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Indice de détection des graphes bipartis et des graphes cubiques

Résuḿe : Pour un graphe connexeG d’ordre|V(G)| ≥ 3 et unk-étiquetagec : E(G) → {1,2, . . . ,k} des arêtes
de G, le coded’un sommetv de G est lek-uplet (ℓ1, ℓ2, . . . , ℓk), où ℓi est le nombre d’arêtes incidentes àv qui
sont étiquetéesi. Le k-étiquetagec estdétectablesi, quels que soient deux sommets adjacents deG, leurs codes
sont distincts. Le plus petit entier strictement positifk pour lequelG a unk-étiquetage détectable estl’indice de
détection det(G) deG. Dans ce rapport, nous montrons qu’il est NP-complet de décider si l’indice de détection
d’une graphe cubique vaut 2. Nous montrons également que l’indice de détection de toutgraphe biparti de degré
minimum au moins 3 est au plus 2. Enfin, nous donnons des conditions suffisantes pour qu’un graphe cubiquesoit
d’indice de détection 3.

Mots-clés : coloration détectable, NP-complétude, graphe biparti,graphe cubique
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1 Introduction

For graph-theoretical terminology and notation, we in general follow [2]. In this paper, we assume that
the graphsG in discussion are finite, connected, undirected and simple with order|V(G)| ≥ 3. Let c : E(G) →

{1,2, . . . ,k} be a labelling of the edges ofG, wherek is a positive integer. Thecolor codeof a vertexv of G is the
orderedk-tuplecodec(v) = (ℓ1, ℓ2, . . . , ℓk), whereℓi is the number of edges incident withv that are labelledi for
i ∈ {1,2, . . . ,k}. Therefore,ℓ1+ ℓ2+ · · ·+ ℓk = dG(v), the degree ofv in G. The labellingc is called adetectable
coloring of G if any pair of adjacent vertices ofG have distinct color codes. Thedetection numberor detectable
chromatic numberof G, denoteddet(G), is the minimum positive integerk for whichG has a detectablek-coloring.
We callG k-detectableif G has a detectablek-coloring.

The concept of detection number was introduced by Karoński, Luczak and Thomason in [7], inspired by the
basic problem in graph theory that concerns finding means to distinguish the vertices of a connected graph and
to distinguish adjacent vertices of a graph, respectively,with the minimum number of colors. For a survey on
vertex-distinguishing colorings of graphs, see [5].

In [7], Karoński, Luczak and Thomason conjectured thatdet(G) ≤ 3. In [1], Addario-Berry, Aldred, Dalal
and Reed proved that: (i)det(G) ≤ 4 and (ii) if χ(G) ≤ 3, thendet(G) ≤ 3. However, as observed by Khatirinejad
et al. [8], it seems NP-complete to decide if a graph is 2-detectable.
Conjecture 1.1(Khatirinejad et al. [8]). It is NP-complete to decide whether a given graph is2-detectable.

As an evidence, Dudek and Wajc [4] showed that closely related problems are NP-complete. In Section 2, we
settle this conjecture by showing that deciding if a cubic graph is 2-detectable is an NP-complete problem.

On the other hand, Khatirinejad et al. [8] believed that for agiven bipartite graph, deciding if it is 2-detectable
should be easy. Form1 ≤ m2 ≤ ·· · ≤ md, let Θ(m1, . . . ,md) be the graph constructed fromd internally disjoint
paths between distinct verticesx andy, in which thei-th path has lengthmi . Such a graph is called aThetaand the
two vertices{x,y} are itspoles. It is bad if m1 = 1 andmi ≡ 1 mod 4 for all 2≤ i ≤ d. Khatirinejad et al. [8]
proved that a Theta is 2-detectable if and only if it is not bad, and asked whether all bipartite graphs except the bad
Thetas were 2-detectable. This was answered in the negativeby Davoodi and Omoomi [3] who gave a new family
of non-2-detectable bipartite graphs, theTheta trees. A Theta treeis a graph obtained from a treeT by replacing
each vertext of V(T) by a bad Theta with polesut andvt and every edgest of E(T) by a pathPst of length pst

betweenut andus and a pathQst of lengthqst betweenvt andvs such thatpst andqst are odd andpst + qst ≡ 0
mod 4. Hence, they raised the following question.

Problem 1.2. Except from bad Thetas and Theta trees, is there any bipartite graph which is not2-detectable?

We partially answer to this question by showing (Theorem 3.1) that every bipartite graph with minimum
degree at least 3 is 2-detectable. In particular, every cubic bipartite graph is 2-detectable.

We then restrict our attention to cubic graphs. For such graphs, by Brooks’ theorem, ifG 6=K4, thenχ(G)≤ 3,
and hence by the result of Addario-Berry, Aldred, Dalal and Reed thatdet(G)≤ 3. In [6], Escuadro, Okamoto and
Zhang observed for some cubic graphs that:det(K4) = 3; det(K3,3) = 2, whereKr,s is the complete bipartite graph
with partite sizesr ands; det(C3�K2) = 3, det(C4�K2) = 2, det(C5�K2) = 3 and ifn ≥ 6 is an integer, then
det(Cn�K2) = 2, where� denotes the Cartesian product, andCn denotes the cycle of lengthn. We then exhibit
some infinite families of cubic graphs with detection number3. This allow us to characterize all cubic graphs up
to ten vertices according to their detection number.

2 NP-completeness for cubic graphs

The aim of this section is to prove the following theorem.

RR n° 8115



4 F. Havet, N. Paramaguru, R. Sampathkumar

Theorem 2.1. The following problem is NP-complete.
Input: A cubic graph G.
Question: Is G 2-detectable?

The proof of this theorem is a reduction from NOT-ALL -EQUAL 3SAT, which is defined as follows:
Input: A set of clauses each having three literals.
Question: Does there exists asuitabletruth assignment, that is such that each clause has at least one true and at
least one false literal?

This problem was shown NP-complete by Schaefer [10].
In order to construct gadgets and proceed with the reduction, we need some preliminaries.
Thehalter is the graph depicted Figure 1. The verticesa andb are theendsof the halter, and the edgesaa′

andbb′ are itsreins.

u

b

v

a b′a′

Figure 1: The halter

Lemma 2.2. If a halter is a subgraph of a cubic graph G and if G has a detectable 2-coloring, then the edges of
the halter are colored as shown in Figure 2.

(b)(a)

Figure 2: The two possible colorings of a halter (Bold edges are colored 1 and dashed edges are colored 2.)

Proof. Let c be a detectable 2-coloring ofG. Without loss of generality assume thatc(uv) = 1.
If c(ua′) = c(va′) = c(ub′) = c(vb′), thencode(u) = code(v), a contradiction.
Out of the four edgesua′, va′, ub′ andvb′, assume that exactly three are of same color. By symmetry, assume

that c(va′) = c(ub′) = c(vb′). Supposec(ua′) = 1. If c(aa′) = 1, then code(a′) = code(u), a contradiction; if
c(aa′) = 2, thencode(a′) = code(v), a contradiction. Hence,c(ua′) = 2. If c(bb′) = 1, thencode(b′) = code(v),
a contradiction; ifc(bb′) = 2, thencode(b′) = code(u), a contradiction.

Consequently, among the four edgesua′, va′, ub′, andvb′, two are of color 1 and the remaining two are of
color 2.

If c(ua′) 6= c(ub′) andc(va′) 6= c(vb′), thencode(u) = code(v), a contradiction.
By symmetry, assume thatc(ua′) = c(ub′). Soc(va′) = c(vb′) andc(ua′) 6= c(va′). Assume without loss of

generality thatc(ua′) = 1. Sincecode(v) = (1,2), c(aa′) = c(bb′) = 1. Consequently, we havec(aa′) = c(ua′) =
c(uv) = c(ub′) = c(bb′) = 1 andc(va′) = c(vb′) = 2. See Figure 2 (a).

Similarly, if c(uv) = 2, then we havec(aa′) = c(ua′) = c(uv) = c(ub′) = c(bb′) = 2 andc(va′) = c(vb′) = 1.
See Figure 2 (b).

INRIA



Detection number of bipartite graphs and cubic graphs 5

Lemma 2.3. Let G be a cubic graph. If a vertex x is the end of two halters in G, then in any detectable2-coloring
of G, x has code(3,0) or (0,3).

Proof. Assume for a contradiction, that the code ofx is neither(3,0) nor (0,3). By symmetry, we may assume
thatx has code(2,1). Thereforex is incident to two edges colored 1 and thus at least one of the rein e incident to
it is colored 1. Therefore by Lemma 2.2, the neighbor ofx throughe has code(2,1), a contradiction.

Proof of Theorem 2.1.Let C be a collection of clauses of size three over a setU of variables. We construct a cubic
graphG= G(C ,U) as follows.

For every clauseC∈ C , we create a vertexv(C).
For every variableu ∈ U, let Cu be the set of clauses in which one of the two literalsu andū appears. We

construct avariable gadgetassociated tou, by considering a cycle on the|Cu| vertices{p(u,C) | C ∈ Cu} and
replacing each edgeabof this cycle by a halter with endsa andb.

Now for each variableu and clauseC∈ Cu, we connectv(C) andp(u,C) with an edge if the literalu appears
in C, and with thenegation gadgetdepicted Figure 3 if the literal ¯u appears inC.

Clearly, the resulting graphG is cubic. Let us now prove thatG is 2-detectable if and only ifC admits a
suitable assignment.

Suppose first thatG admits a detectable 2-coloring. Let us establish few claims. The first one follows directly
from Lemmas 2.2 and 2.3.

Claim 1. In the variable gadget of every variable u, all the p(u,C) have the same code, which is either(3,0) or
(0,3).

Claim 2. In every negation gadget for(u,C), we have{code(p(u,C)), code(p(ū,C))} = {(3,0),(0,3)}.

Proof. By Lemma 2.3,p(u,C) has code(3,0) or (0,3). Without loss of generality, we may assume thatcode(p(u,C))=
(3,0). Then by successive applications of Lemmas 2.2 and 2.3, all the pi(u,C), 0 ≤ i ≤ 5, and all thep′i(u,C),
1≤ i ≤ 5, have code(3,0). Hence the edgesp4(u,C)q(u,C) andp5(u,C)q(u,C) are both colored 1. Henceq(u,C)
has code(2,1) and so the reins of the halter with endsq(u,C) andp(ū,C) are colored 2, by Lemma 2.2. Similarly,
one shows that the reins of the halter with endsq′(u,C) andp(ū,C) are colored 2. Hence by Lemma 2.3, the code
of p(ū,C) is (0,3).

Claim 3. For every clause C, the three neighbours of v(C) do not have the same code.

Proof. By construction, the neighbours ofv(C) are all ends of two halters, and so have code in{(3,0),(0,3} by
Lemma 2.3. Assume for a contradiction, that they all have thesame code, say(3,0), then the three edges incident
to v(C) are colored 1 and the code ofv(C) is also(3,0), a contradiction.

With these claims in hand, we can now prove thatC admits a suitable assignment. Letφ be the truth as-
signment defined byφ(u) = true if all the p(u,C) of its variable gadget have code(3,0), andφ(u) = f alse if all
the p(u,C) of its variable gadget have code(0,3). This assignment is well-defined because of Claim 1. Now by
Claim 2, for any negated literal ¯u in a clauseC, p(ū,C) has code(3,0) if φ(ū) = trueandp(ū,C) has code(0,3) if
φ(ū) = f alse. Now, by Claim 3 the three neighbours ofv(C), which corresponds to the three literals ofC do not
have the same code. This implies that the corresponding literals do not have the same value. Therefore the truth
assignmentφ is suitable.

Conversely, suppose thatC admits a suitable truth assignmentφ. For each variableu, color the edges incident
to eachp(u,C) with 1 if φ(u) = trueand with 2 ifφ(u) = f alse. Similarly, color the edges incident top(ū,C) with
1 if φ(ū) = true and with 2 ifφ(ū) = f alse. It can easily be seen that such a coloring extends using the colorings
of halter shown in Figure 2 to variable and negation gadgets,so that no two adjacent vertices in these gadget have
the same code. It remains to show that every vertexv(C) has a code distinct from its neighbours. But sinceφwas

RR n° 8115
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p(u,C)

p1(u,C)

p2(u,C)

p3(u,C)

v(C)

p4(u,C)

p(ū,C)

q(u,C)

q′(u,C)

p0(u,C)

p′2(u,C)

p′1(u,C)

p′3(u,C) p′5(u,C)

p5(u,C)

p′4(u,C)

Figure 3: The negation gadget
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suitable, at least one literal is false so the edge betweenv(C) and the vertex corresponding to this literal is colored
2, and at least one literal is true so the edge betweenv(C) and the vertex corresponding to this literal is colored 1.

This implies that the code ofv(C) is in {(2,1),(1,2)}. But in our coloring the code of the neighbours ofv(C) are
either(3,0) or (0,3). Hence we have a detectable 2-coloring.

3 Bipartite graphs

In this section, our aim is to prove the following theorem.

Theorem 3.1. Every bipartite graph with minimum degree at least3 is 2-detectable.

If any one of the parts of the bipartite graph have even numberof vertices, Theorem 3.1 is an immediate
consequence of Theorem 3.3 of [8]. For sake of completeness,we give its proof here.

Theorem 3.2(Khatirinejad et al. [8]). If G = ((A,B),E) is a connected bipartite graph with|B| even, then G
admits an edge labelling c: E(G) → {1,2} such that every vertex in A is incident to an even number of edges
labelled1 and every vertex in B is incident to an odd number of edges labelled 1. In particular, det(G) = 2.

Proof. SetB = {b1,b2, . . . ,b2p}. For everyi, 1≤ i ≤ p, let Pi be a path joiningb2i−1 to b2i.

We start with all edges labelled 2. Then, for eachi, 1≤ i ≤ p, one after antoher, we exchange the labels along
Pi . Hence at the end of this process, every vertex ofA is incident to an even number of edges labelled 1 and every
vertex inB is incident to an odd number of edges labelled 1.

To complete the proof of Theorem 3.1, we need some preliminaries.
Let G be a graph. Theclosed neighborhoodof vertexv is the setN[v] := N(v)∪{v}. For a setSof vertices,

we setN(S) :=
⋃

s∈S
N(s) andN[S] :=

⋃

s∈S
N[s]; andG[S] denotes the subgraph induced byS. Two verticesx andy

aretwins if N(x) = N(y).

Lemma 3.3. Let G= ((A,B),E) be a connected bipartite graph. Then there exists a nonemptyset of twins S such
that G−N[S] is connected.

Proof. If for some vertexv of G, G−N[v] is connected, then we have the result withS= {v}. So assume that for
every vertexv of G, G−N[v] is not connected. Let us choose a vertexv of G such thatG−N[v] has a component
of largest possible size. Moreover, we choosev with largest possible degree among such vertices. Without loss of
generality assume thatv ∈ A.

By assumption,G−N[v] is not connected and letC be the vertex set of a component ofG−N[v] of largest size.
Then every vertexu in N(v) is adjacent to a vertex inC, for otherwiseN[C] is included in a component ofG−N[u],
which contradicts our choice ofv since|E(G[N[C]])| > |E(G[C])| asG is connected. HenceN[C] = C∪N(v).

SetS= (V(G)\N[C]) ∩ A. Let w be a vertex inS\{v}. ThenN(v)⊆ N(w), for otherwiseN(v)\N(w) would
be nonempty and in the same component asG[C] in G−N[w], contradicting our choice ofv. Hence,G[C] is a
component ofG−N[w], and so by our choice ofv, d(v)≥ d(w). ThusN(v) = N(w), that isw andv are twins.

ThereforeS is a set of twins andG−N[S] is the componentG[C].

Proof of Theorem 3.1.It is clearly enough to prove it for connected graphs. LetG = ((A,B),E) be a connected
bipartite graph with minimum degree at least 3.

If |B| is even, then we have the result by Theorem 3.2. Symmetrically, we have the result if|A| is even. Thus
we may assume that|A| and|B| are odd.

By Lemma 3.3, there is a setS of twins such thatG−N[S] is connected. Free to renameA andB, we may
assume thatS⊆ A. Setk := |N(S)|. If k is odd, then setH := G−N[S] andX := N[S]. If k is even, letu be a vertex

RR n° 8115
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x

x′

y

y′

z

z′

b

bb

bb

b

Figure 4: The graphI ′

in N[S] which is adjacent to a vertext in G−N[S]; then letH be the graph obtained fromG−N[S] by adding the
vertexu and the edgeut, and setX := N[S]\ {u}.

In both cases,H is bipartite andV(H)∩B is B\X so has even size. Therefore, by Theorem 3.2,H admits an
edge labellingc : E(H)→ {1,2} such that every vertex inA\S is incident to an even number of edges labelled 1
and every vertex inB\X is incident to an odd number of edges labelled 1. Observe moreover that, whenk is even,
the edgeut is necessarily labelled 1.

Pick a vertexv∈ Sand extendc by labelling 1 to all the edges fromv to X and all remaining edges incident to
a vertex inN[S] with 2. Then, for every vertexb in B\N[S], codec(b) = (α,dG(b)−α), α ≡ 1 mod 2, for every
vertexa in A\{v}, codec(a) = (β,dG(a)−β), β≡ 0 mod 2, for every vertexx in N(S), codec(x) = (1,dG(x)−1),
andcodec(v) equals(k,0) if k is odd and equals(k−1,1) if k is even. Hencec is a detectable 2-coloring because
k≥ 3.

4 Cubic graphs with detection number 3

In this section, our aim is to exhibit some infinite families of cubic graphs with detection number 3.
First, suppose there is aK3, sayI , in G. LetV(I) = {x,y,z}.SoE(I) = {xy,yz,zx}. Letx′, y′, z′ be, respectively,

the neighbors ofx, y, znot belonging toI in G. Assume thatx′ 6= y′, y′ 6= z′ andz′ 6= x′. Define subgraphI ′ byV(I ′)
= V(I) ∪ {x,y,z} andE(I ′) = E(I) ∪ {xx′,yy′,zz′}. See Figure 4.

Lemma 4.1. If I ′ is a subgraph of a cubic graph G and if G has a detectable2-coloring, then the edges of I receive
both the colors and{code(x),code(y),code(z)} is either{(3,0),(2,1),(1,2)} or {(0,3),(2,1),(1,2)}.

Proof. Let c be a detectable 2-coloring ofG. Supposec(xy) = c(yz) = c(zx) = 1. (The other possibility is similar.)
Out of the three edgesxx′, yy′, zz′, at least two are of same color. Without loss of generality assume thatc(xx′) =
c(yy′). Thencode(x) = code(y), a contradiction.

Among the three edgesxy, yz andzx, if color 1 appears twice, then{code(x), code(y), code(z)} = {(3,0),
(2,1), (1,2)}; if color 2 appears twice, then{code(x), code(y), code(z)} = {(0,3), (2,1), (1,2)}; see Figure 5 (a)
and (b).

Let M be a subgraph of a cubic graphG with edgesv1v2, v2v3, v3v4, v4v5, v5v6, v6v7, v7v8, v2v4, v5v7 and
v3v6. See Figure 6.

Lemma 4.2. If M is a subgraph of a cubic graph G and if G has a detectable2-coloring, then the edges of M
receive colors shown in any one of the Figure 7.

INRIA
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(a)

b

bb

bb

b

(3,0)

(2,1)(1,2)

(b)

b

bb

bb

b

(0,3)

(1,2)(2,1)

Figure 5: Possible colorings ofI ′

v8v1 v2 v3 v4 v5 v6 v7

Figure 6: The graphM

v8

v1 v2 v3 v4 v5 v6 v7 v8

v1 v2 v3 v4 v5 v6 v7 v8

v1 v2 v3 v4 v5 v6 v7 v8

v1 v2 v3 v4 v5 v6 v7

Figure 7: Possible colorings ofM
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Proof. Let c be a detectable 2-coloring ofG. Without loss of generality assume thatc(v4v5) = 1. If c(v2v4) 6=

c(v3v4) andc(v5v6) 6= c(v5v7), thencode(v4) = code(v5), a contradiction. Hence, eitherc(v2v4) = c(v3v4) or
c(v5v6) = c(v5v7). Assume by symmetry thatc(v2v4) = c(v3v4).

Supposec(v2v4) = 2. Since{v2,v3,v4} is a triangle,c(v2v3) = 1. Sincecode(v4) = (1,2), c(v3v6) = 1. Now
code(v3) = (2,1) andcode(v2) is neither(3,0) nor (0,3), a contradiction to Lemma 4.1. Hence,c(v2v4) = 1.

By Lemma 4.1,c(v2v3) = 2. code(v4) = (3,0) and{v2,v3,v4} is a triangle implies that{code(v2), code(v3)}

= {(1,2), (2,1)}.
Case 1. code(v2) = (1,2) andcode(v3) = (2,1).

Thenc(v1v2) = 2 andc(v3v6) = 1. We claim thatc(v5v6) = 1. Otherwise,c(v5v6) = 2.
Supposec(v5v7) = 2. Since{v5,v6,v7} is a triangle,c(v6v7) = 1. Socode(v6) = code(v3), a contradiction.
Supposec(v5v7) = 1. If c(v6v7) = 1, thencode(v6) = code(v5), a contradiction. Ifc(v6v7) = 2, then since

{code(v5), code(v6)} = {(2,1), (1,2)} andcode(v7) is neither(3,0) nor (0,3), we have a contradiction.
Hence the claim is true. Thenc(v5v7) = 2. Consequently,c(v6v7) = 1 and therefore,c(v7v8) = 2.

Case 2. code(v2) = (2,1) andcode(v3) = (1,2).
Thenc(v1v2) = 1 andc(v3v6) = 2.
Supposec(v5v6) = c(v5v7) = 1. Thencode(v5) = code(v4), a contradiction.
Supposec(v5v6) = c(v5v7) = 2. Then, since{v5,v6,v7} is a triangle,c(v6v7) = 1. Now code(v5) = code(v6),

a contradiction.
Supposec(v5v6) = 1 andc(v5v7) = 2. If c(v6v7) = 1, thencode(v5) = code(v6), a contradiction; ifc(v6v7)

= 2, thencode(v3) = code(v6), again a contradiction.
Hence,c(v5v6) = 2 andc(v5v7) = 1. Supposec(v6v7) = 1, thencode(v6) = code(v3), a contradiction, and

hencec(v6v7) = 2. Supposec(v7v8) = 1, thencode(v5) = code(v7), a contradiction, and thusc(v7v8) = 2.
In conclusion, we have only two possibilities forc(v4v5) = 1.

(i) c(v3v4) = c(v4v5) = c(v5v6) = c(v6v7) = c(v2v4) = c(v3v6) = 1 andc(v1v2) = c(v2v3) = c(v7v8) = c(v5v7) =

2. (Note thatcode(v2) = code(v7) = (1,2).) See Figure 7 (a).
(ii) c(v1v2) = c(v3v4) = c(v4v5) = c(v2v4) = c(v5v7) = 1 andc(v2v3) = c(v5v6) = c(v6v7) = c(v7v8) = c(v3v6)

= 2. (Observe thatcode(v2) = (2,1) andcode(v7) = (1,2).) See Figure 7 (b).
If c(v4v5) = 2, then we have:

(i) c(v3v4) = c(v4v5) = c(v5v6) = c(v6v7) = c(v2v4) = c(v3v6) = 2 andc(v1v2) = c(v2v3) = c(v7v8) = c(v5v7) =

1. (code(v2) = code(v7) = (2,1).) See Figure 7 (c).
(ii) c(v1v2) = c(v3v4) = c(v4v5) = c(v2v4) = c(v5v7) = 2 andc(v2v3) = c(v5v6) = c(v6v7) = c(v7v8) = c(v3v6)

= 1. (code(v2) = (1,2) andcode(v7) = (2,1).) See Figure 7 (d).
In all the four possibilities:c(v1v2) = 1 ⇒ code(v2) = (2,1); c(v7v8) = 1 ⇒ code(v7) = (2,1); c(v1v2) = 2

⇒ code(v2) = (1,2); c(v7v8) = 2 ⇒ code(v7) = (1,2).

DefineN1 by V(N1) = {vi : i ∈ {1, . . . ,10}} andE(N1) = {vivi+1 : i ∈ {1, . . . ,9}} ∪ {v2v4, v3v5, v6v8,

v7v9}; N2 by V(N2) = {vi : i ∈ {1, . . . ,12}} andE(N2) = {vivi+1 : i ∈ {1, . . . ,11}} ∪ {v2v4, v3v5, v6v8, v7v10,

v9v11}; andN3 by V(N3) = {vi : i ∈ {1, . . . ,14}} andE(N3) = {vivi+1 : i ∈ {1, . . . ,13}} ∪ {v2v4, v3v6, v5v7,

v8v10, v9v12, v11v13}. See Figure 8.
DefineN4 by V(N4) = {vi : i ∈ {1, . . . ,8}} andE(N4) = {vivi+1 : i ∈ {1, . . . ,7}} ∪ {v2v7, v3v5, v4v6}. See

Figure 9.

Theorem 4.3. If a cubic graph G contains Ni for some i∈ {1,2,3,4}, then det(G) = 3.

Proof. SupposeG has a detectable 2-coloringc.
Case 1. i= 1.

If c(v5v6) = 1, then by Lemma 2.2code(v5) = code(v6) = (2,1), a contradiction. Ifc(v5v6) = 2, then by
Lemma 2.2code(v5) = code(v6) = (1,2), again a contradiction.
Case 2. i= 2.
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b b b b b b b b b b bb b b

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

N3

b b b b b b b b b bb b

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

b b b b b b b bb b

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

N1

N2

Figure 8: The graphsN1, N2 andN3

b b b b b b b b
v2 v3 v4 v5 v6 v7v1 v8

Figure 9: The graphN4
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If c(v5v6) = 1, then by Lemma 2.2code(v5) = (2,1) and by Lemma 4.2code(v6) = (2,1), a contradiction.
If c(v5v6) = 2, then by Lemma 2.2code(v5) = (1,2) and by Lemma 4.2code(v6) = (1,2), again a contradiction.
Case 3. i= 3.

If c(v7v8) = 1, then by Lemma 4.2code(v7) = code(v8) = (2,1), a contradiction. Ifc(v7v8) = 2, then by
Lemma 4.2code(v7) = code(v8) = (1,2), again a contradiction.
Case 4. i= 4.

Without loss of generality assume, by Lemma 2.2, thatcode(v3) = code(v6) = (2,1). Thenc(v2v3) = c(v6v7)

= 1.
If c(v2v7) = 1, thenc(v1v2) = c(v7v8) = 1, and hencecode(v2) = code(v7), a contradiction.
If c(v2v7) = 2, thenc(v1v2) = c(v7v8) = 2, and hencecode(v2) = code(v7), again a contradiction.

Theorem 4.4. Let w1w2 be an edge of a connected cubic graph G. Suppose G−{w1,w2} contains four disjoint
subgraphs J1, J2, J3, J4, where Ji ∈ {K4−e,M−{v1,v8}} for i ∈ {1,2,3,4}, and if w1 is adjacent to a2 degree
vertex z1 of J1 and a2 degree vertex z2 of J2, and w2 is adjacent to a2 degree vertex z3 of J3 and a2 degree vertex
z4 of J4, in G, then det(G) = 3.

Proof. SupposeG has a detectable 2-coloringc.
If c(w1z1) = c(w1z2) = c(w2z3) = c(w2z4), thencode(w1) = code(w2), a contradiction.
If c(w1z1) 6= c(w1z2), thencode(w1) /∈ {(1,2),(2,1)} by Lemmas 2.2 and 4.2, we have a contradiction to

c(w1w2). Similarly, if c(w2z3) 6= c(w2z4), thencode(w2) /∈ {(1,2),(2,1)}, again a contradiction toc(w1w2).

Hence,c(w1z1) = c(w1z2), say, 1 andc(w2z3) = c(w2z4) = 2. Note thatcode(w1) 6= (2,1) andcode(w2) 6=

(1,2), again a contradiction toc(w1w2).

Hence,det(G) 6= 2.

Now we construct a family of cubic graphsLn, n≥ 2, with det(Ln) = 3 as follows: Begin withC5n, the cycle
of length 5n, say,v0v1v2 . . . v5n−1v0; add chords of distance 2, v5r+1v5r+3 andv5r+2v5r+4 for r ∈ {0,1,2, . . . ,n−1}.
If n is even, pair the vertices in{v0,v5,v10, . . . ,v5n−5} in any order and join these pairs as edges; ifn is odd, except
three vertices in{v0,v5,v10, . . . ,v5n−5}, pair the remaining vertices in any order and join these pairsas edges and
add a new vertexv and joinv to the omitted three vertices.

By Theorem 4.3 withi = 4 and Theorem 4.4, forn ≥ 4, det(Ln) = 3. We have to consider the casesn = 3
andn = 2. For n = 3, supposeL3 has a detectable 2-coloringc. Consider the claw with centerv and endsv0, v5,

v10.

For ℓ ∈ {0,1,2}, if c(v5ℓv5ℓ−1) 6= c(v5ℓv5ℓ+1), thencode(v5ℓ) /∈ {(1,2),(2,1)}, a contradiction toc(v5ℓv).
Hence, for everyℓ ∈ {0,1,2}, c(v5ℓv5ℓ−1) = c(v5ℓv5ℓ+1).

Let ℓ ∈ {0,1,2}. If c(v5ℓv5ℓ−1) = c(v5ℓv5ℓ+1) = 1, then code(v5ℓ) 6= (2,1) implies thatc(v5ℓv) = 1; if
c(v5ℓv5ℓ−1) = c(v5ℓv5ℓ+1) = 2, thencode(v5ℓ) 6= (1,2) implies thatc(v5ℓv) = 2.

Sincec(v0v1) = c(v4v5), c(v5v6) = c(v9v10), c(v10v11) = c(v14v0), we havec(v0v1) = c(v4v5) = c(v5v6) =

c(v9v10) = c(v10v11) = c(v14v0) = c(v0v) = c(v5v) = c(v10v). Consequently,code(v0) = code(v5) = code(v10) =

code(v), a contradiction.
Hence,det(L3) = 3.
Similarly, one can verify thatdet(L2) = 3. Thus we have

Theorem 4.5. For each n, there exists a cubic graph of order5n satisfying det(G) = 3.

There are 5 nonisomorphic cubic graphs on 8 vertices [9]. It is known thatdet(C4�K2) = 2, see [6]. In the
remaining four graphs, exactly two have detection number 3, and they are shown in Figure 10. Similar to the proof
of Theorem 4.3 withi = 1, the graph in Figure 10 (a) has detection number 3. By ad hoc arguments one can check
that the graph in Figure 10 (b) has detection number 3.

There are 19 nonisomorphic cubic graphs on 10 vertices [9]. Out of these, exactly 6 have detection number 3.
It is known thatdet(C5�K2) = 3, see [6]. The remaining 5 graphs are shown in Figure 11. The graph in Figure 11
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(a) (b)

Figure 10: Cubic graphs on eight vertices with detection number 3.

(a) isL2. For the graph in Figure 11 (b) detection number 3 follows fromthe proof of Theorem 4.3 withi = 2. For
the graphs in Figure 11 (c), (d) and (e) detection number 3 follows by ad hoc arguments.
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Figure 11: Cubic graphs on 10 vertices with detection number3
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