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Abstract: We propose a logic and a deductive system for stating and automatically proving the
equivalence of programs written in deterministic languages having a rewriting-based operational
semantics. The chosen equivalence is parametric in a so-called observation relation, and it says that
two programs satisfying the observation relation will inevitably be, in the future, in the observation
relation again. This notion of equivalence generalises several well-known equivalences, and is shown
to be appropriate for deterministic programs. The deductive system is circular in nature and is
proved sound and weakly complete; together, these results say that, when it terminates, our system
correctly solves the given program-equivalence problem. We show that our approach is suitable
for proving equivalence for terminating and non-terminating programs as well as for concrete and
symbolic programs. The latter are programs in which some statements or expressions are symbolic
variables. By proving the equivalence between symbolic programs, one proves the equivalence of
(infinitely) many concrete programs obtained by replacing the variables by concrete statements or
expressions. The approach is illustrated by proving program equivalence in two languages from
di Lerknt programming paradigms. The examples in the paper, as well as other examples, can be
checked using an online tool.
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Résumé :  Nous proposons une logique et un systéeme déductif pour exprimer et prouver
automatiquement I’équivalence de programmes dans des langages déterministes munis de sé-
mantiques opérationnelles définies par réécriture. Le systeme déductif proposé est de nature
circulaire; nous démontrons qu’il est correct et faiblement complet. Ces deux résultats sig-
nifient que, lorsqu’il termine, notre systéme résout correctement le probléeme d’équivalence de
programmes tels que nous I'avons posé. Nous montrons que ce systeme fonctionne autant pour
des programmes qui terminent que pour des programmes qui ne terminent pas. Les programmes
dits symboliques, dans lesquels certaines expressions ou instructions restent non-interprétés, peu-
vent également étre traités par notre approche. La démonstration d’une équivalence entre deux
programmes symboliques revient a démontrer I’équivalence entre une infinité potentielle de pro-
grammes concrets, qui sont des instances des programmes symboliques obtenues en remplacant les
variables symboliques par des instructions ou des expressions concréetes. L’approche est illustrée
par la preuve d’équivalence de programmes dans deux langages appartenant a des paradigmes
de programmation di [&rents. Les exemples contenus dans I'article, ainsi que d’autres exemples,
peuvent étre essayés dans un outil en ligne.

Mots-clés : Equivalence de programmes, Raisonnement circulaire, K framework



1 Introduction

In this paper we propose a formal notion of program equivalence, together with a language-
independent logic for expressing this notion and a deductive system for automatically proving it.
Programs can belong to any deterministic language whose semantics is specified by a set of rewrite
rules. The equivalence we consider is parametric in a certain observation relation, and it requires
that, for all programs satisfying the observation relation, their executions eventually lead them
into satisfying the observation relation again. The proof system is circular: its conclusions can
be re-used as hypotheses in a controlled way. Since the problem it tries to solve is undecidable,
our proof system is not guaranteed to terminate. When it does terminate, it solves the program-
equivalence problem as stated, thanks to its soundness and weak completeness properties.

The proposed framework is shown suitable for terminating and nonterminating programs as
well as for concrete and for symbolic programs. The latter are programs in which some expres-
sions and/or statements are symbolic variables, which denote sets of concrete programs obtained
by substituting the symbolic variables by concrete expressions and/or statements. Thus, by
proving the equivalence between symbolic programs, one proves in just one shot the equivalence
of (possibly, infinitely) many concrete programs.

Example 1.1 We want to translate general programs with for-loops into programs with while-
loops. This amounts to translating the symbolic program in the left-hand side to the one in the
right-hand side.

for | from Ato B do{S } I =A;whilel <=Bdo {S;I1=1+1}

Their symbolic variables I; A; B; S can be matched by, respectively, any identifier (1), arithmetical
expressions (A;B), and program statement (S). We assume that the for-loop and while-loop
statements have independent semantics (i.e., the for instruction is not desugared into to a while
instruction) and the for loop does not modify the counter I, nor any program variables occurring
in A; B (note that program variables are identifiers). If we prove the equivalence between these two
symbolic programs then we also prove that every concrete instance of the for-loop is equivalent
to its translation to the corresponding whi le-loop.

Example 1.2 The second example illustrates the equivalence of non-terminating corecursive pro-
grams. Such programs are similar to recursive programs, but their terminating condition is miss-
ing, and therefore they describe non-terminating computations. Here we consider corecursive
programs over infinite sequences of integers (also called streams). Such a program is expressed
using a set of equations; for each equation, the left-hand side is the name of a function being
defined, possibly with parameters, and the right-hand side is the function’s body. Let us consider
the corecursive program consisting of the following equations:

hd(x:xs) X; tI(x:xs) xs;
zero 0 : zero; one 0 : one;
blink 0 : 1 : blink; zip(xs ,ys) hd(xs) : zip(ys, tI(xs));

where X ranges over integers and xs over streams. Obviously, the complete evaluation of zero
produces the infinite sequence 0 - 0 : 0 : :::, and the evaluation of one produces the infinite
sequence 1 : 1 : 1 : :::, blink produces the infinite sequence 0 : 1 : 0:1::::, and zip(xs;ys )
produces a stream that alternates the elements of the two streams given to it as parameters. The
function hd( xs ) returns the first element of the stream xs (this is the only function in the
languge that does not produce a stream), and tl( xs ) returns the stream obtained from xs
after removing the first element. A well-known equivalence over streams is that of blink and



zip(zero,one) and many proofs of it can be found in the literature. We use this example to show
that our notion of equivalence is general enough for being applicable to terminating programs as
well as to non-terminating ones. The example also serves to illustrate the language-genericity of
our approach.

Hereafter we often refer to symbolic programs just as "programs™. A typical use of our framework
consists in:

1. formally defining a programming language L, whose concrete programs are ground terms
over a certain signature defining the language’s syntax, and whose symbolic programs are
terms with variables over that signature. The operational semantics of L is assumed given
as a conditional term-rewriting system;

2. automatically constructing a new language definition L L, whose programs are pairs of
programs of L[}

3. applying our deductive system to programs in L L.

Running the deductive system amounts essentially to symbolically executing the semantics of
L L, which consists in applying the rewrite rules in the semantics with unification instead of
matching; details are given in the paper. This may lead to one of the following outcomes:

< termination with success, in which case the programs given as input to the deductive system
are equivalent, due to the deductive system’s soundness;

< termination with failure, in which case the programs given as input to the deductive system
are not equivalent, due to the system’s weak completeness;

< non-termination, in which case nothing can be concluded about equivalence.

Non-termination is inherent in any sound automatic system for proving program equivalence,
because the equivalence problem is undecidable. We show, however, that our system termi-
nates when the programs given to it as inputs terminate, and also when they do not terminate
but behave in a certain regular way (by infinitely repeating so-called observationally equivalent
configurations).

Contributions A language-independent logic and a proof system suitable for stating and
proving the equivalence of concrete and of symbolic programs as well as of terminating and
non-terminating ones. Programs can be written in any deterministic language that has a formal
operational semantics based on term rewriting. We prove the soundness and weak complete-
ness of the proof system, which ensure that the system correctly solves the program equivalence
problem as stated. The approach is illustrated on two dilerknt languages. The examples in
the paper, as well as and other examples, can be tried using an online tool, currently available
at http://fmse. info.uaic.ro/tools/K/?tree=examples/prog-equiv/README.

With respect to the conference paper [I]: the equivalence relation is reformulated in terms
of a Linear Temporal Logic (LTL) formula, and the soundness/weak completeness proofs are
simpler, thanks to an encoding of executions of our proof system as the building of proofs for the

1We have developped the approach for the equivalence of programs belonging to one language L for simplicity
reasons. However, considering two languages L and L° poses no conceptual di [ciility and can even be reduced to
the one-language case. Indeed, any program in language L and any program in language L° are also programs in
the language L ] L, i.e, in the disjoint union of the two languages. This union obtained by (possibly) renaming
some common language constructions to avoid ambiguity.
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LTL formulas in question. The genericity of the approach is illustrated by considering programs
in two di Lerent programming paradigms.

We also generalise (for the needs of the program-equivalence approach) a generic symbolic
execution technique introduced in [2]: by executing semantical rules with unification instead of
matching we also allow, e.g., the symbolic execution of symbolic statements in addition to the
symbolic data considered in [2].

Related Work An exhaustive bibliography on the program-equivalence problem is outside
the scope of this paper, as this problem is even older than the program-verification problem.
Among the recent works perhaps the closest to ours is [3]. They also deal with the equivalence of
parameterised programs (symbolic, in our terminology) and define equivalence in terms of bisim-
ulation. Their approach is, however, very di[erent from ours. One major dilerence lies in the
models of programs: [3] use CFGs (control flow graphs) of programs, while we use the operational
semantics of languages. CFGs are more restricted, e.g., they are not well adapted to recursive
or object-oriented programs, whereas operational semantics do not have these limitations. Of
course, our advantage will only become apparent when we actually apply our approach to such
programs.

Other closely related recent works are [4, 5, 6]. The first one targets programs that include
recursive procedures, the second one exploits similarities between single-threaded programs in
order to prove their equivalence, and the third one extends the latter to multi-threaded programs.
They use operational semantics (of a specific language, which focuses on recursive procedure
definition) and proof systems, and formally prove their proof system’s soundness. In [4] they
make a useful classification of equivalence relations used in program-equivalence research, and
use these relations in their work.

However, all the relations classified in [4] are of an input/output nature: for given (sequences
of) inputs, programs generate equal (sequences of) outputs and/or do not terminate. Such re-
lations are well adapted for concrete programs with inputs and outputs, but not to symbolic
programs with symbolic statements, for which a clear input-output relation may not exist. In-
deed, symbolic statements may denote arbitrary concrete statements - including ones that do not
perform input/output - actually, when symbolic programs are concerned, one cannot even rely
on the existence of inputs and outputs. One may rely, however, on the observations of the e [edts
of symbolic statements on the program’s environment (e.g., values of variables). Our notion of
equivalence (parameterised by a certain observation relation) allows this, both for finitely and
for infinitely many repeated observations. Moreover, we also show that some of the relations
from [4] can be encoded in our relation by adding information to the program environment.

Many works on program equivalence arise from the verification of compilation in a broad
sense. At one end there is full compiler verification [7], and at the other end, the so-called
translation validation, i.e., the individual verification of each compilation [8] (we only cite two
of the most relevant recent works). As also observed by [3], symbolic program verification can
also be used for certain compilers, in which one proves the equivalence of each basic instruction
pattern from the source language with its translation in the target language. The application
of this observation to the verification of a compiler (from another project we are involved in) is
ongoing and will be presented in another paper.

Several other works have targeted specific classes of languages: functional [9], microcode [10],
CLP [1I]. In order to be less language-specific some works advocate the use of intermediate
languages, such as [12], which works on the Boogie intermediate language. Only a few approaches,
among which [[7, [10], deal with real-life language and industrial-size programs in those languages.
This is in contrast to the equivalence checking of hardware circuits, which has entered mainstream
industrial practice (see, e.g., [L3] for a survey).



Our proof system is inspired by that of circular coinduction [14], which allows one to prove
equalities of data structures such as infinite streams and regular expressions. A notable di [erknce
between the present approach and [14] is that our specifications are essentially rewrite systems
(meant to define the semantics of programming languages), whereas those of [14] are behavioural
equational theories, a special class of equational specifications with visible and hidden sorts.

Symbolic linear temporal-logic model checking in term-rewriting systems, which we here use
for proving program equivalence, was earlier studied in [15]. There are dilerknces in expres-
siveness: we only use certain specific LTL formulas for encoding equivalence, whereas [15]
handle full LTL; on the other hand, they consider unconditional term-rewriting systems only,
whereas we also consider conditional term-rewriting systems. For our approach, which is based
on programming-language semantics, having conditional rewriting systems is essential since un-
conditional rules are not expressive enough to express nontrivial languages semantics. There
are also dilerences in the underlying deduction mechanisms: [I5] rely on powerful unification-
modulo-theories algorithms, while our unification algorithm delegates deduction to satisfiability
modulo theory (SMT) solvers.

Organisation. After this introduction, Section presents our running examples: imp, a
simple imperative language, and stream, a corecursive language for handling streams of integers.
Both languages are defined in K [16], a formal framework for defining operational semantics of
programming languages. Our approach is, however, independent of the K framework and the imp
language; hence, we present a general, abstract mechanism for language definitions in Section [3}
and show how K definitions are instances of that mechanism. In Section[4we define a unification
operation and prove some properties about it, which are used in Section [5 where we present
a generic symbolic execution approach for languages defined in the proposed mechanism. We
formally relate symbolic execution to concrete execution, which we use later in the paper for
proving the correctness properties (soundness and weak completeness) of our proof system.

In Section [6] we recap linear-temporal logic (LTL). This is then used in Section [7} which
contains our proposed definition for program equivalence as the satisfiaction of certain LTL
formulas over an execution of the transition system generated by (concretely) executing a pair
of programs. The formula says that the programs will repeatedly satisfy a certain observation
relation; this relation is a parameter of the approach. The syntax and semantics of a logic
capturing the chosen equivalence are defined.

The proof system for proving equivalence formulas is presented in Section [8] together with
its soundness and weak completeness. The properties say that, when it terminates, the proof
system correctly answers to the question of whether its input (which is a set of formulas of
program-equivalence logic) denotes equivalent programs. Their proofs are based on building proof
witnesses for LTL formulas expressing equivalence. The witnesses are obtained by symbolically
executing the pair of programs under investigation.

In Section [9 we report on a prototype implementation of the proof system in the K frame-
work. This allows one to stay within the K environment when proving program equivalence for
languages also defined in K. Finally, the conclusion and future work are presented in Section

Acknowledgments This work was partially supported by Contract 161/15.06.2010, SMISC-
SNR 602-12516.



2 Two Examples of Programming Languages and their Se-
mantics in K

We use two dilerknt languages as running examples: imp, a simple imperative language, and
stream, a language for manipulating integer streams. We present their formal definitions in the
K framework [16], a formal environment for defining programming languages, type systems, and
analysis tools. The main ingredients of a K definition are computations, configuration, and rules.
Computations are sequences of elementary computational tasks, which consist of e.g. adding two
numbers, or transforming the program being executed. A configuration is a nested structure of
cells that include all the data structures required for executing a program. The rules describe
how the configurations are modified when the computational tasks are performed. For details
on the theoretical background of K readers can consult [16].

K language definitions can be executed and analysed using tools from the K environment.
Examples of language definitions and related analysis tools can be found on the web page http:
//kframework.org.

2.1 imp - A Simple Imperative Language

The first language we are using as running example is imp, a simple imperative language in-
tensively used in research papers. A full K definition of it can be found in [16]. The syntax of
imp is described in Figure[I]and is mostly self-explained. The attribute (given as an annotation)
strict from the syntax means the arguments of the annotated expression/statement are evaluated
before the expression/statement itself is evaluated/executed. If the attribute has as arguments a
list of natural numbers, then only the arguments in positions specified by the list are evaluated
before the expression/statement. The strict attribute is actually syntactic sugar for a set of K
rules, briefly presented later in the section. The configuration of an imp program consists of
code to be executed and an enviroment mapping identifiers to integers. In K, this is written as a
nested structure of cells: here, a top cell cfg, having a cell k containing code and a cell env (see
Figure . The sort Code[’f] contains statements and arithmetic and Boolean expressions. The
empty code is denoted by , and code sequencing is denoted by y/. Note that this is di [erent
from the sequencing operation ; of IMP.

The cell k includes the code to be executed, represented as a list of computation tasks
Ci1 Yy C, vy ::: meaning that first C; will be executed, then C,, etc. Computation tasks
are typically the evaluation of statements and elementary expressions. An example of sequence
of computations is given Figure ); this sequence is obtained by applying the heating rules
generated by the strict attribute for the statement if and the operator <. The heating/cooling
rules are explained latter. The cell env is an environment that binds the program variables to
values; such a binding is written as a multiset of bindings of the form, e.g., x ® 3.

The semantics of imp is given by a set of rules (see Figure |2) that say how the configuration
evolves when the first computation task (statement or instruction) from the k cell is executed.
The dots in a cell mean that the rest of the cell remains unchanged. Except for the conjunction,
negation, and 1f statement, the semantics of each operator and statement is described by exactly
one rule.

In Figure [2} the operations lookup : Map Id ¥ Int and update : Map Id Int ¥ Map
are part of the domain of maps and have the usual meanings: lookup returns the value of an
identifier in a map, and update modifies the map by adding (or, if it exists, by updating) the
binding of an identifier to a value.

2In the K terminology the sort Code is called K. We changed its name in order to avoid confusions due to
name overloading.
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Int ::= domain of integer numbers (including operations)

Bool ::=domain of boolean constants (including operations)
Id ::= domain of identifiers
AExp :=IntjId BExp :=Bool
j AExp / AExp [strict] j AExp <= AExp [strict]
j AEXxp * AExp [strict] j not BEXp [strict]
j AEXp + AEXxp [strict] j BExp and BExp [strict(1)]
J (AEXp) j (BExp)
Stmt ::=skip j Stmt ; Stmt j{Stmt}
j 1d = AExp jwhile BExp do Stmt
j if BExp then Stmt j for 1d from AExp to AExp
else Stmt [strict(1)] do Stmt [strict(2; 3)]

Code ::=1dj Int j Bool j AExp j BExp j Stmtj j Code y Code

Figure 1: K Syntax of IMP

hhly + 12 ik derg D hhly +ine 2 dk icrg
111 ERall PR PR P 20 11| ERRNTYE PR PR
hh|1/|2 ik icngIZ&O) hh|1=|nt|2 ik icfg
hhly <=1z ik dcig D hhly gne 2 dk degg
hhtrue and B i icig D hhB i ierg
hhfalse and B ik ¢ty > hhfalse ik licrg
hhnot true i icrg ) hhfalse ik e
hhnot false ik ey D hhtrue i ey
hhskip ik dctg D ik licrg
hhS1;S2 ik derg D hhS1 Y So ik lerg
hh{S} ik ldcg D S 1k ldcq
hhif true then Sy else Sy ik iclg D hhS1 1k g
hhif false then Sy else Sy ik iclg D hhSy ik lcg
hhwhile Bdo S ik icg D
hhif B then{ S ;while B do S }else skip ik lcyq
hhfor X fromly to I doS ik icrg D
hhX =1y ;ifF X <=1, then{ S ;for X from Iy +)n,; 1to 1, do S }else skip ik lcig
hhX  ihEnVieny icrg D hhlookup(Env; X) ikhEnvVieny licrg
hhX =1 ikhEnVieny icig D hh ikhupdate (Env; X; )ieny  icrg

Figure 2: K Semantics of IMP



* +
hxy <0y if( )y=0;elsey=1;ik

hx @3 y A Tigy
a) K Configuration of imp b) An imp configuration snapshot

Figure 3: imp
configurations.

In addition to the rules in Figure [2] there are rules induced by the strictness of some state-
ments. For example, the if statement is strict only in the first argument, meaning that this
argument is evaluated before the if statement. This amounts to the following heating/cooling
rules (automatically generated by K):

hhif BE then Sy else S, ik ¢y Y hBE yif thenS;elseS; ik ey
hhB yif thenS;elseS; ik icg ) hhif B then Syelse Sy iy iy

where BE ranges over BExpnffalse; trueg, B ranges over ffalse; trueg, and is a special variable
destined to receive the value of BE once it is computed. Finally, the following rules, related to the
construction of terms of sort Code, complete de K definition of imp: for all C; Cy; C,; C3 : Code:
hh y Cik lcfg D hClyx  lcrg, and hi(Cq Y C2) Y Csik  licig D thC1 Y (C2 Y C3)ik  lcfg. The
first one says that the empty sequence is a left-neutral element, and the second one says that
vV is right-associative.

2.2 stream - a Simple Language for Corecursive Programs

Corecursive programs di[er from recursive ones by the fact that their termination condition is
missing. Besides functional languages, which typically use corecursion for handling infinite data
structures, several other languages have been extended to support such features (see, e.g., [17] for
an extension of Prolog, and [18] for an extension of Java). An example of a corecursive program
was given in Section[ll Here we present a simple language for writing such programs over integer
streams (= infinite sequence of integers). The standard semantics for corecursive functions is
based on lazy evaluation, which delays the evaluation of expressions until their value is needed.
For infinite expressions this evaluation is always partial, in the sense that only a finite part of
the infinite expression is evaluated, e.g., a finite prefix of an infinite stream.

Therefore, we say that a stream expression is a result value if it is of the form i : SE, where
the integer i is the first element of the stream and SE is the rest of the stream expression. Beside
the constructor _ : , two functions, often called destructors, are essential in handling streams:
hd( xs ), which returns the first element of the stream, and tl( xs ), which returns the stream
obtained after the first element is removed.

The syntax of the stream language is given in Figure [d There are three expression kinds:
BEXp - for boolean expressions, IEXp - integer expressions, and SExp - stream expressions. The
operator X /B . Y is the conditional operator if B then X else Y written in a Hoare-like
syntax, which is more compact. There are two kinds of statements (specifications SSpec): integer
function specifications, written as f :=::: or f(:::) :=::: (these are usual, recursive functions),
and stream specifications, written ass  :::or s(:::) ::: (these are corecursive functions)

A stream program is a sequence of function specifications, followed by an expression to be
evaluated. The K configuration for stream programs is represented in Figure[] As the snapshot
suggests, the cell specs stores definitions of recursive and corecursive functions. The right-hand
side of a function definition is a -expression, defined as follows:

cfg



BExp ::= Bool

. . SSpec ::=1Id := SExp ;
j IExp = IExp [strict]

. . SExp = 1Id jid (lds) :=1Exp ;
j BExp & BExp [strict(1)] . . .
) . j tl ( SExp ) [strict] jid (lds) SExp ;
j 1 BExp [strict] .
IE Int j1d ( SExps) SPgm ::= SSpecs Exp
xp = 1In
P . . j IExp : SExp SExps ::= ListfSExp;";"g
j hd (SExp) [strict] . .
Exp ::= IEXpjSExp Ids ::= Listfld;"; "9

j 1Exp + IExp [strict]

. . SSpecs ::= ListfSSpec;""'g
j 1Exp / BExp . SExp [strict(2)]

Code ::= IExp j SExp j Exp j SSpec j SSpecs j SPgm j Code y Code

Figure 4: K Syntax of stream

Val ;= (lds). SExp

The cell out includes results of evaluations, which can be integers or stream result values, depend-
ing on the type of the expression to be evaluated. This cell is essential for the stream equivalence
definition since it defines their observational relation. Note that the evaluation of stream ex-
pressions is an nonterminating process and the out cell includes only finite approximations of
streams.

The K semantics of stream is given in Figure [ff The rules giving semantics for the
boolean/integer operators that are similar to those from the imp definition and are omitted.
The semantics of a function call expression consists of replacing the expression with the function
body, where the formal parameters are replaced by the actual arguments (if any). The other
rules are self-explained.

Example 2.1 We illustrate the semantics of stream on the following example. Assume that
the current configuration is hhtl(one)ichone A (): 1:oneispecsh[diouticrg. IN order to evaluate
the expression tl(one), the above configuration is heated to

Now, the rule evaluating stream functions without parameters (the ninth one in Figure @
is applied and generates the term hhl:oneytl( )ixhone A (): 1:oneispecsh[Jiouticry. The
expression 1:one is a result value and the corresponding cooling rule is applied, producing

hhtl(1:one)ixhone A (): 1:oneispecsh[Jiouticry
Applying the rule for tl and then the rule for function calls we obtain
hhl:oneixhone A (): 1:oneispecsh[Jiouticig

Since the content of the k cell consists only of 1:one, the rule writing in the out cell (the first
one in Figure [6) can be applied the following configuration is obtained:

hhoneixhone A  (): 1:one€ispecsh[]: Liouticrg

This sequence of rules can be repeated arbitrarily (but finitely) many times, and they generate
arbitrarily larger (but finite) approximations of the infinite stream one in the out cell.



hhcodeikhMapisspecshSEXpiouticfg
a) K configuration of stream

hel (blink)yhd( )ik

hzero @ ():0 : zero one @ ():1 : one blink @ ():0 :

hl : Oigut
b) A stream configuration snapshot

Figure 5: stream configurations.

hhl = SEihOE iout lctg D NMSEIOE = Hoyr ey

A iKhOEioue ety D MikhOE : Tioue ictg

hhly =1 ik icngll =1t 12 ) hhtrue iy icfg

hhly =1 ik g™ 11 Eine 12 ) hhfalse ik s

hhhd( 1z ) ik g D hhl i iy

hhiE{ 7/ true . IE> ik icfg)hhlEl ik icfg

hhIE1 / false . IE2 ik lcig D MMIE2 ik g

hhtl( _ : SE) ik licig D NhSE 1k lcfg

hhFikh F A ():SE ispecs dcig PNMSE ikh F A ():SE  ispecs
ME(VS) ih F A (XS)SE ispecs ictg D MSE[Vs=Xs] ixh F @

where the operation [ =] denotes syntactical substitution:

Figure 6: K Semantics of stream.

3 Language Definitions

1 blinkispecs

icfg
(Xs):SE

Ispecs

i cfg

cfg

Our program-equivalence approach is independent of the formal framework used for defining
languages as well as from the languages being defined. We thus propose a general notion of
language definition and illustrate it later in the section on the K definition of imp. We assume
the reader is familiar with the basics of algebraic specification and rewriting. A language L is

defined by:

1. A many-sorted algebraic signature , which includes at least a sort Cfg for configurations
and a subsignature B! for Booleans with their usual constants and operations.

may

also include other subsignatures for other data sorts, depending on the language L (e.g.,
integers, identifiers, lists, maps,...). Let P32 denote the subsignature of  consisting
of all data sorts and their operations. We assume that the sort Cfg and the syntax of L
are not data, i.e., they are defined in n Pa% and that terms of sort Cfg have subterms
denoting statements (which are programs in the syntax of L) remaining to be executed.
Let T denote the -algebra of ground terms and T .5 denote the set of ground terms
of sorts. Given a sort-wise infinite set of variables Var, let T (Var) denote the free -
algebra of terms with variables, T .s(Var) denote the set of terms of sort s with variables,

var(ty;:::;tn) , var(ty) [ var(t,). For any substitution :Var ¥ T (Var) and term
t2 T (Var) we denote by t the term obtained by applying the substitution to t. We



use the diagrammatical order for the composition of substitutions, i.e., for substitutions
and ¢, the composition ° consists in first applying then °.

2. A -algebra T, over which the semantics of the language is defined. T interprets the data
sorts (those included in the subsignature Pa%?) according to some P3%@-algebra D. T in-
terprets non-data sorts as ground terms over the signature of the form ( n Pa&) [ D (1)
i.e., the elements of D are added to the signature n DP2% as constants of their respective
sorts. That is, a language is parametric in the way its data are implemented; it just assumes
there is such an implementation D. This is important for technical reasons (existence of a
unique most general unifier, discussed below). Let Tg denote the elements of T that have
the sort s; the elements of Tcry are called configurations. Any valuation :Var ¥ T is
extended to a (homonymous) -algebra morphism : T (Var) ¥ T. The interpretation
of a ground term t in T is denoted by T¢. If b 2 T .gooi(Var) then we write = b il
b = Di¢rue, Where b is the Boolean value obtained by applying to b. For simplicity, we
often write true; false instead of Dirue; Dsalse -

3. A set S of rewrite rules b)) r, whose formal definition is given later in the section.

We explain these concepts on the imp example. Each nonterminal from the syntax (Int, Bool,...)
is a sort in . Each production from the syntax defines an operation in ; for instance, the
production AExp ::= AExp + AEXp defines the operation _+_ : AExp AExp ¥ AExp. These
operations define the constructors of the result sort. For the configuration sort Cfg, the only con-
structor is hh__ixh_ienyicrg : Code  Mapq. e ¥ Cfg. The expression hhX =1y CikhEnVienyicg
is a term of Tcrg(Var), where X is a variable of sort Id, I is a variable of sort Int, C is a variable
of sort Code (the rest of the computation), and Env is a variable of sort Map ., (the rest of
the environment). The data algebra D interprets Int as the set of integers, the operations like
+1nt (cf. Figure [2)) as the corresponding usual operation on integers, Bool as the set of Boolean
values ffalse; trueg, the operation like ~goor as the usual Boolean operations, the sort Map,4.n¢
as the multiset of maps X A 1, where X ranges over identifiers Id and 1 over the integers Int.
The fact that maps are modified only by the update operation ensures that each identifier is
bound to at most one integer value. The other sorts, AExp, BExp, Stmt, and Code, are inter-
preted in the algebra T as ground terms over a modification of the form of the signature
, in which data subterms are replaced by their interpretations in D. For instance, the term
if 1>, 0 then skip else skip is interpreted in T as if true then skip else skip, since D
interprets 1 >t 0 as Dirye (= true).
The rewrite rules describe the transitions over configurations, whose formal definition is given
below.

Definition 3.1 (pattern [19]) A pattern is an expression of the form ~ ,where 2T .cf(Var)
is a basic pattern and 2 T .gooi(Var) is a boolean term called the pattern’s condition. If

2Tcigand :Var T wewrite(; )F ™ for = and F . WeletJ ~ Kdenote
the set £ j there exists suchthat( ; )F ™ ¢.

For any set of patterns  we letJ K , 8,2 J”K. A basic pattern thus defines a set of (concrete)
configurations, and the condition b gives additional constraints these configurations must satisfy.
In [19] patterns are encoded as FOL formulas, hence the conjunction notation “b. In this
paper we keep the notation but separate basic patterns from constraining formulas. We often
identify basic patterns with patterns “true.

Examples of patterns are hhly + 1> y CikhEnvVienyictg and hhly /7 1oy CikhEnVignyicrg ™ 12 &t 0.
An example of configuration that satisfies the second pattern is hh(4 7 3) yskipicha® Sienyicrg.



Remark 3.1 Any pattern “~ can be transformed into a "semantically equivalent pattern

In OGe.,d ™~ K=1J" %) such that °is linear and all its data subterms are variables.
For this, just replace all duplicated variables and all non-variable data subterms of by fresh
variables, and add constraints to equate in  the fresh variables to what they replaced. The
transformations are presented in detail in [20].

Example 3.1 The pattern hhX /7 YighY A A+ lienicig™ A &1 1 with X; Y variables of
sort Id and A of sort Int is nonlinear because Y occurs twice. Moreover, it contains the non-
variable data terms A + ¢ 1. It is thus transformed into the pattern

X /7 Y ikhY ' B Alignyicig ™Y =1a Y "Bool A =int A +int 1 Mgool A &t 1

The proof system we propose in Section [8 uses as a basic block the testing of inclusions of the
form J”K  J”%. Therefore we need criteria for such inclusions. The following lemmas define
su [cieht conditions.

Proposition 3.1 Let " and be two basic patterns and a substitution suck, that 0=
=y forally@var( ’), agd var( )\var( ~ )=;. ThenJ ~ K=J '~(" ~ ) where

denotes the conjunction ;5 . 0y X =X .

Proof We prove the equality of the two sets by double inclusion.

( YLet 2J ™~ K. Thenthereis :Var ¥ T suchthat = and = . Let {denote
the valuation °:Var ¥ T givenbyx °=x forx2var( ),andy "=y fory & var( %). We
have °'= ¢ = = | Sincevar( )\var( % =;, itfollowsthat "= i1 . Finally,
var( ") \var( ) = ; implies var( ") \yar( (x)) = ; and hence x °’=x for x 2 var( ?).
Now, °°0 = at implies 2 J °~ " ~ ) Since was chosen arbitrarily, it follows that
IAK IIAC A Ky
v () Assumethat \2J( "~ ~ )K Thenthereis °:Var ¥ T suchthat = °‘ and ’j=
(" ~). From " wegetx "=x forx2var( "), whichimplieg, = °°= °* =
Hence 2J ~ K. Since was chosen arbitrarily, it follows that J !~(~ ~ )X J 2 K.
Proposition 3.2 Let ~ and "~ °be two patterns and \a substitution such that * =,
y =yforaly@var(",andvar( )\var( ~ )=;. If  ~ implies °, thenJ ~ K
J [UPAN OK.

Proof Let 2 ~ . Then there is a valuation such that = and FE . Let " be
defined as in Proposition Then °'= and ' ~  that implies ° = ° by the
hypotheses. Hence 2 J ~ K. Since was chosen arbitrarily, we may conclude the conclusion
of the proposition.

Remark 3.2 The conditions var( )\var( ~ )=;andy =y forally & var( ") required
by Proposition [3.1) and Proposition [3.2] can be easily obtained by a variable renaming.

Proposition 3.3 Let ~ and °~ ° two patterns such that there is a substitution  with
(29 = A~ _Then] ~ K J "'~ K

Proof Let 2 ~ . Then there is a valuation suchthat = and jE . Let ° be defined
by x ! = x for each x in Var. It follows %= 0 = = and similarly °? =
that implies ° = . Since was chosen arbitrarily, we may conclude the conclusion of the
proposition.  We are now ready to define semantical rules and the transition system that they
generate.



Definition 3.2 (semantical rule and transition system [19]) A rule is a pair of patterns
of the form b)) r (where r is the pattern r”true). Any set S of rules defines a labelled
transition system (Tcrg; »s), where  Ds UjCthere are , (I“b)r)2Sand :Var I T
suchthat ( ; )FEI~band (% )Fr.

Assumption 1 We assume without restriction of generality that for all rules I"b) r2 S, | is
linear and all its data subterms are variables. The generality is not restricted because the pattern
I”~b in the rule I"bD) r 2 S can always be replaced by an equivalent one (cf. Remark
with the desired properties. This transformation of rules does not modify the transition system

(Tetg; D's)-

4 Unification

We shall be using unification both for defining our program-equivalence proof system and for
proving properties about it. In this section we define unification and prove a technical lemma
used later in the paper.

Definition 4.1 (Unifiers) A symbolic unifier of two terms t;;t, is any substitution : var(t1)]
var(tz) ¥ T (Z) for some set Z of variables such that t; = t, . A concrete unifier of terms
t;tp is any valuation :var(ty) Jvar(t;) ¥ T such that t; = t, . A symbolic unifier of
two terms t1; t, is a most general unifier of t;; t, with respect to concrete unification whenever,
for all concrete unifiers of t; and t,, there is a valuation such that = . We often call a
symbolic unifier satisfying the above a most general unifierf]

We say that terms t;;t, are symbolically (resp. concretely) unifiable if they have a symbolic
(resp. concrete) unifier. The next lemma gives conditions under which concretely unifiable terms
are symbolically unifiable.

Lemma 4.1 All linear, concretely unifiable terms t;;t, 2 T (Var), such that all their data
subterms are variables, are symbolically unifiable by a most general unifier g :var (ty)Jvar (tp) ¥

T (var(ty) ] var(t2)).

Proof By induction on the structure of, say, t;. In the base case, t; 2 Var, and we take

2, (t2 ® )1 ldivarcey, i€, ¢+ Maps t; to tp, and is the identity on var (tz). Obviously, {:

is a unifier of t;;ty, since t; {21 = t,. To show that E; is most general, consider any concrete
unifier of t;;tp, say, . Then, t; ¢! =t, because { mapst; toty andt, =t; because
is a concrete unifier. Thus, t; ¢ =t; . Moreover, for all x 2 var (), X {# =X since ¢ is
the identity on var (to). Thus, for all y 2 var(t;) ] var (t.)(= ftyg J var(t2)), y £ =y , which
proves the fact that {21 is a most general unifier (by taking = in Definition of unifiers).
The fact that the codomain of g is T (var(ty) ] var(tz)) results from its construction.

In the inductive step, t; = f(s1;:::;Sp) withf 2 n Data E]n 0,and sg;:::;8,, 2T (Var).
For t, there are two subcases:

- tp is a variable. Then, let & , (tz @ t1) ] ldjvarce,), i€, ¢ maps tp to ty, and is the

identity on var (t;). We prove that g is a most general unifier with codomain T (var (t1)]
var (tz)) like in the base case.

Seven though the standard notion of most general unifier in algebraic specifications and rewriting is a di [erent
one.

4f 2 n Datl pecause the contrary would mean that t; has a Data sort, in contradiction with the lemma’s
hypotheses.



et =g(uy;ii;un) withg2 ., m 0,and ug;:::;un 2 T (Var). Let be a concrete
unifier of ty; tp, thus, (F )(s1 :::sn ) =1 (9 )(Ur :::um ), where we emphasize by sub-
scripting the equality symbol with T that the equality is that of the model T. Since T
interprets non-data terms as ground terms over the modified signature (I), we have f = f,
which implies f =g, g =g, m=n,ands; =u; fori=1;:::;n. Since t; and t, are
linear and all their data subterms are variables, the subterms s; and u; also have these prop-
erties. Using the induction hypothesis we build most-general-unifiers 3U)f sj and u;, which
have codomains T (var(s;)Jvar(u)), for i =1;:::;n. Letthen £, "L, S First,
is a substitution of var (t;) J var (tz) into T (var (t1) ] var (t2)) since var (t1) = JiL,var(si)
and var (t) = JjL,var (u;). Note that these equalities hold thanks to the linearity of t;; t,.

Second, g is a unifier of ty;t, since all §i are so. Third, we prove that E is a most

general unifier of t;;t,. Consider any concrete unifier of t; and t,, thus, s; = u; for
i = 1;::0;n. From the fact that all the § are most-general-unifiers of s; and u; for
i =1;:::;n, we obtain the E}(istence of valuations j such that & i = jwar(si)varu):
fori=1;:::;n. Then, , ?z% i, which is also well-defined thanks to the linearity of t;
and tz, has the property that . = , which proves that g is a most general unifier of

t; and t; and concludes the proof.

5 Symbolic Execution

In this section we present a symbolic execution approach for languages defined using the language-
definition framework presented in the previous section. We prove that the transition system
generated by symbolic execution forward-simulates the one generated by concrete execution,
and that the transition system generated by concrete execution backward-simulates the one
generated by symbolic execution (restricted to satisfiable patterns). This is used later for proving
correctness results for our program-equivalance deduction system.

Symbolic execution consists of applying the semantical rules over patterns using most general
unifiers. This generalises the symbolic execution approach proposed in [2], where unification was
encoded using matching with modified rules, and which did not allow for symbolic statements.
Symbolic execution generates a symbolic transition system whose states are patterns, and whose
transition relation is obtained by applying rewrite rules with the most-general unifiers whose
construction is given by Lemma[4.1]

Definition 5.1 (Symbolic transition relation) > »$ *'i[1, # |, thereisarule ,
(I~bY r) 2 S with var(l) \var( ) = ; and such that I; are concretely unifiable, and ~° =
r'~A(C ~b) ', where ' is unique, most general symbolic unifier of I; constructed as in the
proof of Lemma [4.1]

Definition 5.2 The derivative of a pattern is the set of patterns that can be obtained by one
symbolic execution step:  s(”) , 7% j 7 D$ ~'g. A pattern ~ is derivable if s(”) is a
nonempty set.

In the rest of the paper, for patterns > , ~ we let var(”) , var( ; ), and for rules

, I~*rD bweletvar( ) , var(l;b;r). Moreover, for symbolic transitions ~ ) ~’ we assume
without restriction on generality that var(”) \ var( ) = ;, which can always be obtained by
variable renaming. We also omit to write the subscript S in the derivatives notation whenever
it is understood from the context.



Lemma 5.1 If D)s %and 2 J7K then there exists " such that "2 3% and ~ D¢ ~°

Proof Let” , ~ . From Ds °weobtaintherule , I1”r) band the valuation :Var ¥
T suchthat =1 ,b =true,and "=r . From 2 J’K we obtain the valuation :Var ¥ T
such that = and = true. Thus, | and are concretely unifiable (by their concrete
unifier jvarayd Jvar( ))- Using Lemmawe obtain their unique most-general symbolic unifier
I', whose codomain is T (var(l) ] var( )). Let then :var(l)Jvar( ) ¥ T be the valuation
such that ' = juaray 1 Jvar¢ ). We extend ' to var(”; ) by letting it be the identity
onvar(®; )nvar(l; ), and extend to var(”; ) such that jyarmrynvarqy = Jvar@:rynvar(l)
and  jvar( ywar( ) = Jvar( ynvar( ). With these extensions we have x( 'y=x( ] ) forall
x2var(?; ).
Let *° , r '~(C ~b) ': we have the transition > )% *° by definition of the symbolic
transition system. There remains to prove °2J~%.

eontheonehand, (r ') =r( ' )=r( ] )=r = %thus, (% )Er ';

e on the other hand, (( ~b) ') = ('")~b('")= (7 )”~b( ] )= ~b =true
since =b =true;thus; &= (( ~b) ).

The two above items imply (% YE r '~ ~b) ', ie, (% ) E *° which concludes the
proof.

Corollary 5.1 For every concrete execution o )s 1 JDs ds nDs there is a symbolic
execution 7o )2 71 )3 D X I3 such that ;2J7;Kfori=0;1;::..

Lemma 5.2 If "2J”% and ~ )& ~° then there exists 2 Tcgg suchthat )s "and 2 J7K.

Proof From > )¢ “Ywith > , ~ and , I*r)bweobtain ?*=r '~( ~b) '. From
02J3”% we obtain :Var ¥ T suchthat °=(r ') and (( ~b) ') =true. We extend '
to var(”; ) by letting it be the identity on var(”; )nvar(l; ). Let :Var ¥ T be defined
by x =x( ! )forall x 2var(”;l),and x = x forall x 2 Var nvar(”;l), and let , | .
From °=(r ') and the definition of we obtain °=r . From (( ~b) ') = true we obtain
b( ' ) = true, i.e.,, b = true, which together with , | and °=r gives Ds . There
remains to prove 2 J7K.

e From =1 using the definition of weget =1 =1I(")=0") =( ") =
('H)= ;
e« From (( ~b) ') =trueweobtain( ') = (' )= =true.
Since 7 , ~ , the last two items imply ( ; ) F 7, which completes the proof. We call a

symbolic execution feasible if all its patterns are satisfiable (a pattern ” is satisfiable if there is

a configuration such that 2 J”K).

Corollary 5.2 For every feasible symbolic execution *g )2 71 )2 "n DS there is a
concrete execution o J)s 1 JDs ds nDs such that ;2J7;Kfori=0;1;::..

6 Linear Temporal Logic

The notion of program equivalence we propose uses Linear Temporal Logic (LTL) formulas,
defined below.



A Kripke structure is a tuple (S; );P; ;S') where S is a set of states, ) S S'is a (total)
transition relation, P is a set of propositions, :S ¥ 27 is the labelling function, and S' S is
the set of initial states.

all j 2 N. The su [X_df an execution e from | 2 N, denoted by e, is the sequence such that
e!'(j) =si+j forall j 2 N.

LTL formulas are generated by the grammar :=true jpj j ™ jI j U forall
p 2 P. Standard abbreviations are false , ztrue, 1 _ 2, (2 1™ ), , trueU , and
Given an execution e , So;:::;Sn;::: of a Kripke structure (S;);P; ;S') and an LTL

formula , the satisfaction relation e = is inductively defined over the structure of as
follows:

e ¢ | true;

eFpilp2 (so);

efF pilefFp

eefE 1N LifeFE andepE o

e e = - il1lis not the case thate = ;
e e 1U ,ilthereexists k >0suchthatekE ,andforall0 j<k, e F 1.

We will be be interested in formulas of the form  p. Using the semantics of LTL, an execution
€ = Sp;::1;Sp;::: satisfies  p it has an infinite subsequence s;,;:::Sj,,;::: such that p 2
(si;) for all j 2 N.

7 Defining Program Equivalence

We define in this section our notion of program equivalence and a logic for stating equivalence
properties.

Assumption 2 We assume without restriction of generality that the transition system (Tceg; Ds
) has no terminal states (i.e., its transition relation is total). This can always be obtained by
adding to S rules of the form ) for all non-derivable patterns , which just add self-loops to
terminal states of (Tcrg; D s).

Remark 7.1 Strictly speaking, it is not programs that are the subject of equivalence, but full
configurations (of which programs are just one component). Indeed, program executions depend
on the rest of the configuration (e.g., initial values of the variables, ...). Hence, the equivalence
relation is a relation on Tcrg.

We consider a given observation relation O  Tcrg  Tcrg, Which shall serve as a parameter to
our equivalence. Then, we say that two configurations are observationally equivalent if they are
in the observation relation.

Observational equivalence should be understood as a purely local property of configuration
pairs, such as, e.g., a given set of variables have the same values in both configurations. Then,
our notion of program equivalence requires that starting from any two observationally equivalent
configurations, by executing the programs in the configuration one will eventually encounter
observationally equivalent configurations again.



This expressed by the LTL formula O~ O, which captures precisely the informal meaning
given above. In order to formalise this observation, it will be convenient to consider, for a given
language definition L, the language definition denoted by L2, whose configurations are pairs of
configurations of L and whose rewrite rules are those of L, lifted at the level of configurations of
L2; that is, each semantical rule 1*bY) r of L generates two rules of L2: hl; Xi~b) hr; Xi and
hY;li”~“b) hY;ri where h_; i is the configuration constructor for L2 and X;Y are variables of
sort Cfg for L that do not occur in the rest of the rule.

Let S? denote the set of rules of L2 of the form hl; Xi~b) hr; Xi, and S2 denote the set
of rules of L? of the form hY;li*b) hY;ri. We denote by S? the whole set of rules of L?, i.e.,
S2=S527]S2.

We transform the transition system of L? into a Kripke structure by regarding the observation
relation O as a proposition and by labelling the states h ;; i of the transition system with O
Im 1, 2) 2 0.

By Ky ,. ,i we denote the Kripke structure thus constructed, endowed with the single initial
state h 1; »i.

Definition 7.1 Two configurations ; . are equivalent, written 1 o, If there exists an
execution e of the Kripke structure K;, ,. ,; such thate=0"  O.

Example 7.1 The two following configurations:
1 » X = 2ikhx @ Olgnylcrg

and
01 > hhy = 1; y = y+lighy @ Oienvicfg

are equivalent when O is defined by requiring that x = y. Indeed, in imp?, starting from h 1; »i
there is an execution reaching the self-looping state hhhichx A 2ienyictg; hhikhy B 2ienyicrgl, Which
is in O, hence, the execution satisfies O~  O. Note that not all executions of imp? starting
in h {; ,i satisfy O~ O, for example, an execution that applies only rules form S,(imp?)
followed by self-looping rules violates O~  O.

Remark 7.2 The relation O gives us quite a lot of expressiveness for capturing various (deter-
ministic) program equivalences, such as the ones classified in [4]. For example, partial equivalence
is: two programs are equivalent if, whenever presented with the same input, if they both terminate
then they produce the same output. This can be encoded by including cells in the configuration for
the input and output, and by including in O the pairs of configurations satisfying: if programs are
both empty and inputs are equal then outputs are equal as well. Also, full equivalence states that
two programs are equivalent if, whenever presented with the same input, they either both termi-
nate and produce the same output, or they both do not terminate. This is captured by adding to
the above relation all pairs of configurations from which there exist executions starting from both
configurations of the pair, such that the programs in both configurations are forever nonempty.
Finally, reactive equivalence requires that two programs, when presented with the same sequence
of inputs, produce the same sequence of outputs. To encode this equivalence we include in O all
configuration pairs satisfying: if the input cells are equal then the output cells are equal as well.

Remark 7.3 The chosen definition of equivalence does not work for nondeterministic programs.
Indeed, assume a nondeterministic instruction | such that, for any statements Si; S, the state-
ment S; | S, rewrites to either S; or S,. Then, the nondeterministic program (x:=0) | (x:=1)
is not equivalent to itself according to our definition (with O being the relation that requires
equality of x in both copies of the program). Indeed, one copy of the program can perform x := 0



and self-loop there, while the other one performs x := 0 and self-loop there. For the quivalence of
nondeterministic programs, the adequate notion of equivalence requires that for all executions e
of one program, there exists an execution e’ of the other one and an interleaving of e; e° satisfying
O~ 0. This alternation of quantifiers induces additional di [culties for the verification.

We present in the rest of the section a logic for program equivalence. We present the logic’s
syntax and a notion of validity for formulas. A derivative operation for formulas is also defined.

Definition 7.2 (Syntax) A formula is a pattern of L2 according to Def. [3.1] applied to L2, i.e.,
an expression of the form h 1; >i™ where 1; 2 2 T .crg(Var) are basic patterns of L and
C 2 T ;Boo| (Val’).

Example 7.2 Assume that the signature for the language imp contains a predicate isModi ed
Id Stmt ¥ Bool, expressing the fact that the value of the given identifier is modified by
the semantics of the given statement. A formula expressing the equivalence of the programs in

Example [1.3] is

hhfor 1 from A to B do{S }ix; "M ienyvicrg

N ZBool iISModi ed(l1;S) ™ Zggol iISModi ed(A; S) ™ ool iSModi ed (B;S)

where M a variable of sort Map. The condition says that the loop counter I is not modified in the
body S, and the variables occuring in A;B are not modified by S either. The Boolean function
isModi ed() is defined by structural induction on its arguments in the expected manner.

Recall that the set JfK, introduced by Definition applied to L? is the set of configurations
h 1; oi of L2 such that h 1, 21 2 JFK.

Definition 7.3 (\Validity) A formula ~ is valid, written Sj ~, ifforallh 1; 21 2J7K, 3 5.

For the deductive system we shall also be needing the following definition: the derivative of a
formula T is the set of formulas defined by Definition. applied to the symbolic transition of
the language L?. We denote it by g2(F). We let () , sz2(f) be the left-derivative and

r(f) » sz(F) be the right-derivative of . We conclude this section by the following lemma
that will be used in proofs regarding our deductive system.

Lemma 7.1 For all patterns > , h 1; »i™ of L2, all instances h 1; »i 2 J”K, and all h 2
fl;rg, there exists 7’2 x(?)andh !; 3i2J3”% such that h 1; 2i Dg2h ! Si.

Proof We prove the lemma for h = I, the other case being similar. By construction of the language
L2, the pattern ” has the form h 1; i , where 1; , are basic patterns of L, i.e., terms of
sort Cfg in L, and is a term of sort Bool. Thus, ;7 is a pattern of L. On the other hand,
there exists } such that ; )s | because the transition system (Tcrg; D's) has no terminal
states (Assumption . From 1)s Jweobtain :Var ¥ T and = (I”°b)r)2S such that

1=1, {=r ,andb =true. By construction of L2, there is a rule hl; Xi”~b) hr; Xi 2 S for
X avariable of sort Cfg not ocurring in the rest of the rule, i.e., satisfying X = X. By extending

into a valuation ” such that X ®= , we obtain the concrete transition h 1; »i Dsz2h }; »i.
Using Lemma [5.1) applied to the transition h 1; 2i Dz h $; ,i and the pattern ~ we obtain a
pattern *% such thath {; ,i2J”% and ~ )glz >0, because the rule that is symbolically applied

to obtain 7% from ~ is hl; Xi~by hr; Xi 2 SZ. Thus, *"2 (7), which proves the lemma.



8 A Circular Proof System

In this section we define a four-rule proof system for proving program equivalence. It is inspired
from circular coinduction [I4], a coinductive proof technique for infinite data structures and
coalgebras of expressions [21].

Remember that we have fixed an observation relation O. We assume a set of formulas  such
that J K= 0. Let also “ be an entailment relation satisfying S;F “ ” implies (Sj ~ or there
exists ¥ 2 F such that J”K  JFfK). The set and the relation “ are parameters of our proof
system:

Definition 8.1 (Circular Proof System)
AXi _—
[Axiom] SFE- -

S;F < G

R ’ if S;F <~

[Reduce] SF - G[Fg if S;

S;FLf’g GL n(®) h2fl;rg it 37K

S;F < G[f’g

[Circularity] J K

. S;F G >y h2flrg .
[Derive] S;F[‘ h((; )[f’g "9 it J’K6 J K and Rx(*)&Tf7g
An execution of the proof system is any sequence of applications of the above rule. For a set
of formulas (also called goals), a proof of S * is an execution whose last rule is [Axiom].

[Axiom] says that when an empty set of goals is reached, the proof is finished. The [Reduce]
rule removes from the current set of goals G any goal that can be discharged by the entailment “.
The last two rules, [Circularity] and [Derive], both say that a goal ” is are replaced by either its left
of right derivatives in the set of goals to be proved. However, in [Circularity], the goal ” is added
as hypotheses provided that J”K J K, i.e., provided that all its instances are observationally
equivalent pairs of configurations. Thus, all the hypotheses T added during executions satisfy
JFKJ K= 0. On the other hand, if J’K 6 J K then the [Derive] rule can be applied, which
adds no hypotheses: a goal ” in the current set of goals G is just replaced by its set of left or
dight-derivatives, provided that they are not ~ itself, i.e., to ensure that [Derive] does not apply
uselessly.

The soundness of our proof system is the consequence of the following lemmas. By sequent
encountered by we mean any sequent S;F < G which is obtained by applying a prefix of the
sequence  of rules.

Lemma 8.1 For all sequents S;F “ G [ f~g encountered by ~, for all h 1; »i 2 J7K, there
exists a sequent S;F" = G [ f7'g encountered by  with J>% O, and h §; 3i 2 J~%, such
that h 1, 2i )Szh g_, %i

Proof By (strong) induction on the length of the proof ~ and case analysis. Depending on first
the rule of that is applied to the sequent S;F < G [ f~g:

< if the rule is [Reduce] then there are two subcases:

—ifS“”thenSj ”. Thus,h 1; 2i2J°K O,andweletF'=F, G'=G, *'= ",
andh %; Si=h 1; i

—ifJ’K  f for some f 2 F then J’K O since all hypotheses f are added (by
[Circularity]) such that JFK J K= 0O, and we can also take F'=F, G'=G, *'=~,
andh §; Si=h 1; 2i;



< if the rule is [Derive] or [Circularity]: using Lemma for any h 1; »i 2 J”K, there exists
02 p(?)and h ¥ Pi 2 379 such that h 1; 2i Ds2 h ¥ Pi. Moreover, the goal
>0 is the current goal of a future rule application in  and is the origin of a proof -
strictly shorter than . Using the induction hypothesis, there exists S;F’ < G° [ g
andh §; 31237 Osuchthath ; Qi Dg.h §; 5:i. By transitivity h 1; 2i 2~ D2
h 3; Si holds, which proves this case and concludes the proof.
The next lemma says that, for each instance of each hypothesis that has actually been used
for discharging a goal during a proof, there a strict successor of it satisfying the current goal of
some encountered sequent.

Lemma 8.2 Let denote the set of all hypotheses used for discharging a subgoal during the
proof  (i.e., using a [Reduce] rule). Then, for all sequents S;F “ G encountered by , for all
f2F\ ,andforallh 1; ,i 2JFfK, P(f;h 1; »i) , thereexistsh J; Jiand asequentS;F’ *
G! [ f7°g encountered by ~ with J”'K O, such that h §; 5i 2 J”%and h 1; 2i D5 h §; Ji
hold.

Proof We show that the lemma’s statement holds initially and that it is preserved (as an invari-
ant) by all applications of rules in our deductive system (in particular, for the rules in the proof
7). The lemma’s statement is trivially true initially, when F = ;. For the induction step, we
assume that the lemma’s statement holds for the current sequent S;F < G [ f”g and we show
that it holds in the next sequent (if any) in .

« if the next rule is [Reduce] there are two subcases:

— S © 7. Theset F\ in the next sequent is the same as in the current one, since this
reduction does not use hypotheses in F. With the same instance h %; Ji and sequent
S;F% < G'[ £~ given by the inductive hypothesis, we establish that the lemma’s
statement still holds in the next sequent.

— J7K  JfoK for some fy 2 F. In this case the set F\ in the next sequent is (possibly)

larger than in the current one, since this may be the first time the hypothesis g is
used to discharge a goal (here, ”). (If F \ is the same in the next sequent as in the
current one, the inductive hypothesis trivially proves, like in the previous case S “ 7,
that our lemma’s statement still holds in the next sequent.)
Thus, there remains to consider the case where the current rule’s application is the
first-time use of the hypothesis T to discharge a goal (here, ”), in which case we have
to prove P(f;h 1; i) forall F 2 F [ ffogand h 1; ,i 2 JFK. Now, P(f;h 1; »i) for
f2F and h 1; »i 2 JFK holds using the inductive hypothesis (this is proved as in
the case S “ 7). There remains to prove P (fo;h 1; i) for all h 1; i 2 JfoK. For
this, we note that fy has been added to F at an earlier proof step by [Circularity], and
fo was replaced in the following sequent’s goals by its derivatives (fy) for some
h 2 fl;rg. Using Lemma (7.1, we obtain a goal f¥ 2 (fo) and h ¥; %i 2 JF3K such
that h 1; »i Ds2h ¥ ¥i. Using Lemma 8.1 we obtain the instance h }; Ji and the
sequent S;F’ = G'[f~'gsuch thath §; 5i2J°% Oandh P; %iDdg.hi; Ji
By transitivity, h 1; »i D3, h §; 3i, which proves that P (fo;h 1; »i) holds for all
h 1; 20 2 JfoK: the lemma’s statement still holds in the next sequent.

< if the next rule is [Circularity] or [Derive]: in this case F \ in the next sequent is the same
as in the current one, since this rule does not eliminate goals using circular hypotheses
(even though, in the case of [Circularity] the current set of hypotheses grows). Like in the
case S “ ” we establish that the lemma’s statement still holds in the next sequent, which
concludes this case and completes the proof.



The last lemma used for proving our soundness result resembles Lemma (8.1} but it is stronger
since it states the existence of strict successors in the observation relation. It can be proved
thanks to Lemma 8.2

Lemma 8.3 For all sequents S;F < G [ f~g encountered by :
e either S © 7;

e or for all h 1; »i 2 J”K, there exists a sequent S;F? < G [ 7%g encountered by , and
hi; 5i2J37% O, suchthath 1; 2i Dg.h§; bi.

Proof We proceed by (strong) induction on the length of the proof ~ and case analysis. Depending
on the first rule of that is applied to the sequent S;F < G [ f”g:

« if the rule is [Reduce] then there are two subcases:

— if S © 7 then this case is proved;

— ifJ’K f forsome f 2 F: Then, f 2 since f is being used (by the present rule!)
to discharge a goal. Thus, f 2 F \ . Using Lemma [8.2 we obtain the sequent
S;F' < G'[f~lgandinstance h §; 3i 2J”%K O such thath 1; 2i D& h §; Ji,
which proves this case;

= if the rule is [Derive] or [Circularity]: using Lemma|[7.1] for any h 1; »i 2 JK, there exists
02 p?)and h ¥ Qi 2 7% such that h 15 2i Ds2 h ¥ Pi. Moreover, the goal
>0 is the current goal of a future rule application in ~ and is the origin of a proof -
strictly shorter than . Using the induction hypothesis, there exists the sequent S;F “
G'[f*'gandinstanceh §; 5i 2J°% Osuchthath ¥; %i D, h §; %ii. By transitivity
h 1; 2i D&, h §; Ji holds, which concludes the proof.

Theorem 8.1 (soundness) Let be a finite set of equivalence formulas. If S “ then Sj

Proof Pick any > 2 (if = ; the theorem is trivially true). Applying Lemma generates
two cases:

1. either S © 7, which directly implies Sj 7;

2. or, for all h 1; ,i 2 J”K, there exists a sequent S;F° < G [ f>°g encountered by , and
hi; 5i23°% O, such thath y; »i D, h§; 3i. We apply Lemma [8.3 to the latter
sequent, which generates two cases:

@ S “ ' which implies Sj ~% Then from h §; i 2 J”%, there is an execution
satisfying O~ O, and by adding to it the prefix h 1; »i D5, h §; i, the resulting
execution also satisfies O~  O. Thus, from the (arbitrary) h 1; »i 2 J?K there is

an execution satisfying O~ O, meaning Sj 7;

(b) or for all h §; Si 2 J~%, there exists a sequent S;F? < G [ £>%g encountered by
andh P 2i237% O, suchthath §; Ji g h ¥ 2i. Applying Lemmaﬁto
the latter sequent generates two cases. .. It is not hard to see that in the first case we
will be able to prove Sj ~ like in item 2(a) above, and in the second one, another
application of Lemma [8.3) will generate yet two more cases. ..



This repetitive process may never terminate for a goal ”, but it proves S j in one of two

possible ways:

« the first one assumes that, after finitely many applications of Lemma (8.3} a subgoal *(™
satisfying S < ”(™ is found. Thanks to Lemma from any h 1; 1 2 J”K there is a
finite execution e than leads into some instance h {™; {Mi 2 37K And since Sj ~™M,
starting from the instance h ™; (i 2 37K an infinite execution € satisfying O~ O
exists. The concatenation ee’ also satisfies O~  O. Thus, from the arbitrarily chosen
h 1; 21 237K en execution satisfying O~ O exists, meaning Sj ~ holds.

= the second one assumes the contrary: there is no finite number of applications of Lemma|8.3
after which a subgoal ”( satisfying S < ”( is found. In this case, the infinitely many
applications of Lemma [8.3] build an infinite execution h 1; 2i D& 0 §; Ji Dd D
h M, M D3, , starting from any arbitrarily chosen h 1; 2i 2 JK, such that O is
met infinitely many times, as h 1; 2i 2J°K O, h % 3i23°% o, ...,h ™ Mj2
J>(MK O, ..., which implies that our execution satisfies O  O; thus, Sj ~ holds.

In both cases, this process leads to establishing Sj ~, and ” 2 was chosen arbitrarily, thus,
Sj holds.

Remark 8.1 For soundness it is not essential that the [Circularity] * actually adds the current
goal ~ to the current set of circular hypotheses F. What does matter is that, whenever ” is added
to F, then J”K J K. We use this observation in our implementation of the proof system to
reduce the number of stored hypotheses.

We now show that the circular proof system, when it terminates, always provides an answer
(positive or negative) to the question of whether S j holds. Thus, in addition to soundness
we have a weak completeness result. The result is "weak™ because it assumes termination of the
proof system.

Given a a semantics S and set of goals , the proof system terminates successfully when
it returns a proof. The proof system terminates unsucessfully when its has a finite, maximal
execution that is not a proof - we call such an execution a disproof. This happens when the
proof system is "stuck': in the current sequence S;F “ G no rule of the system can be applied
because the side-conditions of the rules are not satisfied. Then, dy definition, the proof system
terminates on if it terminates sucessfully or unsucessfully. Weak completeness then says that
if a set of goals is valid, all the goals in the set are satisfiable, and the proof system terminates
on , then it terminates successfully.

For this we need the following adaptation to the notion of derivative: () =f~"j~> )§ ~In
J7% & ;g, which means that only the satisfiable patterns are kept when computing derivatives.
We also need:

Assumption 3 For all patterns ” of L, if s(”) = f”g then there is ) 2 S such that
s(’) = ¢> ¢(7), and for all configurations ; ®of L, if Ds and °®s ° then
h; %iz20.

Both assumptions regard the language L of interest. The first says that, whenever a the deriva-
tive of pattern is the pattern itself, then the only rule that contributes to this derivative is of
the form rules ) . Remember (Assumption [2) that such rules were included in the seman-
tics S for technical reasons in order to transform terminal configurations into self-looping ones
(ultimately, because we deal with LTL over infinite sequences). Our first asssumption then says
that, except for the rules, )  were added to the semantics, all the other rules "change"



at least "something" in a pattern; ie., rules that do not change anything in the semantics of a
language are useless. Regarding the second of the above assumptions, it says that self-looing
configurations and non self-looping ones cannot be observationally equivalent. As observed be-
fore, the self-looping configurations are (formerly) terminal configurations that were transformed
into self-looping ones by including the rules of the form ) in the semantics S. Thus, our
second assumption actually says that configurations where the code to be executed is finished,
and configurations where there is still code to execute, cannot be observationally equivalent,
which is also a reasonable constraint on equivalence.

Theorem 8.2 (weak completeness ) If S j and for all > 2 it holds that J°K & ;, and
the < proof system terminates on then S *

Proof By contradiction: assume the hypotheses hold but not the conclusion, i.e., S8 . Thus,
the proof system terminates with a disproof , i.e., a sequence of rule applications that is not
a proof and after which no rule can be applied. Let S;F “ G be the sequent resulting after
. Thus, G & ;, and for all > 2 G, J’K 6 O (otherwise, [Circularity] would be applicable),
and (7) = f>g for h 2 fl;rg (otherwise, [Derive] would be applicable). We choose any
? 2 G. Since both [Circularity] and [Derive] rules compute derivatives, there exists o 2
and a symbolic execution "¢ %, 227n = 7. The symbolic execution is feasible, since we
have assumed that only satisfiable patterns are kept in the derivatives. Moreover, J” K 6 O,
thus, we can choose h ; 'i 2 J”Kn O. Hence, we can apply Corollary and find a concrete
execution h o; §idsz D&y Ri=h; lisuchthatforalli=0;n 1,h;; {i2J”K and
hn %i2J375KnO0.
Next, due to the definition of the language L2, by projecting the above concrete execution of
L2 on its left and right components we obtain the two executionse , o )5 ande’ , JDg !
of L. Let > =h; %~ ,then, 2J ~ Kand °2J ' K. From ()= (7)) ="Ff>gwe
obtain s( ~ )=Ff ~ gand s( '~ )=F '~ g, thus, Using Assumption [3| both these
derivarives were obtained by applying rules of the form ) 2 S. Thus, there are transitions
ds and "Ds "in L, and the finite executions e;e’ can be extended into infinite ones

€, 0Ds s s and e , $Dg "Ds " Ds " ,andsince L is

deterministic, &, resp. & is the only infinite execution of L starting in o, resp. in J.

Moreover, the infinite executions in L? starting in h o; Ji coincide with sequences obtained
by interleaving transitions of & and &’. It is thus enough consider any such interleaving, denoted
hereafter by € q &, and show that it satisfies - O.

There are two cases:

- ineq#e’, both g and & have reached , resp. ’. Thus, eqe’ has an infinite su [XThat only
repeats the instance h ; % 2 J”Kn O, which is does not satisfy O; thus, eq e :O.

- ineqe, only one of the components, say, e, has reached . Thus, € q & has an infinite
su XThat only repeats an instance of the form h ; “i, for some configuration  that does
not have a transition ® )5 ¥ (that would contradict the unicity of the infinite execution
& starting in  }). By Assumption [3| we have h ; ®i 2 O and since € q € ends up by only

repeating h ; “i, we haveeqe’ =  :O again.

Recapitulating, we have obtained a goal ¢ 2 and an instance h o; gi 2 J7 oK, and two infinite
executions € and & of L, starting in o, and {, respectively, such that any infinite execution of
L? starting in h o; i is of the form & q &’ for some interleaving q of e;€’; and any such infinite
execution & q & satisfies = 0. According to Definition this means o6 J, and according
to Definition thismeans S § ~o. Hence, S § , which is in contradiction to the hypothesis



Sj of our theorem. The contradiction was obtained by assuming S 6 , hence, S “
holds, which concludes the proof.

Together, the soundness and weak completeness say results say that, if the proof system
applied to a given set of goals terminates, then termination is successful if and only if the set
of goals is valid. That is, when it terminates, the proof system correctly solves the program-
equivalence problem as we have stated it. Of course, termination cannot be guaranteed, because
the equivalence problem is undecidable. It does terminate on goals in which both programs
terminate (because eventually the set of derivatives does not change the goals and no rule can
be applied any more) and also for goals in which the programs does not terminate, but behave
in a certain "regular" way, as shown in the examples below.

Example 8.1 We start by illustrating the use of the deductive system on the equivalence of
stream programs since it does not require unification, hence it is a bit easier. The equivalence
we want to prove is that from Example blink is equivalent to zip(zero, one). This is
written as the equivalence formula

hhblinkikhspec, ispecshY1iouticrg;
hhzip(zero, one)ikhspec,ispecshY2iouticrgl
Y=Y @3]

where spec, is blink @ () .0:1:blink and spec, is the map
zero @ () .0:zero
one @ () .l:one
zip @ (xs;ys) .zip(ys, hd(xs))

Note that the contents of the cells specs is not changed during the execution of the program. The
observation relation is given by

= fhthl i khSpE‘Cl ispecshYl iout icfg, th2 ikhspeCZ ispecshYz iouticfg i ig N Yl = Y2

where C; and C, are two arbitrary stream programs. In words, two configurations are obser-
vational equivalent i Cthe corresponding output cells out have equal contents.

The equivalence formula is the unique goal in G we start with. We first apply [Circularity]
for the program blink (i.e., in the proof system, the derivative () is applied), which loads the
definition of blink in the k cell, and adds to the set of circular hypotheses F. We then apply
[Derive] twice, which writes in the corresponding output cell the two head elements of the stream,
and produces the following goal:

hhblinkighspec ispecsh0 @ 1 o Yiiguticrg
hhzip(zero, one)ixhspec,ispecshY2iouticrgl
ANY =Y, (3)

Not that the contents of the output cell in the first configuration has changed. Next, by applying
Derive several times with the heating/cooling rules that compute the arguments of zip(zero, one),
we get

hhzip(0 : =zero, 1 : one)ixhspec,ispecshY2iouticgi
NYL =Y 4)

Several other applications of Derive proceed with loading the definition of zip in the k cell, ap-
plying heating/cooling rules for hd(zero), adding content to the output cell, and computing new



arguments of zip:

hhblinkighspec ispecsh0 = 1 = Yiiouticrg
hhzip(l = one, 0 : zero)ikhspeCsyispecsh0 = Yalouticrgl

Y=Y, (5)
The above process is repeated with the new instance of zip, which produces the following goal:

hhzip(0 : zero, 1 : one)ihspec,yispecsh0 = 1 1 Yaiouricrgl

NY1=Y2 (6)

To conclude the proof, we note that @ is an instance of by applying the substitution
fYy;, ™ 0: 1 Yi;Y,® 0 : 1 Yog. Hence, J@K JK, and the Reduce discharges the
(unique) current goal (€), and Axiom concludes the proof.

Example 8.2 We show the application of our proof system for proving the equivalence of for
and whi le programs formalised as the validity of the following formula, with A; B : Int, S : Stmt,
I :1d and M : Map Considering A; B to be integers instead of expressions is not a restriction,
since, if A and B were artihmetical expressions, the strictness attributes for the for, assigment,
and <= would be applied first and would transform A; B into integers anyway. This allows us to
simplify the original equivalence formula , given in Example [7.2} into the following one, based
on the fact that isModi ed(A;S) = isModi ed(B;S) = false:

hhfor I from A to B do{S }ix; hMienvicsg

N Zpool ISModi ed(l;S) @)

The observation relation is given by the set = FhhhC1ixhM  ienyictg; NC2ikhM Pienyicrgi*M® =pap
M%g. The relation says that two configurations are observationally equivalent i CThey have equal
environments.

In order to prove the goal with our proof system we start with a set of goals G consisting

of (7) and

hhC y (for | from A to B do{S })ix; hMienyicrg
hhC v (I = I+1;while | <=B do{S; | = 1+1})ix;hMienicig

N Zpgool iSModi ed(1;C) Ngoor lookup(M; 1) = A (8)

where C is a variable of sort Code. Remember that Code is a sort that includes all statements and
arithmetical and Boolean expressions, that denotes the empty code, and that code sequencing is
denoted by y/.

In the sequel we show the application of the rules of our proof system to the chosen set of
goals G. The first rule applied to is [Circularity], by which is added to the hypotheses H
and is replaced by a goal obtained by applying the semantical rule for the for statement, which
gives:

hhl = A;ifl <=B thenS ;for | from A+ 1 to B do fSgelse skipgix; hMienvicig
N ZBool ISModi ed(1;S)



We now apply the sequence of rules [Circularity], [Derive], [Circularity], without adding new hy-
pothesesE], which replaces the above goal with the following one, obtained by applying the semantics
of assignment to both sides of the formula and then the semantical rule for the while statement:

hhif I <=B thenS ;for | from A +,; 1 to B do TSg else skipgiy; hupdate(M; I'; Alenyicrg
hhif I<=B then S;I1=1+1;while I<=B do{S ;1 =l +1}else skipiy; hupdate(M; I; Aienyicrg

N ZBool ISModi ed(l;S)

Nexﬂ the heating rules for the if statement and the _ <= operation, followed by the cooling
rules, and finally the rules that conclude the evaluation of the if statement result in the two
following subgoals:

hhskipiy; hupdate(M; I; A)ienyicrg
hhskipiy; hupdate(M; I; A)ienyicrg

n Z Bool isModi ed(I;S)ABool :BooIA Int B

hhS ;for 1 from A+n 1 to B do fSgiy; hupdate(M; I; A)ienyicrg
hhS ;1 =1+1 ; whilel <=B do{S; | = I +1}ix; hupdate(M; I; A)ienyicrg

~ IBool isModi ed(l;S) “Boot A nt B

The first subgoal is trivially valid and is eliminated by the [Reduce] rule using the base
entailment “.

By applying the semantical rule for statement sequencing, which rewrites ; to y, for
the second one, we get a new goal

hhS y (For 1 from A+ 1 to B do fSg)iy; hupdate(M; I; A)ienyicrg
hhSy (I =1+1 ; whilel <=B do 1S ;1 = 1 +1g)iy; hupdate(M; I; A)ienvicrg

N IBool isModi ed(l;S) “Boot A Int B (©)

which is eliminated by the the [Reduce] rule since it is an instance of the goal
(by using the substitution C S;M update(M; I; A), and by using the equality
lookup(l;update(M; 1;A)) = A).

To conclude the proof we also need to eliminate the goal . This elimination amounts to unifying
the code C with all possible left-hand sides of rules in the semantics of imp. We only give a subset
of all the cases, since considering all cases may be overlong for the reader’s patience (but not so
for a computer). We first consider the case where S is unified with statements:

e C  skip: by applying the semantical rules for skip (which rewrites it to ), then the rule
that consumes the empty code , and finally the rule sequence that evaluates 1 + 1 in the
goal’s right-hand side, the goal becomes the following one, which is implied by the initial
goal and is eliminated by [Reduce]:

hhfor I from A to B do{S }ix; "M ienyicrg

N Ipgool iSModi ed(1;S) Mool l0okup(M ;1) = A

Swhich is sound thanks to Remark In the sequel, whenever [Circularity] is applied, by default it does not
add new hypotheses.

61n the sequel we mention only the semantical rules used in the sequence of rules [Circularity] and [Derive] that
is applied to obtain the next goal.



e« C fS;; Syg for some statements Si; S,: the rule rewriting ; to y produces an instance
of the goal itself, with the substitution C S1 Y Sy, which is then eliminated by
[Reduce].

e C  fS% for some statement S’ the rule for f_g elimination produces an instance of the
goal itself, with the substitution C S, which is then eliminated by [Reduce].

-« C ifB’ thenS; elseS,, for some Boolean expression B and statements S;;S,: there
are two subcases, depending on whether B’ has the sort Bool, or does not have the sort
Bool but has sort BExp:

— if B® has the sort Bool then one can directly apply the rules for if and obtain two
subgoals: one is

hhS1 y (for 1 from A+ 1 to B do fSg)ix; M ienyicg
hhS1y (I =1+1 ; whilel <=B dof5; 1 =1 +19)ix; M Ienyicrg
N IBool isSModi ed(1;S1) ool ZBool iSModi ed(l;S2) Mool B’ =Bool true
(where we used isModi ed(l;if B? then S; else S,) = isModi ed(1;S1) _gool
isModi ed(l;Sy)). This is an instance of the goal and is eliminated by [Reduceﬂ

The other subgoal is similar, but with S, instead of S; and B! =gy, false in the
condition, which is also an instance of the goal .

— if BY does not have the sort Bool then it has the sort BExp. Then, the only rule that
our goal can be unified with is the heating rule for if, which generates the following
goal:

hh(B'yif thenS; else Sy)y (for | from A +ne 1 to B do FSQ)ik;hM ienyicrg
hh(B'yif thenS; else Sp)y (I =l +1;while I <=B do 5; 1 =l +19)ix;hM ienyictg

N ZBool ISModi ed(l;S1) ™Bool -Bool iISModi ed(l;S2)

which is an instance of (8) with S  (B'yif then S; else S)).

C while B'do S°. The rule for while transforms into an instance of itself under
the substitution C  (if Bthen S ;1 +1 ; while B'do S’else skip).

e C for I' fromA' to BYdo S'. The rule for for transforms into an instance of
itself under the substitution C ~ (1°= AY; if B'then S ;1 +1; for 1° fromA’ to
B’ do S else skip).

e C X for some identifier X, which amounts to unification with the rule for program-
variable lookup. That rule transforms our goal into an instance of itself with C  lookup(M; X; ).

« C X!= A for some identifier X' and arithmetical expression A'. Similar to the case of
if, there are subcases depending on whether ° has sort Int, or does not have sort Int but
has sort AExp.

— in the first case the rule for variable assignment transforms into an instance of
itself with C and M A update(M; X;1);

— in the second case, the heating rule for variable assignment transforms into an
instance of itself withC ~ (A'y 1 = ).

7in the sequel, whenever is transformed into an instance of itself, we omit the sentence "and is eliminated
by [Reduce]".



There remain to consider the cases where C is code but is not a statement. The goal can be
unified with left-hand sides of semantical rules:

e C C; Yy Cy: then unification may be performed with both heating and cooling rules.

— We first illustrate the situation with the cooling rule for the if statement, which was
explicitly given in Section [2.T} the case for all the other cooling rules is completely
similar. In the considered case, C; B and C, if then S; else S, y C!
for some code C°, and the cooling rule transforms into an instance of itself with
C ifBthen S; else S,y Cl

— Regarding unification with heating rules, this may only happen when the left-hand side
of the rule is of the form hhC} 3y ClixhMienyicrg, and the right-hand side has the form
hh(CP v CP) v ClikhMienyicry; the application of this rule transforms into an
instance of itself with C ~ C¥y/ CY.

e C is an arithmetical expression or a Boolean expression. Then, again, unification may be
performed with both heating and cooling rules, in a completely similar many to what has
been shown above.

Thus, in all possible cases, the goal goal is transformed into an instance of itself and is
eliminated from the set of goals. Since the other goal has been eliminated earlier, the proof
system terminates sucessfully.

9 A Prototype Implementation

K [1g] is a framework for defining the formal operational semantics of programming languages.
One component of the framework is a compiler of K definitions to Maude [22] specifications.
Programs of languages defined in K can thus be executed and analysed using Maude as the
underlying rewriting engine. K also olerk some support for symbolic computations, including
a connection to the Z3 SMT solver [23]. We have used these components in a prototype tool
implementing our deductive system for program equivalence. Here we describe how the proposed
proof system is implemented for the imp and stream languages. This description is generic
enough and can be seen as a methodology applicable to any language defined in K.
There are (at least) two approaches to implementing the proof system:

1. as an external procedure, which uses the K tool for computing derivatives of equivalence
formulas only. The external procedure is then responsible all the other operations, including
the searching for proofs;

2. directly in K, by performing all the operations in the proof system using the available K
tools (for example, the underlying Maude search engine is used in searching for proofs).
This requires extending the definition of the language of interest definitions with additional
data structures, with semantical rules for storing circular hypotheses, and with rules for
the entailment between these hypotheses and goals.

Since our approach is parametric in the language definition, observational relation, and basic
entailment, in both cases we need a procedure that builds the definition of L? for a given L, and
procedures for the basic entailment (S “ ”) and subsumption (J”K  JFK). The basic entailment
relation S2 “ ~ can be specified by means of a (finite) set of equivalence formulas E (in the same
way that  specifies the observation relation O), and taking S2 < ~ i[fhere is e 2 E such that
J”K  JeK. The subsumption relation can be checked using Proposition [3.2| or Proposition (3.3



For imp the set  will typically consist of formulas that say that a given set of program variables
have the same values in both configurations, and E further requires that the two contents of the
k cells are the same. For stream, says that the two out cells have the same contents.

By Proposmon | the formulas f 2 F and e 2 E can always be stored in the form '~~~
which facilitates the checklng of subsumptions based on Proposition [3.2 or Proposition [3.3] The
validity of the implication from Proposition [3.2] is checl@d by calling the Z3 SMT solver. The
substitution  (ocurring in formulas of the form A ~ ) is computed by inspecting the
contents of the two configurations and .

We chose to implement the proof system for the two languages directly in K since this is the
most straightforward approach and allows us to benefit from tools in the K framework. However,
we had to make some compromises. Since the current Maude backend of K is a rewriting engine
based on matching, we had to axiomatise symbolic statements instead of using unification for
them. The main axiom says how a symbolic-statement variable S aledts the environment M
under a current condion

S kM ienvicig D Bh ihfollowup(S; M; ienvicrg ™

The function followup is axiomatised as well; its axiom says that S has no e [edt on a variables
X that it does not modify: followup(S;(X @ V M); ) = X @ V followup(S; M; ) when
implies :isModi ed(X;S).
An equivalence formula > , h 1; 2i for imp is written in K as an imp configuration
hhplikhMlienvicfglhhpzikhMZienvicfggh icond
where the pattern ; is given by the contents of the cfg; cell and the condition is stored into
a new cell called cond. The circularities F are stored into a new cell hypos. For each circularity

f 2 F, the subsumption relation J”K  JfK is checked by means of two substitutions. The first
one is a substitution  from the contents of the cell k in f to the coresponding one in . Let

T » hhpolikhMgienvicfglhhpozikhMgienvicfgzh Oicond
such an hypothesis in F and let ” be the current equivalence formula represented as above. For
instance, if ” is given by @ and f by , then is A A+t 1. The expressions from the
codomain of are evaluated in the current configuration; in this way, e.g., the program variables

are replaced by their current values. Since the cell env includes only fresh variables, we have
equal to

hhplikhMEienvicfglhhpZikhMgienvicfgzh 0 icond
The second substitution ° is between the corresponding env cells such that M! * = M; for
i = 1;2. Ngte that f ° =~ does not hold in general, because usually ° °= does not.
Butif ~ , implies ° holds, which is checked by calling the SMT solver, then we obtain
J”K JF K by Proposition . Since Jf K JfK by Proposition (3.3 it follows that JK  JfK.

This method for checking the subsumption relation is not specific to imp. For any other
language definition the substitution is defined by structural induction on the language syntax
and the substitution ° is computed by considering the rest of configurations. For instance, for
the case of stream, only the substitution is required because the rest of configurations remain
constant during the execution.

The e Cciehcy of the implementation depends on how the [Circularity] and [Derive] rules are
applied. In Remark [B.I] we noted that, for soundness, it is not necessary to always add the
current goal ” to the hypotheses F when applying [Circularity]. Ideally, only those formulas
actually subsequently used by [Reduce] rules should be added. Since there is no way of knowing
in advance which circular hypotheses will be used in the future, we apply a heuristic when adding
circular hypotheses. This is achieved by using labelled statements: each time two statements



with the same label are at the top of the k cells, a set of rules decides which one of the following
three cases holds for the current configuration and takes the corresponding action: whether it
belongs to the observation relation, or it is a consequence of the circular hypotheses, or it must
be added to the circular hypotheses.

The contents of the cell hypos at the end of a successful proof includes in fact new equivalences
that the tool discovered during proving process. For instance, if the goal is morse  f(morse),
where

morse 0:1:zip(tl(morse), not(tl(morse))); not(xs) negChd(xs)):not(xs);
f(xs) hd(xs):negchd(xs)):F(tl(xs)); neg(x) :=1/x=nt0.0

then the following new equivalence is found:
1:F(1:zip(tl(morse), not(tl(morse)))) 1Ll:zip(tl(morse),not(tl(morse))).

We also note that the stream example shows that the proof system introduced in this paper
includes the one defined in [14] whenever behavioural equational specifications can be encoded
as programming language definitions. However, the definition for the equivalence we introduced
here is more general: the equivalence considered in [14] can be defined using the LTL formula
pattern O while the one defined here uses  O.

10 Conclusion and Future Work

We have presented a definition for program equivalence, a logic that encodes this definition in
its formulas, and a proof system for the logic, which is proved sound and weakly complete.
A prototype implementation for the proof system in the K framework was also presented and
illustrated on example of equivalent programs in languages from two di[erent paradigms.

The proposed approach is generic: it does not depend on K and the language being defined
in K, but requires a formal semantics of the language of interest as a term-rewriting system.
The chosen equivalence relation is also parametric in a certain observation relation and requires
that starting from configurations in the observartion relation, configurations in the observarion
relation will be encountered again. We show the approach is applicable for concrete and symbolic
programs and for terminating and non-terminating ones.

Future Work We are currently applying our deductive system for proving the correctness
of a compiler between two languages (as part of another project we are involved in). The
source language is a stack-based language with control structures (loops, conditionals, dynamical
function definitions). The target is also stack-based but only has (possibly, conditional) jumps.
The correctness of the compiler amounts to proving the equivalence of several pairs of symbolic
programs; in each pair, one component denotes a source-language control structure, and the
other component is the translation of that control structure in the target language using jumps.
We are also planning to combine our program-equivalence verification with matching logic [19],
a language-independent logic for programs written in languages with a rewrite-based semantics.
The idea is to prove matching logic properties on programs in the source language, and guarantee,
via the compiler’s correctness that the compiled programs in the target language satisfy those
properties as well.
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