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Abstract: We propose a logic and a deductive system for stating and automatically proving the
equivalence of programs written in deterministic languages having a rewriting-based operational
semantics. The chosen equivalence is parametric in a so-called observation relation, and it says that
two programs satisfying the observation relation will inevitably be, in the future, in the observation
relation again. This notion of equivalence generalises several well-known equivalences, and is shown
to be appropriate for deterministic programs. The deductive system is circular in nature and is
proved sound and weakly complete; together, these results say that, when it terminates, our system
correctly solves the given program-equivalence problem. We show that our approach is suitable
for proving equivalence for terminating and non-terminating programs as well as for concrete and
symbolic programs. The latter are programs in which some statements or expressions are symbolic
variables. By proving the equivalence between symbolic programs, one proves the equivalence of
(infinitely) many concrete programs obtained by replacing the variables by concrete statements or
expressions. The approach is illustrated by proving program equivalence in two languages from
different programming paradigms. The examples in the paper, as well as other examples, can be
checked using an online tool.
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Résumé : Nous proposons une logique et un système déductif pour exprimer et prouver
automatiquement l’équivalence de programmes dans des langages déterministes munis de sé-
mantiques opérationnelles définies par réécriture. Le système déductif proposé est de nature
circulaire; nous démontrons qu’il est correct et faiblement complet. Ces deux résultats sig-
nifient que, lorsqu’il termine, notre système résout correctement le problème d’équivalence de
programmes tels que nous l’avons posé. Nous montrons que ce système fonctionne autant pour
des programmes qui terminent que pour des programmes qui ne terminent pas. Les programmes
dits symboliques, dans lesquels certaines expressions ou instructions restent non-interprétés, peu-
vent également être traités par notre approche. La démonstration d’une équivalence entre deux
programmes symboliques revient à démontrer l’équivalence entre une infinité potentielle de pro-
grammes concrets, qui sont des instances des programmes symboliques obtenues en remplaçant les
variables symboliques par des instructions ou des expressions concrètes. L’approche est illustrée
par la preuve d’équivalence de programmes dans deux langages appartenant à des paradigmes
de programmation différents. Les exemples contenus dans l’article, ainsi que d’autres exemples,
peuvent être essayés dans un outil en ligne.

Mots-clés : Equivalence de programmes, Raisonnement circulaire, K framework



1 Introduction

In this paper we propose a formal notion of program equivalence, together with a language-
independent logic for expressing this notion and a deductive system for automatically proving it.
Programs can belong to any deterministic language whose semantics is specified by a set of rewrite
rules. The equivalence we consider is parametric in a certain observation relation, and it requires
that, for all programs satisfying the observation relation, their executions eventually lead them
into satisfying the observation relation again. The proof system is circular: its conclusions can
be re-used as hypotheses in a controlled way. Since the problem it tries to solve is undecidable,
our proof system is not guaranteed to terminate. When it does terminate, it solves the program-
equivalence problem as stated, thanks to its soundness and weak completeness properties.

The proposed framework is shown suitable for terminating and nonterminating programs as
well as for concrete and for symbolic programs. The latter are programs in which some expres-
sions and/or statements are symbolic variables, which denote sets of concrete programs obtained
by substituting the symbolic variables by concrete expressions and/or statements. Thus, by
proving the equivalence between symbolic programs, one proves in just one shot the equivalence
of (possibly, infinitely) many concrete programs.

Example 1.1 We want to translate general programs with for-loops into programs with while-
loops. This amounts to translating the symbolic program in the left-hand side to the one in the
right-hand side.

for I from A to B do{ S } I = A ;while I <= B do { S ; I = I + 1 }

Their symbolic variables I; A;B; S can be matched by, respectively, any identifier (I), arithmetical
expressions (A;B), and program statement (S). We assume that the for-loop and while-loop
statements have independent semantics (i.e., the for instruction is not desugared into to a while
instruction) and the for loop does not modify the counter I, nor any program variables occurring
in A;B (note that program variables are identifiers). If we prove the equivalence between these two
symbolic programs then we also prove that every concrete instance of the for-loop is equivalent
to its translation to the corresponding while-loop.

Example 1.2 The second example illustrates the equivalence of non-terminating corecursive pro-
grams. Such programs are similar to recursive programs, but their terminating condition is miss-
ing, and therefore they describe non-terminating computations. Here we consider corecursive
programs over infinite sequences of integers (also called streams). Such a program is expressed
using a set of equations; for each equation, the left-hand side is the name of a function being
defined, possibly with parameters, and the right-hand side is the function’s body. Let us consider
the corecursive program consisting of the following equations:

hd( x : xs ) � x ; tl( x : xs ) � xs ;

zero � 0 : zero; one � 0 : one;

blink � 0 : 1 : blink; zip( xs , ys ) � hd( xs ) : zip( ys , tl( xs ));

where x ranges over integers and xs over streams. Obviously, the complete evaluation of zero
produces the infinite sequence 0 : 0 : 0 : : : :, and the evaluation of one produces the infinite
sequence 1 : 1 : 1 : : : :, blink produces the infinite sequence 0 : 1 : 0 : 1 : : : :, and zip( xs; ys )
produces a stream that alternates the elements of the two streams given to it as parameters. The
function hd( xs ) returns the first element of the stream xs (this is the only function in the
languge that does not produce a stream), and tl( xs ) returns the stream obtained from xs
after removing the first element. A well-known equivalence over streams is that of blink and



zip(zero,one) and many proofs of it can be found in the literature. We use this example to show
that our notion of equivalence is general enough for being applicable to terminating programs as
well as to non-terminating ones. The example also serves to illustrate the language-genericity of
our approach.

Hereafter we often refer to symbolic programs just as "programs". A typical use of our framework
consists in:

1. formally defining a programming language L, whose concrete programs are ground terms
over a certain signature defining the language’s syntax, and whose symbolic programs are
terms with variables over that signature. The operational semantics of L is assumed given
as a conditional term-rewriting system;

2. automatically constructing a new language definition L � L, whose programs are pairs of
programs of L1;

3. applying our deductive system to programs in L � L.

Running the deductive system amounts essentially to symbolically executing the semantics of
L � L, which consists in applying the rewrite rules in the semantics with unification instead of
matching; details are given in the paper. This may lead to one of the following outcomes:

• termination with success, in which case the programs given as input to the deductive system
are equivalent, due to the deductive system’s soundness;

• termination with failure, in which case the programs given as input to the deductive system
are not equivalent, due to the system’s weak completeness;

• non-termination, in which case nothing can be concluded about equivalence.

Non-termination is inherent in any sound automatic system for proving program equivalence,
because the equivalence problem is undecidable. We show, however, that our system termi-
nates when the programs given to it as inputs terminate, and also when they do not terminate
but behave in a certain regular way (by infinitely repeating so-called observationally equivalent
configurations).

Contributions A language-independent logic and a proof system suitable for stating and
proving the equivalence of concrete and of symbolic programs as well as of terminating and
non-terminating ones. Programs can be written in any deterministic language that has a formal
operational semantics based on term rewriting. We prove the soundness and weak complete-
ness of the proof system, which ensure that the system correctly solves the program equivalence
problem as stated. The approach is illustrated on two different languages. The examples in
the paper, as well as and other examples, can be tried using an online tool, currently available
at http://fmse.info.uaic.ro/tools/K/?tree=examples/prog-equiv/README.

With respect to the conference paper [1]: the equivalence relation is reformulated in terms
of a Linear Temporal Logic (LTL) formula, and the soundness/weak completeness proofs are
simpler, thanks to an encoding of executions of our proof system as the building of proofs for the

1We have developped the approach for the equivalence of programs belonging to one language L for simplicity
reasons. However, considering two languages L and L0 poses no conceptual difficulty and can even be reduced to
the one-language case. Indeed, any program in language L and any program in language L0 are also programs in
the language L ] L0, i.e, in the disjoint union of the two languages. This union obtained by (possibly) renaming
some common language constructions to avoid ambiguity.

http://fmse.info.uaic.ro/tools/K/?tree=examples/prog-equiv/README


LTL formulas in question. The genericity of the approach is illustrated by considering programs
in two different programming paradigms.

We also generalise (for the needs of the program-equivalence approach) a generic symbolic
execution technique introduced in [2]: by executing semantical rules with unification instead of
matching we also allow, e.g., the symbolic execution of symbolic statements in addition to the
symbolic data considered in [2].

Related Work An exhaustive bibliography on the program-equivalence problem is outside
the scope of this paper, as this problem is even older than the program-verification problem.
Among the recent works perhaps the closest to ours is [3]. They also deal with the equivalence of
parameterised programs (symbolic, in our terminology) and define equivalence in terms of bisim-
ulation. Their approach is, however, very different from ours. One major difference lies in the
models of programs: [3] use CFGs (control flow graphs) of programs, while we use the operational
semantics of languages. CFGs are more restricted, e.g., they are not well adapted to recursive
or object-oriented programs, whereas operational semantics do not have these limitations. Of
course, our advantage will only become apparent when we actually apply our approach to such
programs.

Other closely related recent works are [4, 5, 6]. The first one targets programs that include
recursive procedures, the second one exploits similarities between single-threaded programs in
order to prove their equivalence, and the third one extends the latter to multi-threaded programs.
They use operational semantics (of a specific language, which focuses on recursive procedure
definition) and proof systems, and formally prove their proof system’s soundness. In [4] they
make a useful classification of equivalence relations used in program-equivalence research, and
use these relations in their work.

However, all the relations classified in [4] are of an input/output nature: for given (sequences
of) inputs, programs generate equal (sequences of) outputs and/or do not terminate. Such re-
lations are well adapted for concrete programs with inputs and outputs, but not to symbolic
programs with symbolic statements, for which a clear input-output relation may not exist. In-
deed, symbolic statements may denote arbitrary concrete statements - including ones that do not
perform input/output - actually, when symbolic programs are concerned, one cannot even rely
on the existence of inputs and outputs. One may rely, however, on the observations of the effects
of symbolic statements on the program’s environment (e.g., values of variables). Our notion of
equivalence (parameterised by a certain observation relation) allows this, both for finitely and
for infinitely many repeated observations. Moreover, we also show that some of the relations
from [4] can be encoded in our relation by adding information to the program environment.

Many works on program equivalence arise from the verification of compilation in a broad
sense. At one end there is full compiler verification [7], and at the other end, the so-called
translation validation, i.e., the individual verification of each compilation [8] (we only cite two
of the most relevant recent works). As also observed by [3], symbolic program verification can
also be used for certain compilers, in which one proves the equivalence of each basic instruction
pattern from the source language with its translation in the target language. The application
of this observation to the verification of a compiler (from another project we are involved in) is
ongoing and will be presented in another paper.

Several other works have targeted specific classes of languages: functional [9], microcode [10],
CLP [11]. In order to be less language-specific some works advocate the use of intermediate
languages, such as [12], which works on the Boogie intermediate language. Only a few approaches,
among which [7, 10], deal with real-life language and industrial-size programs in those languages.
This is in contrast to the equivalence checking of hardware circuits, which has entered mainstream
industrial practice (see, e.g., [13] for a survey).



Our proof system is inspired by that of circular coinduction [14], which allows one to prove
equalities of data structures such as infinite streams and regular expressions. A notable difference
between the present approach and [14] is that our specifications are essentially rewrite systems
(meant to define the semantics of programming languages), whereas those of [14] are behavioural
equational theories, a special class of equational specifications with visible and hidden sorts.

Symbolic linear temporal-logic model checking in term-rewriting systems, which we here use
for proving program equivalence, was earlier studied in [15]. There are differences in expres-
siveness: we only use certain specific LTL formulas for encoding equivalence, whereas [15]
handle full LTL; on the other hand, they consider unconditional term-rewriting systems only,
whereas we also consider conditional term-rewriting systems. For our approach, which is based
on programming-language semantics, having conditional rewriting systems is essential since un-
conditional rules are not expressive enough to express nontrivial languages semantics. There
are also differences in the underlying deduction mechanisms: [15] rely on powerful unification-
modulo-theories algorithms, while our unification algorithm delegates deduction to satisfiability
modulo theory (SMT) solvers.

Organisation. After this introduction, Section 2.1 presents our running examples: imp, a
simple imperative language, and stream, a corecursive language for handling streams of integers.
Both languages are defined in K [16], a formal framework for defining operational semantics of
programming languages. Our approach is, however, independent of the K framework and the imp
language; hence, we present a general, abstract mechanism for language definitions in Section 3,
and show how K definitions are instances of that mechanism. In Section 4 we define a unification
operation and prove some properties about it, which are used in Section 5 where we present
a generic symbolic execution approach for languages defined in the proposed mechanism. We
formally relate symbolic execution to concrete execution, which we use later in the paper for
proving the correctness properties (soundness and weak completeness) of our proof system.

In Section 6 we recap linear-temporal logic (LTL). This is then used in Section 7, which
contains our proposed definition for program equivalence as the satisfiaction of certain LTL
formulas over an execution of the transition system generated by (concretely) executing a pair
of programs. The formula says that the programs will repeatedly satisfy a certain observation
relation; this relation is a parameter of the approach. The syntax and semantics of a logic
capturing the chosen equivalence are defined.

The proof system for proving equivalence formulas is presented in Section 8, together with
its soundness and weak completeness. The properties say that, when it terminates, the proof
system correctly answers to the question of whether its input (which is a set of formulas of
program-equivalence logic) denotes equivalent programs. Their proofs are based on building proof
witnesses for LTL formulas expressing equivalence. The witnesses are obtained by symbolically
executing the pair of programs under investigation.

In Section 9 we report on a prototype implementation of the proof system in the K frame-
work. This allows one to stay within the K environment when proving program equivalence for
languages also defined in K. Finally, the conclusion and future work are presented in Section 10.

Acknowledgments This work was partially supported by Contract 161/15.06.2010, SMISC-
SNR 602-12516.



2 Two Examples of Programming Languages and their Se-
mantics in K

We use two different languages as running examples: imp, a simple imperative language, and
stream, a language for manipulating integer streams. We present their formal definitions in the
K framework [16], a formal environment for defining programming languages, type systems, and
analysis tools. The main ingredients of a K definition are computations, configuration, and rules.
Computations are sequences of elementary computational tasks, which consist of e.g. adding two
numbers, or transforming the program being executed. A configuration is a nested structure of
cells that include all the data structures required for executing a program. The rules describe
how the configurations are modified when the computational tasks are performed. For details
on the theoretical background of K readers can consult [16].

K language definitions can be executed and analysed using tools from the K environment.
Examples of language definitions and related analysis tools can be found on the web page http:
//kframework.org.

2.1 imp - A Simple Imperative Language
The first language we are using as running example is imp, a simple imperative language in-
tensively used in research papers. A full K definition of it can be found in [16]. The syntax of
imp is described in Figure 1 and is mostly self-explained. The attribute (given as an annotation)
strict from the syntax means the arguments of the annotated expression/statement are evaluated
before the expression/statement itself is evaluated/executed. If the attribute has as arguments a
list of natural numbers, then only the arguments in positions specified by the list are evaluated
before the expression/statement. The strict attribute is actually syntactic sugar for a set of K
rules, briefly presented later in the section. The configuration of an imp program consists of
code to be executed and an enviroment mapping identifiers to integers. In K, this is written as a
nested structure of cells: here, a top cell cfg, having a cell k containing code and a cell env (see
Figure 3). The sort Code2 contains statements and arithmetic and Boolean expressions. The
empty code is denoted by �, and code sequencing is denoted by y. Note that this is different
from the sequencing operation ; of IMP.

The cell k includes the code to be executed, represented as a list of computation tasks
C1 y C2 y : : :, meaning that first C1 will be executed, then C2, etc. Computation tasks
are typically the evaluation of statements and elementary expressions. An example of sequence
of computations is given Figure 3b); this sequence is obtained by applying the heating rules
generated by the strict attribute for the statement if and the operator <. The heating/cooling
rules are explained latter. The cell env is an environment that binds the program variables to
values; such a binding is written as a multiset of bindings of the form, e.g., x 7! 3.

The semantics of imp is given by a set of rules (see Figure 2) that say how the configuration
evolves when the first computation task (statement or instruction) from the k cell is executed.
The dots in a cell mean that the rest of the cell remains unchanged. Except for the conjunction,
negation, and if statement, the semantics of each operator and statement is described by exactly
one rule.

In Figure 2, the operations lookup : Map � Id ! Int and update : Map � Id � Int ! Map
are part of the domain of maps and have the usual meanings: lookup returns the value of an
identifier in a map, and update modifies the map by adding (or, if it exists, by updating) the
binding of an identifier to a value.

2In the K terminology the sort Code is called K. We changed its name in order to avoid confusions due to
name overloading.

http://kframework.org
http://kframework.org


Int ::= domain of integer numbers (including operations)
Bool ::= domain of boolean constants (including operations)
Id ::= domain of identifiers
AExp ::=Int j Id

j AExp / AExp [strict]
j AExp * AExp [strict]
j AExp + AExp [strict]
j (AExp)

BExp ::=Bool
j AExp <= AExp [strict]
j not BExp [strict]
j BExp and BExp [strict(1)]

j (BExp)

Stmt ::= skip j Stmt ; Stmt
j Id = AExp
j if BExp then Stmt

else Stmt [strict(1)]

j { Stmt }

j while BExp do Stmt
j for Id from AExp to AExp

do Stmt [strict(2; 3)]

Code ::= Id j Int j Bool j AExp j BExp j Stmt j � j Code y Code

Figure 1: K Syntax of IMP

hhI1 + I2 ���ik ���icfg ) hhI1 +Int I2 ���ik ���icfg

hhI1 * I2 ���ik ���icfg ) hhI1 �Int I2 ���ik ���icfg

hhI1 / I2 ���ik ���icfg ^ I2 6= 0) hhI1=IntI2 ���ik ���icfg

hhI1 <= I2 ���ik ���icfg ) hhI1 �Int I2 ���ik ���icfg

hhtrue and B ���ik ���icfg ) hhB ���ik ���icfg

hhfalse and B ���ik ���icfg ) hhfalse ���ik ���icfg

hhnot true ���ik ���icfg ) hhfalse ���ik ���icfg

hhnot false ���ik ���icfg ) hhtrue ���ik ���icfg

hhskip ���ik ���icfg ) hh ���ik ���icfg

hhS1;S2 ���ik ���icfg ) hhS1 y S2 ���ik ���icfg

hh{ S } ���ik ���icfg ) hhS ���ik ���icfg

hhif true then S1 else S2 ���ik ���icfg ) hhS1 ���ik ���icfg

hhif false then S1 else S2 ���ik ���icfg ) hhS2 ���ik ���icfg

hhwhile B do S ���ik ���icfg )
hhif B then{ S ;while B do S }else skip ���ik ���icfg

hhfor X from I1 to I2 do S ���ik ���icfg )
hhX = I1 ;if X <= I2 then{ S ;for X from I1 +Int 1 to I2 do S } else skip ���ik ���icfg

hhX ���ikhEnvienv ���icfg ) hhlookup(Env ;X ) ���ikhEnvienv ���icfg

hhX = I ���ikhEnvienv ���icfg ) hh ���ikhupdate(Env ;X ; I )ienv ���icfg

Figure 2: K Semantics of IMP



Cfg ::= hhCodeikhMapienvicfg

*
hx y � < 0 y if ( � ) y = 0; else y = 1;ik
hx 7! 3 y 7! �7ienv

+
cfg

a) K Configuration of imp b) An imp configuration snapshot

Figure 3: imp
configurations.

In addition to the rules in Figure 2 there are rules induced by the strictness of some state-
ments. For example, the if statement is strict only in the first argument, meaning that this
argument is evaluated before the if statement. This amounts to the following heating/cooling
rules (automatically generated by K):

hhif BE then S1 else S2 ���ik ���icfg ) hhBE yif � then S1 else S2 ���ik ���icfg

hhB yif � then S1 else S2 ���ik ���icfg ) hhif B then S1 else S2 ���ik ���icfg

where BE ranges over BExpnffalse; trueg, B ranges over ffalse; trueg, and � is a special variable
destined to receive the value of BE once it is computed. Finally, the following rules, related to the
construction of terms of sort Code, complete de K definition of imp: for all C;C1; C2; C3 : Code:
hh�y Cik ���icfg ) hhCik ���icfg, and hh(C1 y C2) y C3ik ���icfg ) hhC1 y (C2 y C3)ik ���icfg. The
first one says that the empty sequence � is a left-neutral element, and the second one says that
y is right-associative.

2.2 stream - a Simple Language for Corecursive Programs

Corecursive programs differ from recursive ones by the fact that their termination condition is
missing. Besides functional languages, which typically use corecursion for handling infinite data
structures, several other languages have been extended to support such features (see, e.g., [17] for
an extension of Prolog, and [18] for an extension of Java). An example of a corecursive program
was given in Section 1. Here we present a simple language for writing such programs over integer
streams (= infinite sequence of integers). The standard semantics for corecursive functions is
based on lazy evaluation, which delays the evaluation of expressions until their value is needed.
For infinite expressions this evaluation is always partial, in the sense that only a finite part of
the infinite expression is evaluated, e.g., a finite prefix of an infinite stream.

Therefore, we say that a stream expression is a result value if it is of the form i : SE , where
the integer i is the first element of the stream and SE is the rest of the stream expression. Beside
the constructor _:_, two functions, often called destructors, are essential in handling streams:
hd( xs ), which returns the first element of the stream, and tl( xs ), which returns the stream
obtained after the first element is removed.

The syntax of the stream language is given in Figure 4. There are three expression kinds:
BEXp - for boolean expressions, IEXp - integer expressions, and SExp - stream expressions. The
operator X / B . Y is the conditional operator if B then X else Y written in a Hoare-like
syntax, which is more compact. There are two kinds of statements (specifications SSpec): integer
function specifications, written as f := : : : or f(: : :) := : : : (these are usual, recursive functions),
and stream specifications, written as s � : : : or s(: : :) � : : : (these are corecursive functions)

A stream program is a sequence of function specifications, followed by an expression to be
evaluated. The K configuration for stream programs is represented in Figure 5. As the snapshot
suggests, the cell specs stores definitions of recursive and corecursive functions. The right-hand
side of a function definition is a �-expression, defined as follows:



BExp ::= Bool
j IExp = IExp [strict]
j BExp & BExp [strict(1)]

j ! BExp [strict]
IExp ::= Int

j hd ( SExp ) [strict]
j IExp + IExp [strict]
j IExp / BExp . SExp [strict(2)]

SExp ::= Id
j tl ( SExp ) [strict]
j Id ( SExps )

j IExp : SExp
Exp ::= IExpjSExp

SSpec ::= Id := SExp ;

j Id ( Ids ) := IExp ;

j Id ( Ids ) � SExp ;

SPgm ::= SSpecs Exp
SExps ::= ListfSExp; "; "g

Ids ::= ListfId; "; "g
SSpecs ::= ListfSSpec; ""g

Code ::= IExp j SExp j Exp j SSpec j SSpecs j SPgm j Code y Code

Figure 4: K Syntax of stream

Val ::= � ( Ids ). SExp

The cell out includes results of evaluations, which can be integers or stream result values, depend-
ing on the type of the expression to be evaluated. This cell is essential for the stream equivalence
definition since it defines their observational relation. Note that the evaluation of stream ex-
pressions is an nonterminating process and the out cell includes only finite approximations of
streams.

The K semantics of stream is given in Figure 6. The rules giving semantics for the
boolean/integer operators that are similar to those from the imp definition and are omitted.
The semantics of a function call expression consists of replacing the expression with the function
body, where the formal parameters are replaced by the actual arguments (if any). The other
rules are self-explained.

Example 2.1 We illustrate the semantics of stream on the following example. Assume that
the current configuration is hhtl(one)ikhone 7! �(): 1:oneispecsh[]iouticfg. In order to evaluate
the expression tl(one), the above configuration is heated to

hhoneytl( � )ikhone 7! �(): 1:oneispecsh[]iouticfg

Now, the rule evaluating stream functions without parameters (the ninth one in Figure 6)
is applied and generates the term hh1:oneytl( � )ikhone 7! �(): 1:oneispecsh[]iouticfg. The
expression 1:one is a result value and the corresponding cooling rule is applied, producing

hhtl(1:one)ikhone 7! �(): 1:oneispecsh[]iouticfg

Applying the rule for tl and then the rule for function calls we obtain

hh1:oneikhone 7! �(): 1:oneispecsh[]iouticfg

Since the content of the k cell consists only of 1:one, the rule writing in the out cell (the first
one in Figure 6) can be applied the following configuration is obtained:

hhoneikhone 7! �(): 1:oneispecsh[]:1iouticfg

This sequence of rules can be repeated arbitrarily (but finitely) many times, and they generate
arbitrarily larger (but finite) approximations of the infinite stream one in the out cell.



hhCodeikhMapisspecshSExpiouticfg

a) K configuration of stream

* htl(blink)yhd( � )ik
hzero 7! �(): 0 : zero one 7! �(): 1 : one blink 7! �(): 0 : 1 : blinkispecs

h1 : 0iout

+
cfg

b) A stream configuration snapshot

Figure 5: stream configurations.

hhI : SE ikhOE iout ���icfg)))hhSEikhOE : Iiout ���icfg

hhIikhOEiout ���icfg)))hhikhOE : Iiout ���icfg

hhI1 = I2 ���ik ���icfg ^̂̂ I1 =Int I2)))hhtrue ���ik ���icfg

hhI1 = I2 ���ik ���icfg ^̂̂ I1 6=Int I2)))hhfalse ���ik ���icfg

hhhd( I : _ ) ���ik ���icfg)))hhI ���ik ���icfg

hhIE 1 / true . IE 2 ���ik ���icfg)))hhIE 1 ���ik ���icfg

hhIE 1 / false . IE 2 ���ik ���icfg)))hhIE 2 ���ik ���icfg

hhtl( _ : SE ) ���ik ���icfg)))hhSE ���ik ���icfg

hhF ���ikh��� F 7! �():SE ���ispecs ���icfg)))hhSE ���ikh��� F 7! �():SE ���ispecs ���icfg

hhF (Vs) ���ikh��� F 7! �(Xs):SE ���ispecs ���icfg)))hhSE [Vs=Xs] ���ikh��� F 7! �(Xs):SE ���ispecs ���icfg

where the operation [_=_] denotes syntactical substitution:

Figure 6: K Semantics of stream.

3 Language Definitions
Our program-equivalence approach is independent of the formal framework used for defining
languages as well as from the languages being defined. We thus propose a general notion of
language definition and illustrate it later in the section on the K definition of imp. We assume
the reader is familiar with the basics of algebraic specification and rewriting. A language L is
defined by:

1. A many-sorted algebraic signature �, which includes at least a sort Cfg for configurations
and a subsignature �Bool for Booleans with their usual constants and operations. � may
also include other subsignatures for other data sorts, depending on the language L (e.g.,
integers, identifiers, lists, maps,. . . ). Let �Data denote the subsignature of � consisting
of all data sorts and their operations. We assume that the sort Cfg and the syntax of L
are not data, i.e., they are defined in � n�Data, and that terms of sort Cfg have subterms
denoting statements (which are programs in the syntax of L) remaining to be executed.
Let T� denote the �-algebra of ground terms and T�;s denote the set of ground terms
of sort s. Given a sort-wise infinite set of variables Var , let T�(Var) denote the free �-
algebra of terms with variables, T�;s(Var) denote the set of terms of sort s with variables,
and var(t) denote the set of variables occurring in the term t. For terms t1; : : : ; tn we let
var(t1; : : : ; tn) , var(t1) [ � � � var(tn). For any substitution � : Var ! T�(Var) and term
t 2 T�(Var) we denote by t� the term obtained by applying the substitution � to t. We



use the diagrammatical order for the composition of substitutions, i.e., for substitutions �
and �0, the composition ��0 consists in first applying � then �0.

2. A �-algebra T , over which the semantics of the language is defined. T interprets the data
sorts (those included in the subsignature �Data) according to some �Data -algebra D. T in-
terprets non-data sorts as ground terms over the signature of the form (� n �Data) [ D (1)
i.e., the elements of D are added to the signature � n�Data as constants of their respective
sorts. That is, a language is parametric in the way its data are implemented; it just assumes
there is such an implementation D. This is important for technical reasons (existence of a
unique most general unifier, discussed below). Let Ts denote the elements of T that have
the sort s; the elements of TCfg are called configurations. Any valuation � : Var ! T is
extended to a (homonymous) �-algebra morphism � : T�(Var) ! T . The interpretation
of a ground term t in T is denoted by Tt. If b 2 T�;Bool(Var) then we write � j= b iff
b� = Dtrue , where b� is the Boolean value obtained by applying � to b. For simplicity, we
often write true; false instead of Dtrue ;Dfalse .

3. A set S of rewrite rules l ^̂̂ b))) r, whose formal definition is given later in the section.

We explain these concepts on the imp example. Each nonterminal from the syntax (Int, Bool,. . . )
is a sort in �. Each production from the syntax defines an operation in �; for instance, the
production AExp ::= AExp + AExp defines the operation _+_ : AExp � AExp ! AExp. These
operations define the constructors of the result sort. For the configuration sort Cfg , the only con-
structor is hh_ikh_ienvicfg : Code�MapId;Int ! Cfg . The expression hhX = I y CikhEnvienvicfg

is a term of TCfg(Var), where X is a variable of sort Id, I is a variable of sort Int, C is a variable
of sort Code (the rest of the computation), and Env is a variable of sort MapId;Int (the rest of
the environment). The data algebra D interprets Int as the set of integers, the operations like
+Int (cf. Figure 2) as the corresponding usual operation on integers, Bool as the set of Boolean
values ffalse; trueg, the operation like ^Bool as the usual Boolean operations, the sort MapId;Int

as the multiset of maps X 7! I, where X ranges over identifiers Id and I over the integers Int.
The fact that maps are modified only by the update operation ensures that each identifier is
bound to at most one integer value. The other sorts, AExp, BExp, Stmt, and Code, are inter-
preted in the algebra T as ground terms over a modification of the form (1) of the signature
�, in which data subterms are replaced by their interpretations in D. For instance, the term
if 1 >Int 0 then skip else skip is interpreted in T as if true then skip else skip, since D
interprets 1 >Int 0 as Dtrue(= true).

The rewrite rules describe the transitions over configurations, whose formal definition is given
below.

Definition 3.1 (pattern [19]) A pattern is an expression of the form � ^̂̂ �, where � 2 T�;Cfg(Var)
is a basic pattern and � 2 T�;Bool(Var) is a boolean term called the pattern’s condition. If
 2 TCfg and � : Var ! T we write (; �) j= � ^̂̂ � for = �� and � j= �. We let J� ^̂̂ �K denote
the set f j there exists � such that (; �) j= � ^̂̂ �g.

For any set of patterns � we let J�K ,
S
’2�J’K. A basic pattern � thus defines a set of (concrete)

configurations, and the condition b gives additional constraints these configurations must satisfy.
In [19] patterns are encoded as FOL formulas, hence the conjunction notation � ^̂̂ b. In this
paper we keep the notation but separate basic patterns from constraining formulas. We often
identify basic patterns � with patterns � ^̂̂ true.

Examples of patterns are hhI1 + I2 y CikhEnvienvicfg and hhI1 / I2 y CikhEnvienvicfg ^̂̂ I2 6=Int 0.
An example of configuration that satisfies the second pattern is hh(4 / 3) yskipikha7! 5ienvicfg.



Remark 3.1 Any pattern � ^̂̂ � can be transformed into a "semantically equivalent" pattern
�0 ^̂̂ �0 (i.e.., J� ^̂̂ �K = J�0 ^̂̂ �0K) such that �0 is linear and all its data subterms are variables.
For this, just replace all duplicated variables and all non-variable data subterms of � by fresh
variables, and add constraints to equate in � the fresh variables to what they replaced. The
transformations are presented in detail in [20].

Example 3.1 The pattern hhX / Y ikhY 7! A+Int 1ienvicfg ^̂̂A 6=Int �1 with X;Y variables of
sort Id and A of sort Int is nonlinear because Y occurs twice. Moreover, it contains the non-
variable data terms A+Int 1. It is thus transformed into the pattern

hhX / Y ikhY 0 7! A0ienvicfg ^̂̂ Y 0 =Id Y ^Bool A
0 =Int A+Int 1 ^Bool A 6=Int �1

The proof system we propose in Section 8 uses as a basic block the testing of inclusions of the
form J’K � J’0K. Therefore we need criteria for such inclusions. The following lemmas define
sufficient conditions.

Proposition 3.1 Let �0 and � be two basic patterns and � a substitution such that �0� = �,
y� = y for all y 62 var(�0), and var(�0) \ var(� ^̂̂ �) = ;. Then J� ^̂̂ �K = J�0 ^̂̂ (

V
� ^ �)K, whereV

� denotes the conjunction
V
x2var(�0) x = x�.

Proof We prove the equality of the two sets by double inclusion.
(�) Let  2 J� ^̂̂ �K. Then there is � : Var ! T such that  = �� and � j= �. Let �0 denote

the valuation �0 : Var ! T given by x�0 = x�� for x 2 var(�0), and y�0 = y� for y 62 var(�0). We
have �0�0 = �0�� = �� = . Since var(�)\ var(�0) = ;, it follows that �0 j= � iff � j= �. Finally,
var(�0) \ var(�) = ; implies var(�0) \ var(�(x)) = ; and hence x��0 = x�� for x 2 var(�0).
Now, �0�0 =  that implies  2 J�0 ^̂̂

V
� ^�)K. Since  was chosen arbitrarily, it follows that

J� ^̂̂ �K � J�0 ^̂̂ (
V
� ^ �)K.

(�) Assume that  2 J(�0 ^̂̂
V
� ^�)K. Then there is �0 : Var ! T such that  = �0�0, and �0 j=

(
V
� ^�). From �0 j=

V
� we get x�0 = x��0 for x 2 var(�0), which implies  = �0�0 = �0�� = ��.

Hence  2 J� ^̂̂ �K. Since  was chosen arbitrarily, it follows that J�0 ^̂̂ (
V
� ^ �)K � J� ^̂̂ �K. �

Proposition 3.2 Let � ^̂̂ � and �0 ^̂̂ �0 be two patterns and � a substitution such that �0� = �,
y� = y for all y 62 var(�0), and var(�0) \ var(� ^̂̂ �) = ;. If

V
� ^ � implies �0, then J� ^̂̂ �K �

J�0 ^̂̂ �0K.

Proof Let  2 � ^̂̂ �. Then there is a valuation � such that  = �� and � j= �. Let �0 be
defined as in Proposition 3.1. Then �0�0 =  and �0 j=

V
� ^ � that implies �0 j= �0 by the

hypotheses. Hence  2 J� ^̂̂ �K. Since  was chosen arbitrarily, we may conclude the conclusion
of the proposition. �

Remark 3.2 The conditions var(�0) \ var(� ^̂̂ �) = ; and y� = y for all y 62 var(�0) required
by Proposition 3.1 and Proposition 3.2 can be easily obtained by a variable renaming.

Proposition 3.3 Let � ^̂̂ � and �0 ^̂̂ �0 two patterns such that there is a substitution � with
(�0 ^̂̂ �0)� = � ^̂̂ �. Then J� ^̂̂ �K � J�0 ^̂̂ �0K.

Proof Let  2 � ^̂̂ �. Then there is a valuation � such that  = �� and � j= �. Let �0 be defined
by x�0 = x�� for each x in Var . It follows �0�0 = �0�� = �� =  and similarly �0�0 = ��
that implies �0 j= �0. Since  was chosen arbitrarily, we may conclude the conclusion of the
proposition. � We are now ready to define semantical rules and the transition system that they
generate.



Definition 3.2 (semantical rule and transition system [19]) A rule is a pair of patterns
of the form l ^̂̂ b))) r (where r is the pattern r ^̂̂ true). Any set S of rules defines a labelled
transition system (TCfg ;)S), where  )S 0 iff there are � , (l ^̂̂ b))) r) 2 S and � : Var ! T
such that (; �) j= l ^̂̂ b and (0; �) j= r.

Assumption 1 We assume without restriction of generality that for all rules l ^̂̂ b))) r 2 S, l is
linear and all its data subterms are variables. The generality is not restricted because the pattern
l ^̂̂ b in the rule l ^̂̂ b))) r 2 S can always be replaced by an equivalent one (cf. Remark 3.1)
with the desired properties. This transformation of rules does not modify the transition system
(TCfg ;)S).

4 Unification
We shall be using unification both for defining our program-equivalence proof system and for
proving properties about it. In this section we define unification and prove a technical lemma
used later in the paper.

Definition 4.1 (Unifiers) A symbolic unifier of two terms t1; t2 is any substitution � : var(t1)]
var(t2) ! T�(Z) for some set Z of variables such that t1� = t2�. A concrete unifier of terms
t1; t2 is any valuation � : var(t1) ] var(t2) ! T such that t1� = t2�. A symbolic unifier � of
two terms t1; t2 is a most general unifier of t1; t2 with respect to concrete unification whenever,
for all concrete unifiers � of t1 and t2, there is a valuation � such that �� = �. We often call a
symbolic unifier satisfying the above a most general unifier3.

We say that terms t1; t2 are symbolically (resp. concretely) unifiable if they have a symbolic
(resp. concrete) unifier. The next lemma gives conditions under which concretely unifiable terms
are symbolically unifiable.

Lemma 4.1 All linear, concretely unifiable terms t1; t2 2 T�(Var), such that all their data
subterms are variables, are symbolically unifiable by a most general unifier �t1t2 :var(t1)]var(t2)!
T�(var(t1) ] var(t2)).

Proof By induction on the structure of, say, t1. In the base case, t1 2 Var , and we take
�t1t2 , (t1 7! t2)] Idjvar(t2), i.e., �t1t2 maps t1 to t2, and is the identity on var(t2). Obviously, �t1t2
is a unifier of t1; t2, since t1�t1t2 = t2. To show that �t1t2 is most general, consider any concrete
unifier of t1; t2, say, �. Then, t1�t1t2� = t2� because �t1t2 maps t1 to t2, and t2� = t1� because �
is a concrete unifier. Thus, t1�t1t2� = t1�. Moreover, for all x 2 var(t2), x�t1t2� = x� since �t1t2 is
the identity on var(t2). Thus, for all y 2 var(t1) ] var(t2)(= ft1g ] var(t2)), y�t1t2� = y�, which
proves the fact that �t1t2 is a most general unifier (by taking � = � in Definition 4.1 of unifiers).
The fact that the codomain of �t1t2 is T�(var(t1) ] var(t2)) results from its construction.

In the inductive step, t1 = f(s1; : : : ; sn) with f 2 �n�Data 4 n � 0, and s1; : : : ; sn 2 T�(Var).
For t2 there are two subcases:

• t2 is a variable. Then, let �t1t2 , (t2 7! t1) ] Idjvar(t1), i.e., �t1t2 maps t2 to t1, and is the
identity on var(t1). We prove that �t1t2 is a most general unifier with codomain T�(var(t1)]
var(t2)) like in the base case.

3even though the standard notion of most general unifier in algebraic specifications and rewriting is a different
one.

4f 2 � n �Data because the contrary would mean that t1 has a Data sort, in contradiction with the lemma’s
hypotheses.



• t2 = g(u1; : : : ; um) with g 2 �, m � 0, and u1; : : : ; um 2 T�(Var). Let � be a concrete
unifier of t1; t2, thus, (f�)(s1� : : : sn�) =T (g�)(u1� : : : um�), where we emphasize by sub-
scripting the equality symbol with T that the equality is that of the model T . Since T
interprets non-data terms as ground terms over the modified signature (1), we have f� = f ,
which implies f = g, g� = g, m = n, and si� = ui� for i = 1; : : : ; n. Since t1 and t2 are
linear and all their data subterms are variables, the subterms si and ui also have these prop-
erties. Using the induction hypothesis we build most-general-unifiers �si

ui
of si and ui, which

have codomains T�(var(si)] var(ui)), for i = 1; : : : ; n. Let then �t1t2 ,
Un
i=1 �

si
ui
. First, �t1t2

is a substitution of var(t1)] var(t2) into T�(var(t1)] var(t2)) since var(t1) = ]ni=1var(si)
and var(t2) = ]ni=1var(ui). Note that these equalities hold thanks to the linearity of t1; t2.

Second, �t1t2 is a unifier of t1; t2 since all �si
ui

are so. Third, we prove that �t1t2 is a most
general unifier of t1; t2. Consider any concrete unifier � of t1 and t2, thus, si� = ui� for
i = 1; : : : ; n. From the fact that all the �si

ui
are most-general-unifiers of si and ui for

i = 1; : : : ; n, we obtain the existence of valuations �i such that �si
ui
�i = �j(var(si)]var(ui)),

for i = 1; : : : ; n. Then, � ,
Un
i=1 �i, which is also well-defined thanks to the linearity of t1

and t2, has the property that �t1t2� = �, which proves that �t1t2 is a most general unifier of
t1 and t2 and concludes the proof.

�

5 Symbolic Execution
In this section we present a symbolic execution approach for languages defined using the language-
definition framework presented in the previous section. We prove that the transition system
generated by symbolic execution forward-simulates the one generated by concrete execution,
and that the transition system generated by concrete execution backward-simulates the one
generated by symbolic execution (restricted to satisfiable patterns). This is used later for proving
correctness results for our program-equivalance deduction system.

Symbolic execution consists of applying the semantical rules over patterns using most general
unifiers. This generalises the symbolic execution approach proposed in [2], where unification was
encoded using matching with modified rules, and which did not allow for symbolic statements.
Symbolic execution generates a symbolic transition system whose states are patterns, and whose
transition relation is obtained by applying rewrite rules with the most-general unifiers whose
construction is given by Lemma 4.1.

Definition 5.1 (Symbolic transition relation) ’ )s
S ’

0 iff ’ , � ^̂̂ �, there is a rule � ,
(l ^̂̂ b))) r) 2 S with var(l) \ var(�) = ; and such that l; � are concretely unifiable, and ’0 =
r�l� ^̂̂ (� ^ b)�l�, where �l� is unique, most general symbolic unifier of l; � constructed as in the
proof of Lemma 4.1.

Definition 5.2 The derivative of a pattern is the set of patterns that can be obtained by one
symbolic execution step: �S(’) , f’0 j ’ )s

S ’0g. A pattern ’ is derivable if �S(’) is a
nonempty set.

In the rest of the paper, for patterns ’ , � ^̂̂ � we let var(’) , var(�; �), and for rules
� , l ^̂̂ r))) b we let var(�) , var(l; b; r). Moreover, for symbolic transitions ’)s

S ’
0 we assume

without restriction on generality that var(’) \ var(�) = ;, which can always be obtained by
variable renaming. We also omit to write the subscript S in the derivatives notation whenever
it is understood from the context.



Lemma 5.1 If  )S 0 and  2 J’K then there exists ’0 such that 0 2 J’0K and ’)s
S ’
0.

Proof Let ’ , � ^̂̂ �. From  )S 0 we obtain the rule � , l ^̂̂ r))) b and the valuation � : Var !
T such that  = l�, b� = true, and 0 = r�. From  2 J’K we obtain the valuation � : Var ! T
such that  = �� and �� = true. Thus, l and � are concretely unifiable (by their concrete
unifier �jvar(l)]�jvar(�)). Using Lemma 4.1 we obtain their unique most-general symbolic unifier
�l�, whose codomain is T�(var(l) ] var(�)). Let then � : var(l) ] var(�) ! T be the valuation
such that �l�� = �jvar(l) ] �jvar(�). We extend �l� to var(’; �) by letting it be the identity
on var(’; �) n var(l; �), and extend � to var(’; �) such that �jvar(b;r)nvar(l) = �jvar(b;r)nvar(l)

and �jvar(�)nvar(�) = �jvar(�)nvar(�). With these extensions we have x(�l��) = x(� ] �) for all
x 2 var(’; �).

Let ’0 , r�l� ^̂̂ (� ^ b)�l�: we have the transition ’ )s
S ’0 by definition of the symbolic

transition system. There remains to prove 0 2 J’0K.

• on the one hand, (r�l�)� = r(�l��) = r(� ] �) = r� = 0; thus, (0; �) j= r�l�;

• on the other hand, ((� ^ b)�l�)� = �(�l��) ^ b(�l��) = �(� ] �) ^ b(� ] �) = �� ^ b� = true
since �� = b� = true; thus; � j= ((� ^ b)�l�).

The two above items imply (0; �) j= r�l� ^̂̂ (� ^ b)�l�, i.e., (0; �) j= ’0, which concludes the
proof. �

Corollary 5.1 For every concrete execution 0 )S 1 )S � � � )S n )S � � � there is a symbolic
execution ’0 )s

S ’1 )s
S � � � )s

S ’n )s
S � � � such that i 2 J’iK for i = 0; 1; : : :.

Lemma 5.2 If 0 2 J’0K and ’)s
S ’
0 then there exists  2 TCfg such that  )S 0 and  2 J’K.

Proof From ’ )s
S ’

0 with ’ , � ^̂̂ � and � , l ^̂̂ r))) b we obtain ’0 = r�l� ^̂̂ (� ^ b)�l�. From
0 2 J’0K we obtain � : Var ! T such that 0 = (r�l�)� and ((� ^ b)�l�)� = true. We extend �l�
to var(’; �) by letting it be the identity on var(’; �) n var(l; �). Let � : Var ! T be defined
by x� = x(�l��) for all x 2 var(’; l), and x� = x� for all x 2 Var n var(’; l), and let  , l�.
From 0 = (r�l�)� and the definition of � we obtain 0 = r�. From ((�^ b)�l�)� = true we obtain
b(�l��) = true, i.e., b� = true, which together with  , l� and 0 = r� gives  )S 0. There
remains to prove  2 J’K.

• From  = l� using the definition of � we get  = l� = l(�l��) = (l�l�)� = (��l�)� =
�(�l��) = ��;

• From ((� ^ b)�l�)� = true we obtain (��l�)� = �(�l��) = �� = true.

Since ’ , � ^̂̂ �, the last two items imply (; �) j= ’, which completes the proof. � We call a
symbolic execution feasible if all its patterns are satisfiable (a pattern ’ is satisfiable if there is
a configuration  such that  2 J’K).

Corollary 5.2 For every feasible symbolic execution ’0 )s
S ’1 � � � )s

S ’n )s
S � � � there is a

concrete execution 0 )S 1 )S � � � )S n )S � � � such that i 2 J’iK for i = 0; 1; : : :.

6 Linear Temporal Logic

The notion of program equivalence we propose uses Linear Temporal Logic (LTL) formulas,
defined below.



A Kripke structure is a tuple (S;); P; �; Si) where S is a set of states, )� S�S is a (total)
transition relation, P is a set of propositions, � : S ! 2P is the labelling function, and Si � S is
the set of initial states.

An execution e , s0; : : : ; sn; : : : is a sequence of states such that s0 2 Si and sj ) sj+1 for
all j 2 N. The suffix of an execution e from l 2 N, denoted by el, is the sequence such that
el(j) = sl+j for all j 2 N.

LTL formulas are generated by the grammar  ::= true j p j  j  ^  j : j  U  for all
p 2 P . Standard abbreviations are false , :true,  1 _  2 , :(: 1 ^ : 2), � , true U , and
� , :�: .

Given an execution e , s0; : : : ; sn; : : : of a Kripke structure (S;); P; �; Si) and an LTL
formula  , the satisfaction relation e j=  is inductively defined over the structure of  as
follows:

• e j= true;

• e j= p iff p 2 �(s0);

• e j=p iff e1 j= p

• e j=  1 ^  2 if e j=  and e j=  2;

• e j= : iff it is not the case that e j=  ;

• e j=  1 U 2 iff there exists k > 0 such that ek j=  2 and for all 0 � j < k, ej j=  1.

We will be be interested in formulas of the form ��p. Using the semantics of LTL, an execution
e = s0; : : : ; sn; : : : satisfies ��p iff it has an infinite subsequence si1 ; : : : sim ; : : : such that p 2
�(sij ) for all j 2 N.

7 Defining Program Equivalence
We define in this section our notion of program equivalence and a logic for stating equivalence
properties.

Assumption 2 We assume without restriction of generality that the transition system (TCfg ;)S
) has no terminal states (i.e., its transition relation is total). This can always be obtained by
adding to S rules of the form �)))� for all non-derivable patterns �, which just add self-loops to
terminal states of (TCfg ;)S).

Remark 7.1 Strictly speaking, it is not programs that are the subject of equivalence, but full
configurations (of which programs are just one component). Indeed, program executions depend
on the rest of the configuration (e.g., initial values of the variables, . . . ). Hence, the equivalence
relation is a relation on TCfg .

We consider a given observation relation O � TCfg � TCfg , which shall serve as a parameter to
our equivalence. Then, we say that two configurations are observationally equivalent if they are
in the observation relation.

Observational equivalence should be understood as a purely local property of configuration
pairs, such as, e.g., a given set of variables have the same values in both configurations. Then,
our notion of program equivalence requires that starting from any two observationally equivalent
configurations, by executing the programs in the configuration one will eventually encounter
observationally equivalent configurations again.



This expressed by the LTL formula O^��O, which captures precisely the informal meaning
given above. In order to formalise this observation, it will be convenient to consider, for a given
language definition L, the language definition denoted by L2, whose configurations are pairs of
configurations of L and whose rewrite rules are those of L, lifted at the level of configurations of
L2; that is, each semantical rule l ^̂̂ b))) r of L generates two rules of L2: hl;Xi ^̂̂ b)))hr;Xi and
hY; li ^̂̂ b)))hY; ri where h_;_i is the configuration constructor for L2 and X;Y are variables of
sort Cfg for L that do not occur in the rest of the rule.

Let S2
l denote the set of rules of L2 of the form hl;Xi ^̂̂ b)))hr;Xi, and S2

r denote the set
of rules of L2 of the form hY; li ^̂̂ b)))hY; ri. We denote by S2 the whole set of rules of L2, i.e.,
S2 = S2

l ] S2
r .

We transform the transition system of L2 into a Kripke structure by regarding the observation
relation O as a proposition and by labelling the states h1; 2i of the transition system with O
iff (1; 2) 2 O.

By Kh1;2i we denote the Kripke structure thus constructed, endowed with the single initial
state h1; 2i.

Definition 7.1 Two configurations 1; 2 are equivalent, written 1 � 2, if there exists an
execution e of the Kripke structure Kh1;2i such that e j= O ^��O.

Example 7.1 The two following configurations:

1 , hhx = 2ikhx 7! 0ienvicfg

and
01 , hhy = 1; y = y+1ikhy 7! 0ienvicfg

are equivalent when O is defined by requiring that x = y. Indeed, in imp2, starting from h1; 2i
there is an execution reaching the self-looping state hhhikhx 7! 2ienvicfg; hhikhy 7! 2ienvicfgi, which
is in O, hence, the execution satisfies O ^ ��O. Note that not all executions of imp2 starting
in h1; 2i satisfy O ^ ��O, for example, an execution that applies only rules form Sl(imp2)
followed by self-looping rules violates O ^��O.

Remark 7.2 The relation O gives us quite a lot of expressiveness for capturing various (deter-
ministic) program equivalences, such as the ones classified in [4]. For example, partial equivalence
is: two programs are equivalent if, whenever presented with the same input, if they both terminate
then they produce the same output. This can be encoded by including cells in the configuration for
the input and output, and by including in O the pairs of configurations satisfying: if programs are
both empty and inputs are equal then outputs are equal as well. Also, full equivalence states that
two programs are equivalent if, whenever presented with the same input, they either both termi-
nate and produce the same output, or they both do not terminate. This is captured by adding to
the above relation all pairs of configurations from which there exist executions starting from both
configurations of the pair, such that the programs in both configurations are forever nonempty.
Finally, reactive equivalence requires that two programs, when presented with the same sequence
of inputs, produce the same sequence of outputs. To encode this equivalence we include in O all
configuration pairs satisfying: if the input cells are equal then the output cells are equal as well.

Remark 7.3 The chosen definition of equivalence does not work for nondeterministic programs.
Indeed, assume a nondeterministic instruction | such that, for any statements S1; S2, the state-
ment S1 | S2 rewrites to either S1 or S2. Then, the nondeterministic program (x:= 0) | (x:= 1)
is not equivalent to itself according to our definition (with O being the relation that requires
equality of x in both copies of the program). Indeed, one copy of the program can perform x := 0



and self-loop there, while the other one performs x := 0 and self-loop there. For the quivalence of
nondeterministic programs, the adequate notion of equivalence requires that for all executions e
of one program, there exists an execution e0 of the other one and an interleaving of e; e0 satisfying
O ^��O. This alternation of quantifiers induces additional difficulties for the verification.

We present in the rest of the section a logic for program equivalence. We present the logic’s
syntax and a notion of validity for formulas. A derivative operation for formulas is also defined.

Definition 7.2 (Syntax) A formula is a pattern of L2 according to Def. 3.1 applied to L2, i.e.,
an expression of the form h�1; �2i ^̂̂ � where �1; �2 2 T�;Cfg(Var) are basic patterns of L and
C 2 T�;Bool(Var).

Example 7.2 Assume that the signature � for the language imp contains a predicate isModi�ed
: Id � Stmt ! Bool, expressing the fact that the value of the given identifier is modified by
the semantics of the given statement. A formula expressing the equivalence of the programs in
Example 1.1 is�

hhfor I from A to B do{S }ik; hMienvicfg

hhI = A;while I <= B do{S ;I = I +1}ik; hMienvicfg

�
^̂̂ :Bool isModi�ed(I; S) ^ :Bool isModi�ed(A;S) ^ :Bool isModi�ed(B;S)

where M a variable of sort Map. The condition says that the loop counter I is not modified in the
body S, and the variables occuring in A;B are not modified by S either. The Boolean function
isModi�ed() is defined by structural induction on its arguments in the expected manner.

Recall that the set JfK, introduced by Definition 3.1 applied to L2 is the set of configurations
h1; 2i of L2 such that h1; 2i 2 JfK.

Definition 7.3 (Validity) A formula ’ is valid, written Sj�’, if for all h1; 2i 2 J’K, 1 � 2.

For the deductive system we shall also be needing the following definition: the derivative of a
formula f is the set of formulas defined by Definition. 5.2, applied to the symbolic transition of
the language L2. We denote it by �S2(f). We let �l(f) , �S2

l
(f) be the left-derivative and

�r(f) , �S2
r
(f) be the right-derivative of f . We conclude this section by the following lemma

that will be used in proofs regarding our deductive system.

Lemma 7.1 For all patterns ’ , h�1; �2i ^̂̂ � of L2, all instances h1; 2i 2 J’K, and all h 2
fl; rg, there exists ’0 2 �h(’) and h01; 02i 2 J’0K such that h1; 2i )S2 h01; 02i.

Proof We prove the lemma for h = l, the other case being similar. By construction of the language
L2, the pattern ’ has the form h�1; �2i ^̂̂ �, where �1; �2 are basic patterns of L, i.e., terms of
sort Cfg in L, and � is a term of sort Bool . Thus, �1 ^̂̂ � is a pattern of L. On the other hand,
there exists 01 such that 1 )S 01 because the transition system (TCfg ;)S) has no terminal
states (Assumption 2). From 1 )S 01 we obtain � : Var ! T and � = (l ^̂̂ b))) r) 2 S such that
1 = l�, 01 = r�, and b� = true. By construction of L2, there is a rule hl;Xi ^̂̂ b)))hr;Xi 2 S2

l for
X a variable of sort Cfg not ocurring in the rest of the rule, i.e., satisfying X� = X. By extending
� into a valuation �0 such that X�0 = 2 we obtain the concrete transition h1; 2i )S2 h01; 2i.
Using Lemma 5.1 applied to the transition h1; 2i )S2 h01; 2i and the pattern ’ we obtain a
pattern ’0 such that h01; 2i 2 J’0K and ’)s

S2
l
’0, because the rule that is symbolically applied

to obtain ’0 from ’ is hl;Xi ^̂̂ b)))hr;Xi 2 S2
l . Thus, ’

0 2 �l(’), which proves the lemma. �



8 A Circular Proof System
In this section we define a four-rule proof system for proving program equivalence. It is inspired
from circular coinduction [14], a coinductive proof technique for infinite data structures and
coalgebras of expressions [21].

Remember that we have fixed an observation relation O. We assume a set of formulas 
 such
that J
K = O. Let also ‘ be an entailment relation satisfying S; F ‘ ’ implies (S j� ’ or there
exists f 2 F such that J’K � JfK). The set 
 and the relation ‘ are parameters of our proof
system:

Definition 8.1 (Circular Proof System)

[Axiom]
S; F ‘	 ;

[Reduce]
S; F ‘	 G

S; F ‘	 G [ f’g
if S; F ‘ ’

[Circularity]
S; F [ f’g ‘	 G [ �h(’) h 2 fl; rg

S; F ‘	 G [ f’g
if J’K � J
K

[Derive]
S; F ‘	 G [ �h(’) h 2 fl; rg

S; F ‘	 G [ f’g
if J’K 6� J
K and �h(’) 6= f’g

An execution of the proof system is any sequence � of applications of the above rule. For � a set
of formulas (also called goals), a proof of S ‘	 � is an execution whose last rule is [Axiom].

[Axiom] says that when an empty set of goals is reached, the proof is finished. The [Reduce]
rule removes from the current set of goals G any goal that can be discharged by the entailment ‘.
The last two rules, [Circularity] and [Derive], both say that a goal ’ is are replaced by either its left
of right derivatives in the set of goals to be proved. However, in [Circularity], the goal ’ is added
as hypotheses provided that J’K � J
K, i.e., provided that all its instances are observationally
equivalent pairs of configurations. Thus, all the hypotheses f added during executions satisfy
JfK � J
K = O. On the other hand, if J’K 6� J
K then the [Derive] rule can be applied, which
adds no hypotheses: a goal ’ in the current set of goals G is just replaced by its set of left or
dight-derivatives, provided that they are not ’ itself, i.e., to ensure that [Derive] does not apply
uselessly.

The soundness of our proof system is the consequence of the following lemmas. By sequent
encountered by � we mean any sequent S; F ‘	 G which is obtained by applying a prefix of the
sequence � of rules.

Lemma 8.1 For all sequents S; F ‘	 G [ f’g encountered by �, for all h1; 2i 2 J’K, there
exists a sequent S; F 0 ‘	 G0 [ f’0g encountered by � with J’0K � O, and h01; 02i 2 J’0K, such
that h1; 2i )�S2 h01; 02i.

Proof By (strong) induction on the length of the proof � and case analysis. Depending on first
the rule of � that is applied to the sequent S; F ‘	 G [ f’g:

• if the rule is [Reduce] then there are two subcases:

– if S ‘ ’ then S j� ’. Thus, h1; 2i 2 J’K � O, and we let F 0 = F , G0 = G, ’0 = ’,
and h01; 02i = h1; 2i;

– if J’K � f for some f 2 F then J’K � O since all hypotheses f are added (by
[Circularity]) such that JfK � J
K = O, and we can also take F 0 = F , G0 = G, ’0 = ’,
and h01; 02i = h1; 2i;



• if the rule is [Derive] or [Circularity]: using Lemma 7.1, for any h1; 2i 2 J’K, there exists
’00 2 �h(’) and h001 ; 002 i 2 J’00K such that h1; 2i )S2 h001 ; 002 i. Moreover, the goal
’00 is the current goal of a future rule application in � and is the origin of a proof �

00

strictly shorter than �. Using the induction hypothesis, there exists S; F 0 ‘	 G0 [ f’0g
and h01; 02i 2 J’0K � O such that h001 ; 002 i )�S2 h01; 02:i. By transitivity h1; 2i 2 ’)�S2

h01; 02i holds, which proves this case and concludes the proof.

� The next lemma says that, for each instance of each hypothesis that has actually been used
for discharging a goal during a proof, there a strict successor of it satisfying the current goal of
some encountered sequent.

Lemma 8.2 Let � denote the set of all hypotheses used for discharging a subgoal during the
proof � (i.e., using a [Reduce] rule). Then, for all sequents S; F ‘	 G encountered by �, for all
f 2 F \�, and for all h1; 2i 2 JfK, P (f; h1; 2i) , there exists h01; 02i and a sequent S; F 0 ‘	

G0 [ f’0g encountered by � with J’0K � O, such that h01; 02i 2 J’0K and h1; 2i )+
S2 h01; 02i

hold.

Proof We show that the lemma’s statement holds initially and that it is preserved (as an invari-
ant) by all applications of rules in our deductive system (in particular, for the rules in the proof
�). The lemma’s statement is trivially true initially, when F = ;. For the induction step, we
assume that the lemma’s statement holds for the current sequent S; F ‘	 G[ f’g and we show
that it holds in the next sequent (if any) in �.

• if the next rule is [Reduce] there are two subcases:

– S ‘ ’. The set F \� in the next sequent is the same as in the current one, since this
reduction does not use hypotheses in F . With the same instance h01; 02i and sequent
S; F 0 ‘	 G0 [ f’0g given by the inductive hypothesis, we establish that the lemma’s
statement still holds in the next sequent.

– J’K � Jf0K for some f0 2 F . In this case the set F \� in the next sequent is (possibly)
larger than in the current one, since this may be the first time the hypothesis f0 is
used to discharge a goal (here, ’). (If F \� is the same in the next sequent as in the
current one, the inductive hypothesis trivially proves, like in the previous case S ‘ ’,
that our lemma’s statement still holds in the next sequent.)
Thus, there remains to consider the case where the current rule’s application is the
first-time use of the hypothesis f to discharge a goal (here, ’), in which case we have
to prove P (f; h1; 2i) for all f 2 F [ ff0g and h1; 2i 2 JfK. Now, P (f; h1; 2i) for
f 2 F and h1; 2i 2 JfK holds using the inductive hypothesis (this is proved as in
the case S ‘ ’). There remains to prove P (f0; h1; 2i) for all h1; 2i 2 Jf0K. For
this, we note that f0 has been added to F at an earlier proof step by [Circularity], and
f0 was replaced in the following sequent’s goals by its derivatives �h(f0) for some
h 2 fl; rg. Using Lemma 7.1, we obtain a goal f 000 2 �h(f0) and h001 ; 002 i 2 Jf 00K such
that h1; 2i )S2 h001 ; 002 i. Using Lemma 8.1 we obtain the instance h01; 02i and the
sequent S; F 0 ‘	 G0 [ f’0g such that h01; 02i 2 J’0K � O and h001 ; 002 i )�S2 h01; 02i.
By transitivity, h1; 2i )+

S2 h01; 02i, which proves that P (f0; h1; 2i) holds for all
h1; 2i 2 Jf0K: the lemma’s statement still holds in the next sequent.

• if the next rule is [Circularity] or [Derive]: in this case F \� in the next sequent is the same
as in the current one, since this rule does not eliminate goals using circular hypotheses
(even though, in the case of [Circularity] the current set of hypotheses grows). Like in the
case S ‘ ’ we establish that the lemma’s statement still holds in the next sequent, which
concludes this case and completes the proof.



�
The last lemma used for proving our soundness result resembles Lemma 8.1, but it is stronger

since it states the existence of strict successors in the observation relation. It can be proved
thanks to Lemma 8.2.

Lemma 8.3 For all sequents S; F ‘	 G [ f’g encountered by �:

• either S ‘ ’;

• or for all h1; 2i 2 J’K, there exists a sequent S; F 0 ‘	 G0 [ f’0g encountered by �, and
h01; 02i 2 J’0K � O, such that h1; 2i )+

S2 h01; 02i.

Proof We proceed by (strong) induction on the length of the proof � and case analysis. Depending
on the first rule of � that is applied to the sequent S; F ‘	 G [ f’g:

• if the rule is [Reduce] then there are two subcases:

– if S ‘ ’ then this case is proved;

– if J’K � f for some f 2 F : Then, f 2 � since f is being used (by the present rule!)
to discharge a goal. Thus, f 2 F \ �. Using Lemma 8.2 we obtain the sequent
S; F 0 ‘	 G0 [ f’0g and instance h01; 02i 2 J’0K � O such that h1; 2i )+

S2 h01; 02i,
which proves this case;

• if the rule is [Derive] or [Circularity]: using Lemma 7.1, for any h1; 2i 2 J’K, there exists
’00 2 �h(’) and h001 ; 002 i 2 J’00K such that h1; 2i )S2 h001 ; 002 i. Moreover, the goal
’00 is the current goal of a future rule application in � and is the origin of a proof �

00

strictly shorter than �. Using the induction hypothesis, there exists the sequent S; F 0 ‘	

G0[f’0g and instance h01; 02i 2 J’0K � O such that h001 ; 002 i )+
S2 h01; 02:i. By transitivity

h1; 2i )+
S2 h01; 02i holds, which concludes the proof.

�

Theorem 8.1 (soundness) Let � be a finite set of equivalence formulas. If S ‘	 � then S j��.

Proof Pick any ’ 2 � (if � = ; the theorem is trivially true). Applying Lemma 8.3 generates
two cases:

1. either S ‘ ’, which directly implies S j� ’;

2. or, for all h1; 2i 2 J’K, there exists a sequent S; F 0 ‘	 G0 [ f’0g encountered by �, and
h01; 02i 2 J’0K � O, such that h1; 2i )+

S2 h01; 02i. We apply Lemma 8.3 to the latter
sequent, which generates two cases:

(a) S ‘ ’0, which implies S j� ’0. Then from h01; 02i 2 J’0K, there is an execution
satisfying O^��O, and by adding to it the prefix h1; 2i )+

S2 h01; 02i, the resulting
execution also satisfies O ^ ��O. Thus, from the (arbitrary) h1; 2i 2 J’K there is
an execution satisfying O ^��O, meaning S j� ’;

(b) or for all h01; 02i 2 J’0K, there exists a sequent S; F 00 ‘	 G00 [ f’00g encountered by
�, and h001 ; 002 i 2 J’00K � O, such that h01; 02i )+

S2 h001 ; 002 i. Applying Lemma 8.3 to
the latter sequent generates two cases. . . It is not hard to see that in the first case we
will be able to prove S j� ’ like in item 2(a) above, and in the second one, another
application of Lemma 8.3 will generate yet two more cases. . .



This repetitive process may never terminate for a goal ’, but it proves S j� ’ in one of two
possible ways:

• the first one assumes that, after finitely many applications of Lemma 8.3, a subgoal ’(n)

satisfying S ‘ ’(n) is found. Thanks to Lemma 8.3, from any h1; 2i 2 J’K there is a
finite execution e than leads into some instance h(n)

1 ; 
(n)
2 i 2 J’(n)K. And since S j� ’(n),

starting from the instance h(n)
1 ; 

(n)
2 i 2 J’(n)K, an infinite execution e0 satisfying O^��O

exists. The concatenation ee0 also satisfies O ^ ��O. Thus, from the arbitrarily chosen
h1; 2i 2 J’K en execution satisfying O ^��O exists, meaning S j� ’ holds.

• the second one assumes the contrary: there is no finite number of applications of Lemma 8.3
after which a subgoal ’(n) satisfying S ‘ ’(n) is found. In this case, the infinitely many
applications of Lemma 8.3 build an infinite execution h1; 2i )+

S2 h01; 02i )+
S2 � � � )+

S2

h(n)
1 ; 

(n)
2 i )

+
S2 � � � , starting from any arbitrarily chosen h1; 2i 2 J’K, such that O is

met infinitely many times, as h1; 2i 2 J’K � O, h01; 02i 2 J’0K � O, . . . , h(n)
1 ; 

(n)
2 i 2

J’(n)K � O, . . . , which implies that our execution satisfies O ^��O; thus, S j� ’ holds.

In both cases, this process leads to establishing S j� ’, and ’ 2 � was chosen arbitrarily, thus,
S j� � holds. �

Remark 8.1 For soundness it is not essential that the [Circularity] ’ actually adds the current
goal ’ to the current set of circular hypotheses F . What does matter is that, whenever ’ is added
to F , then J’K � J
K. We use this observation in our implementation of the proof system to
reduce the number of stored hypotheses.

We now show that the circular proof system, when it terminates, always provides an answer
(positive or negative) to the question of whether S j� � holds. Thus, in addition to soundness
we have a weak completeness result. The result is "weak" because it assumes termination of the
proof system.

Given a a semantics S and set of goals �, the proof system ‘	 terminates successfully when
it returns a proof. The proof system terminates unsucessfully when its has a finite, maximal
execution that is not a proof - we call such an execution a disproof. This happens when the
proof system is "stuck": in the current sequence S; F ‘	 G no rule of the system can be applied
because the side-conditions of the rules are not satisfied. Then, dy definition, the proof system
terminates on � if it terminates sucessfully or unsucessfully. Weak completeness then says that
if a set of goals � is valid, all the goals in the set are satisfiable, and the proof system terminates
on �, then it terminates successfully.

For this we need the following adaptation to the notion of derivative: �(’) = f’0 j ’)s
S ’
0^

J’0K 6= ;g, which means that only the satisfiable patterns are kept when computing derivatives.
We also need:

Assumption 3 For all patterns ’ of L, if �S(’) = f’g then there is � ))) � 2 S such that
�S(’) = �f�)))�g(’), and for all configurations ; 0 of L, if  )S  and 0 6)S 0 then
h; 00i =2 O.

Both assumptions regard the language L of interest. The first says that, whenever a the deriva-
tive of pattern is the pattern itself, then the only rule that contributes to this derivative is of
the form rules � ))) �. Remember (Assumption 2) that such rules were included in the seman-
tics S for technical reasons in order to transform terminal configurations into self-looping ones
(ultimately, because we deal with LTL over infinite sequences). Our first asssumption then says
that, except for the rules, � ))) � were added to the semantics, all the other rules "change"



at least "something" in a pattern; ie., rules that do not change anything in the semantics of a
language are useless. Regarding the second of the above assumptions, it says that self-looing
configurations and non self-looping ones cannot be observationally equivalent. As observed be-
fore, the self-looping configurations are (formerly) terminal configurations that were transformed
into self-looping ones by including the rules of the form � ))) � in the semantics S. Thus, our
second assumption actually says that configurations where the code to be executed is finished,
and configurations where there is still code to execute, cannot be observationally equivalent,
which is also a reasonable constraint on equivalence.

Theorem 8.2 (weak completeness ) If S j� � and for all ’ 2 � it holds that J’K 6= ;, and
the ‘	 proof system terminates on � then S ‘	 �.

Proof By contradiction: assume the hypotheses hold but not the conclusion, i.e., S 6‘	 �. Thus,
the proof system terminates with a disproof �, i.e., a sequence of rule applications that is not
a proof and after which no rule can be applied. Let S; F ‘	 G be the sequent resulting after
�. Thus, G 6= ;, and for all ’ 2 G, J’K 6� O (otherwise, [Circularity] would be applicable),
and �h(’) = f’g for h 2 fl; rg (otherwise, [Derive] would be applicable). We choose any
’ 2 G. Since both [Circularity] and [Derive] rules compute derivatives, there exists ’0 2 �
and a symbolic execution ’0)s

S2 � � �)s
S2’n = ’. The symbolic execution is feasible, since we

have assumed that only satisfiable patterns are kept in the derivatives. Moreover, J’nK 6� O,
thus, we can choose h; 0i 2 J’K n O. Hence, we can apply Corollary 5.2 and find a concrete
execution h0; 

0
0i)S2 � � �)s

S2hn; 0ni = h; 0i such that for all i = 0; n� 1, hi; 0ii 2 J’iK, and
hn; 0ni 2 J’nK nO.

Next, due to the definition of the language L2, by projecting the above concrete execution of
L2 on its left and right components we obtain the two executions e , 0 )�S  and e0 , 00 )�S 0
of L. Let ’ = h�; �0i ^̂̂ �, then,  2 J� ^̂̂ �K and 0 2 J�0 ^̂̂ �K. From �l(’) = �r(’) = f’g we
obtain �S(� ^̂̂ �) = f� ^̂̂ �g and �S(�0 ^̂̂ �) = f�0 ^̂̂ �g, thus, Using Assumption 3, both these
derivarives were obtained by applying rules of the form �))) � 2 S. Thus, there are transitions
 )S  and 0 )S 0 in L, and the finite executions e; e0 can be extended into infinite ones
e , 0 )�S  )S  � � � )S  � � � and e0 , 00 )�S 0 )S 0 � � � )S 0 � � � , and since L is
deterministic, e, resp. e0 is the only infinite execution of L starting in 0, resp. in 00.

Moreover, the infinite executions in L2 starting in h0; 
0
0i coincide with sequences obtained

by interleaving transitions of e and e0. It is thus enough consider any such interleaving, denoted
hereafter by eq e0, and show that it satisfies ��:O.

There are two cases:

• in eq e0, both e and e0 have reached , resp. 0. Thus, eq e0 has an infinite suffix that only
repeats the instance h; 0i 2 J’K nO, which is does not satisfy O; thus, eq e0 j= ��:O.

• in e q e0, only one of the components, say, e, has reached . Thus, e q e0 has an infinite
suffix that only repeats an instance of the form h; 00i, for some configuration 00 that does
not have a transition 00 )S 00 (that would contradict the unicity of the infinite execution
e0 starting in 00). By Assumption 3, we have h; 00i =2 O and since eq e0 ends up by only
repeating h; 00i, we have eq e0 j= ��:O again.

Recapitulating, we have obtained a goal ’0 2 � and an instance h0; 
0
0i 2 J’0K, and two infinite

executions e and e0 of L, starting in 0, and 00, respectively, such that any infinite execution of
L2 starting in h0; 

0
0i is of the form eq e0 for some interleaving q of e; e0; and any such infinite

execution e q e0 satisfies ��:O. According to Definition 7.1 this means 0 6� 00, and according
to Definition 7.3, this means S 6 j�’0. Hence, S 6 j��, which is in contradiction to the hypothesis



S j� � of our theorem. The contradiction was obtained by assuming S 6‘	 �, hence, S ‘	 �
holds, which concludes the proof. �

Together, the soundness and weak completeness say results say that, if the proof system
applied to a given set of goals terminates, then termination is successful if and only if the set
of goals is valid. That is, when it terminates, the proof system correctly solves the program-
equivalence problem as we have stated it. Of course, termination cannot be guaranteed, because
the equivalence problem is undecidable. It does terminate on goals in which both programs
terminate (because eventually the set of derivatives does not change the goals and no rule can
be applied any more) and also for goals in which the programs does not terminate, but behave
in a certain "regular" way, as shown in the examples below.

Example 8.1 We start by illustrating the use of the deductive system on the equivalence of
stream programs since it does not require unification, hence it is a bit easier. The equivalence
we want to prove is that from Example 1.2: blink is equivalent to zip(zero, one). This is
written as the equivalence formula�

hhblinkikhspec1ispecshY1iouticfg;
hhzip(zero, one)ikhspec2ispecshY2iouticfgi

�
^̂̂ Y1 = Y2 (2)

where spec1 is blink 7! �() .0:1:blink and spec2 is the map

zero 7! �() .0:zero

one 7! �() .1:one

zip 7! �(xs; ys) .zip( ys , hd( xs ))

Note that the contents of the cells specs is not changed during the execution of the program. The
observation relation is given by


 = fhhhC1ikhspec1ispecshY1iouticfg; hhC2ikhspec2ispecshY2iouticfgiig ^̂̂ Y1 = Y2

where C1 and C2 are two arbitrary stream programs. In words, two configurations are obser-
vational equivalent iff the corresponding output cells out have equal contents.

The equivalence formula (2) is the unique goal in G we start with. We first apply [Circularity]
for the program blink (i.e., in the proof system, the derivative �l() is applied), which loads the
definition of blink in the k cell, and adds (2) to the set of circular hypotheses F . We then apply
[Derive] twice, which writes in the corresponding output cell the two head elements of the stream,
and produces the following goal:�

hhblinkikhspec1ispecsh0 : 1 : Y1iouticfg

hhzip(zero, one)ikhspec2ispecshY2iouticfgi

�
^̂̂ Y1 = Y2 (3)

Not that the contents of the output cell in the first configuration has changed. Next, by applying
Derive several times with the heating/cooling rules that compute the arguments of zip(zero, one),
we get �

hhblinkikhspec1ispecsh0 : 1 : Y1iouticfg

hhzip(0 : zero, 1 : one)ikhspec2ispecshY2iouticfgi

�
^̂̂ Y1 = Y2 (4)

Several other applications of Derive proceed with loading the definition of zip in the k cell, ap-
plying heating/cooling rules for hd(zero), adding content to the output cell, and computing new



arguments of zip:�
hhblinkikhspec1ispecsh0 : 1 : Y1iouticfg

hhzip(1 : one, 0 : zero)ikhspec2ispecsh0 : Y2iouticfgi

�
^̂̂ Y1 = Y2 (5)

The above process is repeated with the new instance of zip, which produces the following goal:�
hhblinkikhspec1ispecsh0 : 1 : Y1iouticfg

hhzip(0 : zero, 1 : one)ikhspec2ispecsh0 : 1 : Y2iouticfgi

�
^̂̂ Y1 = Y2 (6)

To conclude the proof, we note that (6) is an instance of (2) by applying the substitution
fY1 7! 0 : 1 Y1; Y2 7! 0 : 1 Y2g. Hence, J(6)K � J(2)K, and the Reduce discharges the
(unique) current goal (6), and Axiom concludes the proof.

Example 8.2 We show the application of our proof system for proving the equivalence of for
and while programs formalised as the validity of the following formula, with A;B : Int , S : Stmt ,
I : Id and M : Map Considering A;B to be integers instead of expressions is not a restriction,
since, if A and B were artihmetical expressions, the strictness attributes for the for, assigment,
and <= would be applied first and would transform A;B into integers anyway. This allows us to
simplify the original equivalence formula , given in Example 7.2, into the following one, based
on the fact that isModi�ed(A;S ) = isModi�ed(B ;S ) = false:�

hhfor I from A to B do{S }ik; hMienvicfg

hhI = A;while I <= B do{S ;I = I +1}ik; hMienvicfg

�
^̂̂ :Bool isModi�ed(I ;S ) (7)

The observation relation is given by the set 
 = fhhhC1ikhM 0ienvicfg; hhC2ikhM 00ienvicfgi^̂̂M 0 =Map

M 00g. The relation says that two configurations are observationally equivalent iff they have equal
environments.

In order to prove the goal (7) with our proof system we start with a set of goals G consisting
of (7) and �

hhC y (for I from A to B do{S })ik; hMienvicfg

hhC y (I = I +1;while I <= B do{S ;I = I +1})ik; hMienvicfg

�
^̂̂ :Bool isModi�ed(I ;C ) ^Bool lookup(M ; I ) = A (8)

where C is a variable of sort Code. Remember that Code is a sort that includes all statements and
arithmetical and Boolean expressions, that � denotes the empty code, and that code sequencing is
denoted by y.

In the sequel we show the application of the rules of our proof system to the chosen set of
goals G. The first rule applied to (7) is [Circularity], by which (7) is added to the hypotheses H
and is replaced by a goal obtained by applying the semantical rule for the for statement, which
gives:�
hhI = A;if I <= B then S ;for I from A+Int 1 to B do fSg else skipgik; hMienvicfg

hhI = A;while I <= B do{S ;I = I +1}ik; hMienvicfg

�
^̂̂ :Bool isModi�ed(I ;S )



We now apply the sequence of rules [Circularity], [Derive], [Circularity], without adding new hy-
potheses5, which replaces the above goal with the following one, obtained by applying the semantics
of assignment to both sides of the formula and then the semantical rule for the while statement:�
hhif I <=B thenS ;for I from A+Int 1 to B do fSg else skipgik; hupdate(M; I;Aienvicfg

hhif I <=B then S ;I =I +1;while I <=B do{S ;I =I +1}else skipik; hupdate(M; I;Aienvicfg

�
^̂̂ :Bool isModi�ed(I ;S )

Next6, the heating rules for the if statement and the _ <= _ operation, followed by the cooling
rules, and finally the rules that conclude the evaluation of the if statement result in the two
following subgoals: �

hhskipik; hupdate(M; I;A)ienvicfg

hhskipik; hupdate(M; I;A)ienvicfg

�
^̂̂ :Bool isModi�ed(I ;S ) ^Bool :BoolA �Int B

�
hhS ;for I from A+Int 1 to B do fSgik; hupdate(M; I;A)ienvicfg

hhS ;I = I +1 ; while I <= B do{S ;I = I +1}ik; hupdate(M; I;A)ienvicfg

�
^̂̂ :Bool isModi�ed(I ;S ) ^Bool A �Int B

The first subgoal is trivially valid and is eliminated by the [Reduce] rule using the base
entailment ‘.
By applying the semantical rule for statement sequencing, which rewrites ; to y, for
the second one, we get a new goal�

hhS y (for I from A+Int 1 to B do fSg)ik; hupdate(M; I;A)ienvicfg

hhS y (I = I +1 ; while I <= B do fS ;I = I +1g)ik; hupdate(M; I;A)ienvicfg

�
^̂̂ :Bool isModi�ed(I ;S ) ^Bool A �Int B (9)

which is eliminated by the the [Reduce] rule since it is an instance of the goal (8)
(by using the substitution C  S;M  update(M; I;A), and by using the equality
lookup(I ; update(M ; I ;A)) = A).

To conclude the proof we also need to eliminate the goal (8). This elimination amounts to unifying
the code C with all possible left-hand sides of rules in the semantics of imp. We only give a subset
of all the cases, since considering all cases may be overlong for the reader’s patience (but not so
for a computer). We first consider the case where S is unified with statements:

• C  skip: by applying the semantical rules for skip (which rewrites it to �), then the rule
that consumes the empty code �, and finally the rule sequence that evaluates I + 1 in the
goal’s right-hand side, the goal (8) becomes the following one, which is implied by the initial
goal (7) and is eliminated by [Reduce]:�

hhfor I from A to B do{S }ik; hMienvicfg

hhI = A ;while I <= B do{S ;I = I +1}ik; hMienvicfg

�
^̂̂ :Bool isModi�ed(I ;S ) ^Bool lookup(M ; I ) = A

5which is sound thanks to Remark 8.1. In the sequel, whenever [Circularity] is applied, by default it does not
add new hypotheses.

6In the sequel we mention only the semantical rules used in the sequence of rules [Circularity] and [Derive] that
is applied to obtain the next goal.



• C  fS1 ; S2g for some statements S1; S2: the rule rewriting ; to y produces an instance
of the goal (8) itself, with the substitution C  S1 y S2, which is then eliminated by
[Reduce].

• C  fS0g for some statement S0: the rule for f_g elimination produces an instance of the
goal (8) itself, with the substitution C  S0, which is then eliminated by [Reduce].

• C  if B0 then S1 else S2, for some Boolean expression B0 and statements S1; S2: there
are two subcases, depending on whether B0 has the sort Bool , or does not have the sort
Bool but has sort BExp:

– if B0 has the sort Bool then one can directly apply the rules for if and obtain two
subgoals: one is�

hhS1 y (for I from A+Int 1 to B do fSg)ik; hMienvicfg

hhS1 y (I = I +1 ; while I <= B do fS ;I = I +1g)ik; hMienvicfg

�
^̂̂ :Bool isModi�ed(I; S1) ^Bool :Bool isModi�ed(I; S2) ^Bool B0 =Bool true

(where we used isModi�ed(I; if B0 then S1 else S2) = isModi�ed(I; S1) _Bool

isModi�ed(I; S2)). This is an instance of the goal (8) and is eliminated by [Reduce]7.
The other subgoal is similar, but with S2 instead of S1 and B0 =Bool false in the
condition, which is also an instance of the goal (8).

– if B0 does not have the sort Bool then it has the sort BExp. Then, the only rule that
our goal can be unified with is the heating rule for if, which generates the following
goal:�
hh(B0yif �then S1 else S2)y(for I from A+Int 1 to B do fSg)ik;hMienvicfg

hh(B0yif �then S1 else S2)y(I =I +1;while I <=B do fS;I =I +1g)ik;hMienvicfg

�
^̂̂ :Bool isModi�ed(I ;S1 ) ^Bool :Bool isModi�ed(I ;S2 )

which is an instance of (8) with S  (B0 yif � then S1 else S2).

• C  while B0 do S0. The rule for while transforms (8) into an instance of itself under
the substitution C  (if B0 then S ; I + 1 ; while B0 do S0 else skip).

• C  for I 0 from A0 to B0 do S0. The rule for for transforms (8) into an instance of
itself under the substitution C  (I 0 = A0 ; if B0 then S ; I + 1 ; for I 0 from A0 to
B0 do S0 else skip).

• C  X for some identifier X, which amounts to unification with the rule for program-
variable lookup. That rule transforms our goal into an instance of itself with C  lookup(M ;X ; I ).

• C  X 0 = A0 for some identifier X 0 and arithmetical expression A0. Similar to the case of
if, there are subcases depending on whether 0 has sort Int , or does not have sort Int but
has sort AExp.

– in the first case the rule for variable assignment transforms (8) into an instance of
itself with C  � and M 7! update(M ;X ; I );

– in the second case, the heating rule for variable assignment transforms 8) into an
instance of itself with C  (A0 y I = �).

7in the sequel, whenever (8) is transformed into an instance of itself, we omit the sentence "and is eliminated
by [Reduce]".



There remain to consider the cases where C is code but is not a statement. The goal (8) can be
unified with left-hand sides of semantical rules:

• C  C1 y C2: then unification may be performed with both heating and cooling rules.

– We first illustrate the situation with the cooling rule for the if statement, which was
explicitly given in Section 2.1; the case for all the other cooling rules is completely
similar. In the considered case, C1  B and C2  if � then S1 else S2 y C 0

for some code C 0, and the cooling rule transforms (8) into an instance of itself with
C  if B then S1 else S2 y C 0.

– Regarding unification with heating rules, this may only happen when the left-hand side
of the rule is of the form hhC 01 y C 02ikhMienvicfg, and the right-hand side has the form
hh(C 001 y C 002 ) y C 02ikhMienvicfg; the application of this rule transforms (8) into an
instance of itself with C  C 001 y C 002 .

• C is an arithmetical expression or a Boolean expression. Then, again, unification may be
performed with both heating and cooling rules, in a completely similar many to what has
been shown above.

Thus, in all possible cases, the goal goal (8) is transformed into an instance of itself and is
eliminated from the set of goals. Since the other goal (7) has been eliminated earlier, the proof
system terminates sucessfully.

9 A Prototype Implementation
K [16] is a framework for defining the formal operational semantics of programming languages.
One component of the framework is a compiler of K definitions to Maude [22] specifications.
Programs of languages defined in K can thus be executed and analysed using Maude as the
underlying rewriting engine. K also offers some support for symbolic computations, including
a connection to the Z3 SMT solver [23]. We have used these components in a prototype tool
implementing our deductive system for program equivalence. Here we describe how the proposed
proof system is implemented for the imp and stream languages. This description is generic
enough and can be seen as a methodology applicable to any language defined in K.

There are (at least) two approaches to implementing the proof system:

1. as an external procedure, which uses the K tool for computing derivatives of equivalence
formulas only. The external procedure is then responsible all the other operations, including
the searching for proofs;

2. directly in K, by performing all the operations in the proof system using the available K
tools (for example, the underlying Maude search engine is used in searching for proofs).
This requires extending the definition of the language of interest definitions with additional
data structures, with semantical rules for storing circular hypotheses, and with rules for
the entailment between these hypotheses and goals.

Since our approach is parametric in the language definition, observational relation, and basic
entailment, in both cases we need a procedure that builds the definition of L2 for a given L, and
procedures for the basic entailment (S ‘ ’) and subsumption (J’K � JfK). The basic entailment
relation S2 ‘ ’ can be specified by means of a (finite) set of equivalence formulas E (in the same
way that 
 specifies the observation relation O), and taking S2 ‘ ’ iff there is e 2 E such that
J’K � JeK. The subsumption relation can be checked using Proposition 3.2 or Proposition 3.3.



For imp the set 
 will typically consist of formulas that say that a given set of program variables
have the same values in both configurations, and E further requires that the two contents of the
k cells are the same. For stream, 
 says that the two out cells have the same contents.

By Proposition 3.1, the formulas f 2 F and e 2 E can always be stored in the form �0 ^̂̂
V
� ^�,

which facilitates the checking of subsumptions based on Proposition 3.2 or Proposition 3.3. The
validity of the implication from Proposition 3.2 is checked by calling the Z3 SMT solver. The
substitution � (ocurring in formulas of the form �0 ^̂̂

V
� ^�) is computed by inspecting the

contents of the two configurations � and �0.
We chose to implement the proof system for the two languages directly in K since this is the

most straightforward approach and allows us to benefit from tools in the K framework. However,
we had to make some compromises. Since the current Maude backend of K is a rewriting engine
based on matching, we had to axiomatise symbolic statements instead of using unification for
them. The main axiom says how a symbolic-statement variable S affects the environment M
under a current condion �:

hhS ���ikhMienvicfg ^̂̂ �)))hh� ���ikhfollowup(S;M; �)ienvicfg ^̂̂ �
The function followup is axiomatised as well; its axiom says that S has no effect on a variables
X that it does not modify: followup(S; (X 7! V M); �) = X 7! V followup(S;M; �) when �
implies :isModi�ed(X;S).

An equivalence formula ’ , h�1; �2i ^̂̂ � for imp is written in K as an imp configuration

hhp1ikhM1ienvicfg1hhp2ikhM2ienvicfg2h�icond

where the pattern �i is given by the contents of the cfgi cell and the condition � is stored into
a new cell called cond. The circularities F are stored into a new cell hypos. For each circularity
f 2 F , the subsumption relation J’K � JfK is checked by means of two substitutions. The first
one is a substitution � from the contents of the cell k in f to the coresponding one in ’. Let

f , hhp01ikhM 01ienvicfg1hhp02ikhM 02ienvicfg2h�0icond

such an hypothesis in F and let ’ be the current equivalence formula represented as above. For
instance, if ’ is given by (9) and f by (8), then � is A  A +Int 1. The expressions from the
codomain of � are evaluated in the current configuration; in this way, e.g., the program variables
are replaced by their current values. Since the cell env includes only fresh variables, we have f�
equal to

hhp1ikhM 01ienvicfg1hhp2ikhM 02ienvicfg2h�0�icond

The second substitution �0 is between the corresponding env cells such that M 0i�0 = Mi for
i = 1; 2. Note that f��0 = ’ does not hold in general, because usually �0��0 = � does not.
But if � ^

V
�0 implies �0� holds, which is checked by calling the SMT solver, then we obtain

J’K � Jf�K by Proposition 3.2 . Since Jf�K � JfK by Proposition 3.3, it follows that J’K � JfK.
This method for checking the subsumption relation is not specific to imp. For any other

language definition the substitution � is defined by structural induction on the language syntax
and the substitution �0 is computed by considering the rest of configurations. For instance, for
the case of stream, only the substitution � is required because the rest of configurations remain
constant during the execution.

The efficiency of the implementation depends on how the [Circularity] and [Derive] rules are
applied. In Remark 8.1 we noted that, for soundness, it is not necessary to always add the
current goal ’ to the hypotheses F when applying [Circularity]. Ideally, only those formulas
actually subsequently used by [Reduce] rules should be added. Since there is no way of knowing
in advance which circular hypotheses will be used in the future, we apply a heuristic when adding
circular hypotheses. This is achieved by using labelled statements: each time two statements



with the same label are at the top of the k cells, a set of rules decides which one of the following
three cases holds for the current configuration and takes the corresponding action: whether it
belongs to the observation relation, or it is a consequence of the circular hypotheses, or it must
be added to the circular hypotheses.

The contents of the cell hypos at the end of a successful proof includes in fact new equivalences
that the tool discovered during proving process. For instance, if the goal is morse � f(morse),
where

morse � 0:1:zip(tl(morse), not(tl(morse))); not( xs ) � neg(hd( xs )):not( xs );

f( xs ) � hd( xs ):neg(hd( xs )):f(tl( xs )); neg( x ) := 1 / x =Int 0 . 0

then the following new equivalence is found:

1:f(1:zip(tl(morse), not(tl(morse)))) � 1:zip(tl(morse),not(tl(morse))).

We also note that the stream example shows that the proof system introduced in this paper
includes the one defined in [14] whenever behavioural equational specifications can be encoded
as programming language definitions. However, the definition for the equivalence we introduced
here is more general: the equivalence considered in [14] can be defined using the LTL formula
pattern �O while the one defined here uses ��O.

10 Conclusion and Future Work

We have presented a definition for program equivalence, a logic that encodes this definition in
its formulas, and a proof system for the logic, which is proved sound and weakly complete.
A prototype implementation for the proof system in the K framework was also presented and
illustrated on example of equivalent programs in languages from two different paradigms.

The proposed approach is generic: it does not depend on K and the language being defined
in K, but requires a formal semantics of the language of interest as a term-rewriting system.
The chosen equivalence relation is also parametric in a certain observation relation and requires
that starting from configurations in the observartion relation, configurations in the observarion
relation will be encountered again. We show the approach is applicable for concrete and symbolic
programs and for terminating and non-terminating ones.

Future Work We are currently applying our deductive system for proving the correctness
of a compiler between two languages (as part of another project we are involved in). The
source language is a stack-based language with control structures (loops, conditionals, dynamical
function definitions). The target is also stack-based but only has (possibly, conditional) jumps.
The correctness of the compiler amounts to proving the equivalence of several pairs of symbolic
programs; in each pair, one component denotes a source-language control structure, and the
other component is the translation of that control structure in the target language using jumps.
We are also planning to combine our program-equivalence verification with matching logic [19],
a language-independent logic for programs written in languages with a rewrite-based semantics.
The idea is to prove matching logic properties on programs in the source language, and guarantee,
via the compiler’s correctness that the compiled programs in the target language satisfy those
properties as well.
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