of
iterations. To comprehend how it can decrease the quality of obtained solution,
imagine a simple example, that represents a fragment of an instance. Take two
cities with two disjoint paths and one demand between them. Let the value
of that demand be equal to bandwidth of a link. One valid solution of the
relaxation can be splitting the demand in half and routing both halves along
both paths. The optimal integer solution for this case is all the ow going
through one route, the links of the other turned o�. If S = 0, then after the
�rst step one link will be turned on. The only possible solution of the relaxation
will route all the tra�c through the path containing this link. Thus, the solution
found by Spanning Tree Heuristic will be optimal. However, if S > 0 and
two links are turned on in the �rst step, then it is possible the two links will be
on di�erent paths. Thus, the integer solution will have some unnecessary links
turned on. In the extreme case of S = 1 all devices will always be turned on.

On �gure 2, the x axis determines the value of parameter S for the three
presented examples. The left column plots the value of the objective function in
integer solutions. The right column shows computational costs, both in terms
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of wall clock time in seconds (solid blue lines) and number of relaxations solved
(dashed red lines).

First, look into an instance based on maximum tra�c sustainable in the
Germany50 network. Solutions obtained are displayed on �gure 2a. Recall that
the value found by a solver for this instance was 69.7 energy units. Taking
between 24 and 8 seconds, Spanning Tree Heuristic with S � 0:3 obtains
solutions with 69.0 units. This means it is in this case both faster by an order of
magnitude and gives a marginally better solution. Note that even at S = 1 not
all devices are turned on. This is because, after freezing the spanning tree, some
devices get turned o� before all the undecided ones are turned on. Looking at
�gure 2b, we see that the number of relaxations solved and the running time are
falling drastically for S � 0:2. Then, they decrease more slowly, with 6 seconds
at S = 0:5 and 4 seconds at S = 1:0.

Second, we assign to the same network a small load, that still does not allow
for routing on a spanning tree (which would be a trivial case for the heuristic).
With model given directly to a solver, we have obtained in 5 minutes a solution
with value 50. Figure 2c shows that the best solution found by Spanning
Tree Heuristic is still one unit worse and can deteriorate by almost eight
further units. On the other hand, the maximum time taken by Spanning Tree
Heuristic is 10.8 seconds. For S = 0:1 it is already 3.3 seconds, reaching 2.8
at S = 1.

Finally, we present results for the same random graph as in the previous
section. Looking at �gure 2e, we see that there is signi�cant but steady increase
in energy consumption until S = 0:4. At that point, the value objective function
is nearly saturating, at 1.44 times the value for S = 0. On the other hand,
�gure 2f shows that there is a sharp decrease in computational cost until S = 0:2.
As the objective value at that point is not far from the best known value, we
deduce that this is a reasonable value of S for fast solving of big instances.
Note that when solving the model directly, CPLEX 12 is not able to produce
any integer solution within reasonable timespan of two hours. The only lower
bound on the objective value we know comes from the fact, that the network
needs to be connected, meaning at least 149 links. The heuristic, with S = 0,
is at most within 20.8% from this solution.

6 Results
In this section, we investigate the potential energy savings of our solution on
realistic networks. We exhibit the impact of the cache, CDN and network pa-
rameters, such as cache size, number of CDN servers, or route lengths.

Note on units and presentation of the results. In order to avoid choos-
ing values that correspond to speci�c network equiments and architectures, we
present the results with normalized units. Nevertheless, we also give default
values to allow an easier translation to practical units.

Power consumption in the results is given in normalized power units equal
to the power used by one network link. To translate it into watts, we used the
default value of lc = 100 W. Recall that the power consumption of a cache is
then given by the parameter ratio �. For example, a value of � = 0:5 represents
a consumption of 50 W for the SSD cache, using the link default value.
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Demand values are also presented using a normalized unit equal to the total
capacity of a single link, by a demand ratio. A demand ratio r represents a
demand equal to a fraction 1=r of the link capacity. To translate it in into GB,
we used the typical value of 10 Gbit/s for the link capacity. As an example, a
demand ratio of 2 between two cities stands for a demand of 5 Gbit/s.
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(a) Germany, demand ratio = 0.25

0:0 0:2 0:4 0:6 0:8 1:0
STH speed parameter S

0

5

10

15

20

25

T
im

e
[s

ec
on

ds
]

0

10

20

30

40

50

60

70

R
el

ax
at

io
ns

[e
xe

cu
tio

ns
]

(b) Germany, demand ratio = 0.25
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(c) Germany, demand ratio = 1.0
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(d) Germany, demand ratio = 1.0
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(e) Random graph, n = 150
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(f) Random graph, n = 150

Figure 2 { Impact of the parameter S, left column plots the energy consumption
of obtained designs, while right column plots the computational cost.
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(b) Link usages.
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(c) Total energy consumption.

Figure 3 { Results as a function of parameter � (cache hit rate) for Germany50.
Power consumption is reported with a normalized unit equal to the power used
by a network link.
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6.1 Impact of cache parameters
In this section, we exemplify the impact of parameters of the cache. We look into
how the obtained network designs di�er on changing values of the cache hit rate
� and of the cache power usage �. Note that the curves of the �gures present
some some local peaks that are due to the heuristic nature of the algorithm
launched on a single network. Nevertheless, these spikes do not prevent from
exhibiting some strong general trends that are con�rmed by experiments on
other networks, see for example �gure 5.

First, we look at the e�ects of changing the parameter �, shown in �gure 3.
Recall, that it limits what part of any single demand can be served from a
cache. We see in �gure 3(c) that, as expected, when cache e�ciency increases,
more power is being saved, from around 79 to 70 units of power. Note that
once about 15% of tra�c can be cached (corresponding to 71 units of power),
further gains are highly diminished. This can be done with about 800 GB of
cache, as mentioned in Section 3.1, using a LRU policy, or a lower amount with
a more e�cient policy policy. Figure 3(a) and (c) show how the power usage
is distributed between caches and links. As the cache e�ciency increases, more
caches are used from few units to 20. This allows to turn o� network links from
77 to 57, and save energy. Note that the value for a cache hit rate � = 1 is
singular and does not correspond to a real situation but to a limit one. Indeed,
in this case, as all tra�c may be served from cache, the network is no more
connected. Finally, we plot the cache load with a thin line in �gure 3(a). The
cache load is the total tra�c served by caches normalized by the capacity of a
single cache. A value of 1 means that all caches work at full capacity. We see
that cache load mimics the cache usage in this experiment. This is not the case
in the following one.

Cache bandwidth, plotted in �gure 6, has a similar e�ect as �. It is addi-
tionally reinforced by the fact that, with the same amount of provided data,
it renders load proportionally smaller. Thus, the di�erence has little practical
meaning.

Finally, we look at the e�ects of changing maximum cache power usage,
shown in �gure 4. As seen on �gure 4a, this has a much stronger inuence
on the number of caches turned on. In fact, this is the scenario in which the
minimum cache usage was seen { only two caches. As expected, both total
energy consumption and number of used links, depicted on �gures 4c and 4b,
raise along �.
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(c) Total energy consumption.

Figure 4 { Results as a function of parameter � (cache power / link power) for
Germany50.
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(c) Germany

Figure 5 { Part of power consumption saved by introducing caches with various
parameters. Baseline is network power consumption without cache.
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(c) Total energy consumption.

Figure 6 { Results as a function of cache bandwidth. Note that link bandwidth
= 10000.

6.2 Impact of CDN parameters
Then, we investigate the impact of the cooperation with CDN. Figure 7 shows
the evolution of energy consumption as a function of what part of all demands
are directed towards CDN networks. The demand ratio for this plot is set
to 0.33, for the same reasons previously exposed. Results with and without
caches are compared. First, we discuss results for Germany50. As we can see,
introducing cooperating content providers to a network without caches is highly
bene�cial. In the extreme case when all tra�c would be served by CDNs, energy
consumption would decrease by 27.4%. At today’s claimed values this number
is still 16.4%. Then, introducing caches to a network without CDN gives 16.7%
savings. There remain 8.0% savings at today’s CDN popularity. What may be
a bit surprising, there are still 6.6% savings by introducing caches when 100% of
tra�c is served by the Content Delivery Networks. Finally, comparing network
without CDN nor caches, to network with 50% of tra�c served by CDN and
with enabled caches, we save 23.12% of energy. Table 4 shows the savings for
di�erent scenarios, for all the networks. The �rst case, is with cache only and
no CDN, the second and third cases represent 50 % (or 100%) of the demands
served by CDNs without caches, and the third is with cache and 50% of demands
served by CDN. Savings are always compared to the case without caches nor
CDN.
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Figure 7 { Impact of caches and CDN cooperation on energy consumption
.

Instance Cache CDN 0.5 CDN 1.0 Cache + CDN 0.5

Atlanta 6.5% 5.9 % 11.8% 9.6%
Janos-US-CA 2.7% 9.0% 20.5% 9.45%
Nobel-EU 10.6% 15.2% 24.2% 16.2%
France 11.8% 15.6% 34.4% 20.5%
Germany 16.7% 16.4% 27.4% 23.1%
Zib54 6.74% 12.5% 23.4% 12.9%

Table 4 { Savings in di�erent scenarios for di�erent networks.

1 2 3 4 5 6 7 8
CDN server locations

72

74

76

78

80

82

84

E
ne

rg
y

co
ns

um
pt

io
n

[
l c

]

Figure 8 { Impact of the number of CDN server locations in Germany.
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Figure 9 { Comparison of energy consumption with and without caches in the
model.

Figure 8 investigates how many location choices are needed to achieve good
savings. In this scenario, for the sake of clarity, there is only one CDN. Its servers
are potentially located in: Berlin, Frankfurt, Muenchen, Hamburg, Dortmund,
Stuttgart, Leipzig and Aachen. In each data point, only the �rst n servers from
this list are enabled. Each server is able to provide all the demands alone, 50%
of all tra�c is served by the CDN. It is infeasible to route with less than 3
locations. As we can see, increasing the number of possible choices from 3 to 5
yields around 13% of energy savings. Further increases have little e�ect. Thus,
in this network of 50 cities, it is optimal to have 5 server locations.

6.3 Impact of tra�c level
In this section, we look into the potential reduction of energy consumption of

the networks in our model, both with and without usage of the caches, exploiting
the variance in network tra�c over time. The parameters used throughout this
section are: � = 0:35, � = 0:1 and cache bandwidth is half of a link.

Figure 9 shows energy consumption as a function of demand ratio, that is the
inverse of tra�c level. As we can see, in all the networks, enabling caches makes
routing feasible under much higher loads than before, reported in the third
column of Table 5. For example in the case of Germany, we can accommodate
an increase in demands by one third. Then, as tra�c decreases, we can save
energy by turning o� some devices. The right column of Table 5 states relative
di�erence between energy consumption of a network under highest possible load
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(a) High tra�c (b) Half tra�c

Figure 10 { Breakdown of devices used for two levels of tra�c (Right has half
the tra�c of left).

Network Nodes count Additional possible Maximum energy saved Total energy savings
tra�c due to caches (load=50%)

Atlanta 15 66% 8.9% 21.3%
Nobel-EU 28 50% 3.2% 21.7%
Germany 50 33% 16.7% 22.3%

Table 5 { Potential energy savings

and half of that load, with caches enabled. Figure 10 shows, for the Germany50,
the breakdown of the network devices (caches and links) used for these high and
low tra�c level. Solid (dashed) lines represents (un)used network links, black
(white) squares (un)used caches.

For a range of demand values, it is feasible to route without caches, but at
a higher total energy cost. Note that half of maximum sustainable load is in all
cases within this range. The fourth column of Table 5 shows the highest di�er-
ence of power consumption accommodating the same tra�c with and without
caches. This di�erence can go up to 16.7% for the network Germany50 for a
demand ratio of about 0:35.

As can be seen, there is a point after which there are no additional savings
with falling tra�c. This is when the routing is feasible on a spanning tree, using
no caches. Turning o� any additional device would disconnect the network.

What is interesting is the fact that caches have a much higher e�ect in the
germany50 than the smaller instances. We attribute that to longer routes,
which mean higher energy cost to transfer the data through the network. This
e�ect is investigated in Section 6.4.
6.4 Impact of network size
We have seen varying usage of caches in the studied networks. An explanation
for that is the di�erence of route lengths in the diverse networks. Energy is saved
by serving from a cache close to the user. Savings depend on how long would
be the route traversed by the data, if it was served from the content provider.
A longer route yields higher reductions. However, in the biggest network we
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Figure 11 { Spanning Tree Heuristic on Erd}os-R�enyi graphs.

used, the germany50, the average route length is only 4. Furthermore, when
looking at a distance traveled by an average bit of data, this length is only 2.6.
We claim that in bigger networks we could see higher utility of caches.

To estimate the impact of route length, we look into results on Erd}os-R�enyi
graphs. Recall that in these graphs, the route lengths grow logarithmically
in respect to the graph size. As we need many big networks to demonstrate
the e�ect, obtaining integer solutions directly from a solver would be impracti-
cal. Therefore, the results presented are computed using the Spanning Tree
Heuristic.

Figure 11a shows the number of caches used divided by the number of cities
in two-connected Erd}os-R�enyi graphs of increasing sizes. The average degree
of each graph is 4, each city emits 7 demands to random other cities, cache
parameters are � = 0:35, � = 0:1 and  = 0:5. Each data point is an average
over at least two thousand instances, error bars represent standard deviation.

As we can see, with no other parameters changing, usage of caches clearly
grows with increasing network sizes. In a network of size 20, having average
route length around 2.3, average number of caches on is only 4.47 (22.3%),
while in networks of size 220, of average route length around 4.2, there are on
average 209.2 (95.1%) caches turned on. Caches see an average usage over 50%
for networks of size at least 80, where the average route length is only around
3.4. This size can correspond to small networks comprised of both core and
metropolitan parts, or just big core networks.

Figure 11b displays the computation times. The value of S is 0.2. The exe-
cution time grows quickly. This is not due to the number of heuristic iterations,
between 20 and 220 nodes the number of relaxations solved only doubles. How-
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ever, at n = 220 a single relaxation takes 6 minutes on average. Thus, the time
needed to �nd the fractional routing is the critical part of the computational
cost.

6.5 Tra�c Variations and Number of Network Recon�g-
urations

We now study the impact of the number of recon�gurations per day on the
network power consumption. Indeed, it is an important trade-o� for network
operators. On one side, if many recon�gurations are done, we follow closely the
tra�c variations, with more equipements turned-o� and, thus, we save more
energy. However, on the other side, operators prefer to carry out as few as
possible changes of con�gurations of their network equipements to minimize the
chance of introducing errors or producing routing instability. We show here that
we can have a good trade-o� by obtaining most of the energy savings with a
small number of recon�gurations.

As shown in �gure 12(a), the tra�c follows a typical daily pattern. Data
come from a typical France Telecom link. The level of night tra�c is around
four times less than the one of high tra�c (between 11am and 6pm).

Consider now that a network operator is willing and is able to carry out
k recon�gurations per day. To carry out such simulations, we divide the day
into k periods of time. For each of these periods, we consider the maximum
tra�c during the period. As an example, in �gure 12(b) is shown the maximum
tra�c over periods of respectively 4 hours and 1 hour. We see that 1 hour
intervals allow to mimic closely the tra�c, while the use of 4 hour intervals
introduces large energy wastes. We then run the algorithm to switch o� as
many elements as possible while being able to distribute this maximum tra�c.
We made the number of recon�gurations vary from 1 (maximum tra�c during
the day, corresponding to the former experiments) to 48 (a change every 30
minutes).

In �gure 13, we plot the average power consumption of the network (average
over all k periods) and the minimum power consumption (over all k periods).
As expected, we see that the power consumption decreases when the number of
allowed recon�gurations increases. The power is 87 when all equipements are
on, 72 when only one recon�guration is done, 69 when 2 are done. An interest-
ing observation is that the decrease is sharp for small numbers till around 12
recon�gurations. Then, the curve becomes almost at: with 12 recon�gurations,
the power consumption is 61 (and 59 for 48 recon�gurations). An explanation
of this phenomena can be seen in �gure 12 (b). When the interval duration
decreases, the maximum tra�c gets closer to the real tra�c during the interval.

To summarize, a relatively small number of recon�gurations (every 2 hours
and 4 hours) would allow operators to obtain most of the energy savings.

7 Discussion
Cooperation between Content provider and Network operator. Re-
call that to implement in practice the solutions proposed in this paper it is
necessary a collaboration between content providers and network operators. In-
deed, it is necessary to know, on one hand, the locations, capacities and contents
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of the CDNs servers and, on the other hand, the network topologies and lists of
network equipments that may be turned o�. Nowadays, this sort of information
is private and it is considered to be strategic by most of the companies.

A natural context to implement our solution is for a network operator that
is also a content provider. This is a growing trend as revenue is increasingly
shifting from tra�c distribution to content distribution. As an example, Orange
(ex-France Telecom) is operating its own CDN. In particular, it distributes the
tra�c of the video-sharing website Dailymotion, bought in 2011. Several studies
explore the possible bene�t due to this new deal [43, 44], and our paper can be
seen as one of them. Nevertheless, we believe that as studies show the bene�t
of such types of solutions, at least a partial sharing of information between two
independent network operators and content provider can be envisioned.

Practical implementation Energy-aware routing protocols are a promising
solution, but there still exist practical issues to solve before an implementation.
Network operators do not like to turn o� equipments and it changes their routing
con�gurations. Indeed, routing protocols take some time to converge and it can
lead to network instability, packet losses, and, thus to an increased delay for
the end-users. Nevertheless, we believe that energy-aware routing protocols can
be implemented in a simple context like the one of our study. As a matter of
fact, we discuss here about a small number of pre-planned changes of routing
during the day and not about rapid changes. Daily aggregated tra�c can be
well estimated and a set of con�gurations depending on the time of the day can
be precomputed. Moreover, this number of con�gurations is relatively small: we
have seen in the previous section, that with 5 to 12 such con�gurations per day
we can already obtain signi�cant savings. This fact is also observed by other
studies [45].

Second, to lower convergence time, a centralized control can be implemented
with a technology like Software De�ned Networks (SDN). This technology is
very promising to put energy-aware solution into practice. Indeed, this allows to
carry out tra�c measurements, to perform route calculation and then to trigger
an installation of new routing rules in the SDN enabled routers and switch-o�
equipments. Indeed, the centralized controller is able to turn on/o� or switch the
rate of a network interface and storage caches via SDN control messages. Note
that these messages will be very small in comparison to the global tra�c and not
frequent (only few changes are su�cient to obtain most of the energy gain, e.g.
every 4 hours see Figure 12). The increase of the power consumption will thus
be negligible. In summary, the centralized controller of SDN can collect tra�c
matrix and then compute a routing solution satisfying QoS while being minimal
in energy consumption. Then, the controller will update the forwarding tables
of the nodes of the considered network and turn o� some network interfaces and
storage caches if needed in order to save some energy. [46, 47] studies such a
solution in a context of energy-aware routing. In [48], the authors explain how
waking up line cards of routers in almost zero-time.

Time critical applications In the case of a time critical applications appli-
cation, it could be of interest to place �rst this application, so that it experiences
a small delay, and then to apply the (best-e�ort) algorithms to the remaining
tra�c. This can be easily added in our model by adding a priority criterion
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with a quality of service �eld for each demand for example. Additionally, note
that the algorithm will still most of the time use the closest server/data. As a
matter of fact, this choice is the best one in terms of bandwidth usage and, so
will be often the preferred choice by the energy-e�cient algorithm. Note also
that for this kind of applications, the usage of caches is not suitable, as usually
the data will not be redundant among users (phone or video calls, gaming as
an example). Moreover, this represents a small percentage of the global tra�c,
therefore the global results of our experiments will not be signi�cantly changed.

8 Conclusions and further research
In this work, we addressed to the problem of energy saving in backbone net-
works. To the best of our knowledge, this is the �rst work to consider the impact
of in-router caches, along with assigning servers of Content Delivery Networks
to demands, in an energy-e�cient routing.

We have proposed a new Integer Linear Programming model for saving en-
ergy in backbone networks by disabling links and caches of this network and a
polynomial-time heuristic for this problem. We compared the performance of
the solutions proposed by our heuristic against those found by CPLEX. In small
to medium-sized instances, the solutions given by the heuristic are close to that
of the integer program. It allows to �nd good solutions for bigger networks,
where CPLEX was not able to produce any feasible solution in hours.

We studied instances based on real network topologies taken from SNDLib.
The total energy savings that we found oscillate around 20% for realistic pa-
rameters. Part of energy saved solely due to introduction of caches is up to 16%
in our instances.

As a future work, the model could be extended to enable the usage of a
single cache to satisfy the demands of multiple cities, i.e. to let a cache satisfy
demands to di�erent routers and not only to its own router. The energy savings
will probably grow in this model, however it would be interesting to study how
this solution could be deployed.

One could also look at di�erent network architectures. This work considered
only the backbone. A next step could be introducing access networks, leading
to larger instances. As the savings due to caches grow with network size, they
should be substantially higher in this case. This could also motivate study of
new mechanisms, e.g. layered caching.
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