Christiane's Hair

Abstract : We explore the geometric and measure-theoretic properties of a set built by stacking central Cantor sets with continuously varying scaling factors. By using self-similarity, we are able to describe in a fairly complete way its main features. We show that it is made of an uncountable number of analytic curves, compute the exact areas of the gaps of all sizes, and show that its Hausdor and box counding dimension are both equal to 2. It provides a particularly good example to introduce and showcase these notions because of the beauty and simplicity of the arguments. Our derivation of explicit formulas for the areas of all of the gaps is elementary enough to be explained to rst-year calculus students.
Type de document :
Article dans une revue
American Mathematical Monthly, Mathematical Association of America, 2013, 120 (9), pp.771-786
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger
Contributeur : Lisandro Fermin <>
Soumis le : lundi 22 octobre 2012 - 16:17:09
Dernière modification le : vendredi 3 novembre 2017 - 15:38:26
Document(s) archivé(s) le : mercredi 23 janvier 2013 - 03:43:28


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00744268, version 1



Jacques Lévy Véhel, Franklin Mendivil. Christiane's Hair. American Mathematical Monthly, Mathematical Association of America, 2013, 120 (9), pp.771-786. 〈hal-00744268〉



Consultations de la notice


Téléchargements de fichiers