C. Cabrelli, F. Mendivil, U. Molter, and R. Shonkwiler, On the Hausdorff h-measure of Cantor sets, Pac, J. Math, vol.217, pp.45-59, 2004.

K. J. Falconer, Techniques in Fractal Geometry, 1997.

J. A. Guthrie and J. E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math, vol.55, pp.323-327, 1988.

K. Hannabus, Mathematics in Victorian Oxford: A tale of three professors, Mathematics in Victorian Britain, pp.35-52, 2011.

J. E. Hutchinson, Fractals and self-similarity, Indiana Univ, J. Math, vol.30, pp.713-747, 1981.

S. Kakeya, On the partial sums of an infinite series, Tohoku Sci. Rep, vol.3, issue.4, pp.159-164, 1914.

M. L. Lapidus, M. Van-frankenhuijsen, and F. Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, 2006.

P. K. Menon, On a class of perfect sets, Bulletin of the American Mathematical Society, vol.54, issue.8, pp.706-711, 1948.
DOI : 10.1090/S0002-9904-1948-09060-7

C. A. Rogers, Hausdorff Measures, reprint of the 1970 original, 1998.

S. G. Krantz and H. R. Parks, The Geometry of Domains in Space, 1999.
DOI : 10.1007/978-1-4612-1574-5