H. Christensen, J. Barker, N. Ma, and P. Green, The CHiME corpus: a resource and a challenge for Computational Hearing in Multisource Environments, Proc. Interspeech, pp.1918-1921, 2010.

M. Cooke, J. Barker, S. Cunningham, and X. Shao, An audio-visual corpus for speech perception and automatic speech recognition, The Journal of the Acoustical Society of America, vol.120, issue.5, pp.2421-2424, 2006.
DOI : 10.1121/1.2229005

M. Cooke, J. Hershey, and S. Rennie, Monaural speech separation and recognition challenge, Computer Speech & Language, vol.24, issue.1, pp.94-111, 2010.
DOI : 10.1016/j.csl.2009.02.006

URL : https://hal.archives-ouvertes.fr/hal-00598185

M. Cooke and Y. Lu, Spectral and temporal changes to speech produced in the presence of energetic and informational maskers, J. Acoust. Soc. Am, vol.4, issue.128, pp.2059-2069, 2010.

M. Delcroix, K. Kinoshita, T. Nakatani, S. Araki, A. Ogawa et al., Speech recognition in the presence of highly non-stationary noise based on spatial, spectral and temporal speech/noise modeling combined with dynamic variance adaptation, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME), pp.12-17, 2011.

A. Farina, Simultaneous measurement of impulse response and distortion with a swept sine technique, Proc. 108th AES Convention, p.5093, 2000.

J. F. Gemmeke, T. Virtanen, and A. Hurmalainen, Exemplar-based speech enhancement and its application to noise-robust automatic speech recognition, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME, pp.53-57, 2011.

J. R. Hershey, S. Rennie, P. A. Olsen, and T. Kristjánsson, Super-human multi-talker speech recognition: A graphical modeling approach, Computer Speech & Language, vol.24, issue.1, pp.45-66, 2010.
DOI : 10.1016/j.csl.2008.11.001

I. Himawan, I. Mccowan, and M. Lincoln, Microphone Array Beamforming Approach to Blind Speech Separation, Machine Learning for Multimodal Interaction. Spring Berlin, pp.295-308, 2008.
DOI : 10.1007/978-3-540-78155-4_26

A. Hurmalainen, K. Mahkonen, J. F. Gemmeke, and T. Virtanen, Exemplar-based recognition of speech in highly variable noise, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME), pp.1-5, 2011.

H. Kallasjoki, S. Keronen, G. J. Brown, J. F. Gemmeke, U. Remes et al., Mask estimation and sparse imputation for missing data speech recognition in multisource reverberant environments, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME, pp.58-63, 2011.

Y. Kim, H. Cho, and S. Kim, Zero-crossing-based channel attentive weighting of cepstral features for robust speech recognition: The ETRI 2011 CHiME challenge system, Proc. Interspeech, pp.1649-1652, 2011.

Z. Koldovsk´ykoldovsk´y, J. Málek, J. Nouza, and M. Balík, CHiME data separation based on target signal cancellation and noise masking, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME, pp.47-50, 2011.

D. Kolossa, R. Fernandez-astudillo, A. Abad, S. Zeiler, R. Saeidi et al., CHiME challenge: Approaches to robustness using beamforming and uncertainty-of-observation techniques, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME). pp, pp.6-11, 2011.

N. Ma, J. Barker, H. Christensen, and P. Green, Recent advances in fragment-based speech recognition in reverberant multisource environments, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME, pp.68-73, 2011.

R. Maas, A. Schwarz, Y. Zheng, K. Reindl, S. Meier et al., A twochannel acoustic front-end for robust automatic speech recognition in noisy and reverberant environments, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME, pp.41-46, 2011.

S. Makino, T. Lee, and H. Sawada, Blind speech separation. Signals and Communication Technology, 2007.

F. Nesta and M. Matassoni, Robust automatic speech recognition through on-line semi blind source extraction, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME, pp.18-23, 2011.

A. Ozerov and E. Vincent, Using the FASST source separation toolbox for noise robust speech recognition, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME, pp.86-87, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00598734

D. Pearce and H. Hirsch, The aurora experimental framework for the performa nce evaluation of speech recognition systems under noisy conditions, Proc. ICSLP '00, pp.29-32, 2000.

B. Lutter, D. Duong, and N. , The signal separation evaluation campaign): Achievements and remaining challenges, Signal Processing, vol.92, pp.1928-1936, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00579398

E. Vincent, J. Barker, S. Watanabe, J. Le-roux, F. Nesta et al., The second ‘chime’ speech separation and recognition challenge: Datasets, tasks and baselines, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
DOI : 10.1109/ICASSP.2013.6637622

R. Vipperla, S. Bozonnet, D. Wang, and N. Evans, Robust speech recognition in multisource noise environments using convolutive non-negative matrix factorization, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME, pp.74-79, 2011.

F. Weninger, J. Geiger, M. Wöllmer, B. Schuller, and G. Rigoll, The Munich 2011 CHiME challenge contribution: NMF-BLSTM speech enhancement and recognition for reverberated multisource environments, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME, pp.24-29, 2011.

M. Wölfel and J. Mcdonough, Distant Speech Recognition, 2009.