D. J. Amit, H. Gutfreund, and H. Sompolinsky, Statistical mechanics of neural networks near saturation, Annals of Physics, vol.173, issue.1, pp.30-67, 1987.
DOI : 10.1016/0003-4916(87)90092-3

C. Nguyen, H. Berg, and J. , Bethe-peierls approximation and the inverse ising model. ArXiv e-prints, 1112, p.3501, 2011.

S. Cocco and R. Monasson, Adaptive Cluster Expansion for the Inverse Ising Problem: Convergence, Algorithm and Tests, Journal of Statistical Physics, vol.5, issue.2, 2011.
DOI : 10.1007/s10955-012-0463-4

URL : https://hal.archives-ouvertes.fr/hal-00634921

S. Cocco, R. Monasson, and V. Sessak, High-dimensional inference with the generalized Hopfield model: Principal component analysis and corrections, Physical Review E, vol.83, issue.5, p.51123, 2011.
DOI : 10.1103/PhysRevE.83.051123

URL : https://hal.archives-ouvertes.fr/hal-00586950

A. De-palma and F. Marchal, Real cases applications of the fully dynamic METROPOLIS tool-box: an advocacy for large-scale mesoscopic transportation systems, Networks and Spatial Economics, vol.2, pp.4-347, 2002.

B. Frey and D. Dueck, Clustering by Passing Messages Between Data Points, Science, vol.315, issue.5814, pp.972-976, 2007.
DOI : 10.1126/science.1136800

C. Furtlehner, Y. Han, J. Lasgouttes, V. Martin, F. Marchal et al., Spatial and temporal analysis of traffic states on large scale networks, 13th International IEEE Conference on Intelligent Transportation Systems, pp.1215-1220, 2010.
DOI : 10.1109/ITSC.2010.5625175

URL : https://hal.archives-ouvertes.fr/hal-00527481

C. Furtlehner, J. Lasgouttes, and A. Auger, Learning multiple belief propagation fixed points for real time inference, Physica A: Statistical Mechanics and its Applications, vol.389, issue.1, pp.149-163, 2010.
DOI : 10.1016/j.physa.2009.08.030

URL : https://hal.archives-ouvertes.fr/inria-00371372

C. Furtlehner, J. Lasgouttes, and A. De-la-fortelle, A Belief Propagation Approach to Traffic Prediction using Probe Vehicles, 2007 IEEE Intelligent Transportation Systems Conference, pp.1022-1027, 2007.
DOI : 10.1109/ITSC.2007.4357716

URL : https://hal.archives-ouvertes.fr/hal-00175627

A. Georges, Y. , and J. , How to expand around mean-field theory using high-temperature expansions, Journal of Physics A: Mathematical and General, vol.24, issue.9, p.2173, 1991.
DOI : 10.1088/0305-4470/24/9/024

Y. Han and F. Moutarde, Analysis of network-level traffic states using locality preservative non-negative matrix factorization, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011.
DOI : 10.1109/ITSC.2011.6083060

URL : https://hal.archives-ouvertes.fr/hal-00638207

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

T. Heskes, On the Uniqueness of Loopy Belief Propagation Fixed Points, Neural Computation, vol.50, issue.11, pp.2379-2413, 2004.
DOI : 10.1162/08997660260028674

J. J. Hopfield, Neural network and physical systems with emergent collective computational abilities, Proc. of Natl. Acad. Sci. USA, pp.2554-2558, 1982.

Y. Kabashima and D. Saad, TAP for decoding corrupted messages, Europhysics Letters (EPL), vol.44, issue.5, p.668, 1998.
DOI : 10.1209/epl/i1998-00524-7

H. Kappen, R. , and F. , Efficient Learning in Boltzmann Machines Using Linear Response Theory, Neural Computation, vol.4, issue.5, pp.1137-1156, 1998.
DOI : 10.1162/neco.1994.6.3.341

F. R. Kschischang, B. J. Frey, and H. A. Loeliger, Factor graphs and the sum-product algorithm, IEEE Transactions on Information Theory, vol.47, issue.2, pp.498-519, 2001.
DOI : 10.1109/18.910572

V. Martin, J. Lasgouttes, and C. Furtlehner, Encoding dependencies between real-valued observables with a binary latent MRF, 2011.

M. Mezard, M. , and T. , Constraint satisfaction problems and neural networks: A statistical physics perspective, Journal of Physiology-Paris, vol.103, issue.1-2, pp.1-2, 2009.
DOI : 10.1016/j.jphysparis.2009.05.013

URL : https://hal.archives-ouvertes.fr/hal-00266040

M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond, World Scientific, 1987.

M. Mézard and R. Zecchina, -satisfiability problem: From an analytic solution to an efficient algorithm, Physical Review E, vol.66, issue.5, p.56126, 2002.
DOI : 10.1103/PhysRevE.66.056126

T. Minka, Expectation propagation for approximate bayesian inference, Proceedings UAI, pp.362-369, 2001.

J. M. Mooij and H. J. Kappen, On the properties of the Bethe approximation and loopy belief propagation on binary networks, Journal of Statistical Mechanics: Theory and Experiment, vol.2005, issue.11, p.11012, 2005.
DOI : 10.1088/1742-5468/2005/11/P11012

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference, 1988.

T. Plefka, Convergence condition of the TAP equation for the infinite-ranged Ising spin glass model, Journal of Physics A: Mathematical and General, vol.15, issue.6, 1971.
DOI : 10.1088/0305-4470/15/6/035

M. J. Wainwright, Stochastic processes on graphs with cycles: geometric and variational approaches, 2002.

Y. Watanabe and K. Fukumizu, Graph zeta function in the bethe free energy and loopy belief propagation, Advances in Neural Information Processing Systems, pp.2017-2025, 2009.

Y. Weiss, F. , and W. , Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology, Neural Computation, vol.13, issue.10, pp.2173-2200, 2001.
DOI : 10.1109/18.910585

M. Welling, Y. W. , and T. , Approximate inference in Boltzmann machines, Artificial Intelligence, vol.143, issue.1, pp.19-50, 2003.
DOI : 10.1016/S0004-3702(02)00361-2

URL : http://doi.org/10.1016/s0004-3702(02)00361-2

M. Yasuda and K. Tanaka, Approximate Learning Algorithm in Boltzmann Machines, Neural Computation, vol.21, issue.11, pp.3130-3178, 2009.
DOI : 10.1080/14786437708235992

J. S. Yedidia, W. T. Freeman, and Y. Weiss, Generalized belief propagation, Advances in Neural Information Processing Systems, pp.689-695, 2001.