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Abstract—We propose and analyze a class of distributed in both the downlink (DL) and uplink (UL).

algorithms performing the joint optimization of radio resources in Consider the DL scenario in Fig. 1 where there are two

heterogeneous cellular networks made of a juxtaposition of macro mobile usersu and v under the macro and small cell BS

and small cells. We show that within this context, it is essential d b which h diff t . t it d
to use algorithms able to simultaneously solve the problems of an which have diflerent maximum transmit powers an

channel selection, user association and power control. In such coverage ranges. Notice thatcan be covered by the macro
networks, the unpredictability of the cell and user patterns cell BS o but it is located near the edge afs coverage.
also requires self-optimized schemes. The proposed solution isMeanwhile, it is too close to the small cell BSwhich will
inspired from statistical physics and is based on Gibbs sampler. a4y 5 strong impact on its received signal-to-interfegenc
It can be implemented in a fully distributed way and nevertheless . - . o
achieves minimal system-wide potential delay. Simulation results plys-n0|se-rat|o ,(SIN,R)' Herg, transmit pQWQr optimiaaiti
show that it outperforms today’s default operational methods in  Will not be effective without prior user association and whel
both throughput and energy efficiency. selection optimization. One may consider the option in Whic
u and v both associate witlh. However, this may overload
b. From the viewpoint of load balancing, it is better to have
Due to the high demand of broadband services and newe two users attached to different cells, esg.attaches to
applications, wireless networking is facing the challemje . However,+ will then have low SINR as long as the two
supporting fast increasing data traffic with requiremeritsib  transmissions use a same channel. Clearly, one shoulddeonsi
coverage and energy-efficient radio resource allocatipiTl  assigning two different channels for these two transmitter
enhance the network capacity and support pervasive broggkeeiver pairs and hence conduct a joint user associatidn an
band service, reducing cell size is one of the most effectighannel selection optimization. If the system involves enor
approaches [2]. Deployment of small cell or femtocell basgsers and cells, power control should be conducted as well to
stations (BS) has a great potential to improve the spatisere mitigate interference. This requires a joint optimizatiminall
of radio resource and also enhance transmit power efficienthe three elements.
It is foreseen that the next generation mobile networks will Fig. 2 shows a similar problem in the UL. Consider that one
consist of heterogeneous macro and small cells with diferefirst conducts user association optimization. Sinds closer
capabilities including transmit power and coverage range. to BSb than to BSa, from the viewpoint of load balancing the
However, in such networks due to the unpredictability aecommended user association should be as follavestaches
the BS and user patterns, network self-organization arfd seb a while v attaches tdh. As v is far away from its BSa,
optimization becomes necessary in order to relax the heate transmit power has to be high enough. This will however
human efforts required by conventional network planningd aryield a strong interference to the signal received,atvhich
optimization tasks [3]. Autonomic management and configura transmitted fromw. Note that in this case, user association
tion is highly desirable [4]. For example, user associatiod optimization, power control or even their joint optimizati
radio resource allocation such as transmit power and chanaee not able to solve the problem. However, if one considers
selection should be automatically adjusted so as to redwece thannel allocation and tries to select two different chénfue
system’s capital and operational expenditure (CAPEX/ORPEXhese two pairs, a joint optimization can resolve the canflic
The present paper aims at designing distributed algorithrmsd enhance the overall performance.
performing self-optimization for future macro and smalllce To decide which aspects should be optimized and what is
(e.g., LTE and femtocell) mixed networks [5]. In radio rethe proper optimization sequence if each is to be conducted
source management, (i) power control, (ii) user associatiseparately, some guidelines can be derived from careful ex-
and (iii) channel selection are essential elements. Iritioad| perimental work and case studies (see e.g., [6] for 802.11
networks made of macro cells only, optimizing any of th®&/LAN). Explicit rules can be proposed if the BS and user
above three elements independently could improve themystpatterns are known or predictable. However, for situations
performance. However, this may not be true in heterogeneausere their patterns are unpredictable as those with st c
networks made of a juxtaposition of macro and small cellao simple and universal rule is known and a joint optimizatio
We give below two examples to illustrate the problem thés necessary to achieve the best performance.
may happen when conducting these optimizations separatelyrhe joint optimization of the above three aspects is in

I. INTRODUCTION



UL and DL, for simplicity here we only consider the DL.
However, the discussion can be generalized to the UL as well.

We assume that users can associate with any neighboring
BSb € B in the network which could be a macro or small cell,
which is referred to as open access. Today’s default operati
attaches each user to the BS with the highest received power
[9]. This is however clearly sub-optimal.

Let C be the set of channels (e.g., frequency band) which
are common to all the base stations. The transmit power used
by a BSb, € B to send a signal to its user in a channel
¢ € C is denoted byP,(c). Here, for simplicity we consider
Fig. 1. Since uset is far from its BSa, the received signal at may suffer that a user will only take one channel, denoted by < C. In
strong interference due to the transmission of small celbB®stined tov.  general, a user may get served by several orthogonal clsannel

simultaneously. One can consider the case where a user with

higher traffic demand may request a multiplicative number of
Small cell transmissions in parallel. A generalization is possiblereHe
due to a lack of space we will not go into the detail.
""""""""""""""" g i The SINR atu is then expressible as:

Small cell

SINR. — P, (c)l(by,u,c)
énce “OONG+ Y alv,u,)Py(e)l(by,u,c)
veU v#u

@

where N,, denotes the receiver noise at (b, u,c) is the
signal attenuation frond, to « in channele, and a(v, u, c¢)
represents the orthogonality factor on the transmissist de
Fig. 2. The signal received at Bissent fromv can be strongly interfered tined tov € U. Note that0 < «(-) < 1. Here, we consider
by u's transmission since has to use a high power in order to sencato  that adjacent channel interference is negligible compaxned
general a difficult problem even if centralized coordinatio®°-channel interference. One may assume that vbhen b,

and global information exchange are allowed. Even in YV, u, ©) = a; otherwise,a(v, u,c) = §, wherea and 5 are

separate optimization case, the determination of the imans CONStants. In simple case, one may consider ;5 = 1.

sion powers maximizing system throughput is challenging in Under the additive white Gaussian noise (AWGN) model,

multiple interfering link case since the problem is in geter the achievable data rate atin bit/s/Hz is given by:

non-convex. More generally, there is a lack of efficient algo

rithm operating in a distributed manner and ensuring global

optimality in the above joint optimization. whereK is a constant depending on the width of the frequency
In this paper, we propose and analyze a class of digzng.

tributed algorithms performing the joint optimization @fdio

ry = Klog(1l+ SINRy) , (2)

- . To achieve network throughput enhancement while support-
resources in the generalized he_tero_ge_nous_ macro and tHfrha_”iﬁg bandwidth sharing fairness, we adopt the notion of min-
networks. The proposed solution is inspired from stastic; -, potential delay fairness proposed in [10]. This solution

phys!cs z_and is base‘?' on Gibbs sampler.(see, €g., [7D. TTJB? bandwidth sharing is intermediate between max-min and
solution is a generalization of the work in [8] (which only

. L roportional fairness. It aims at minimizing the systenuevi
takes into account power control and user association anOEbScential delay and is explained below. Instead of maxingzi
thus limited to homogeneous cellular networks).

the sum of throughputs, i.€y, r,, which often leads to very

The paper is organized as follows. Section Il describes thg, throughput for some users, we minimize the sum of
system model and problem setup. Section Il presents the, inverse of throughput, i.eY" 7!, which can be seen

proposed solution and algorithm. Section IV reports itd@er .5 the total delay spent to send an information unitlio

mance and compares the solution to today's default operatipe ysers [11]. A bandwidth allocation that provides midima
in terms of throughput and power utilization efficiency. &g, yotential delay fairness is one that minimizes the follayin
Section V contains the conclusion. cost function:

Il. SYSTEM MODEL o Z ol 3)
We consider a reuse-1 radio system with a set of BS e

serving a population of users denoted bygefor each user where very low throughputs will significantly increase tlosic

u € U, it is assumed that there is a pair of orthogonal channelsFor mathematical convenience (see below), we actually min-

for the UL and DL. Since there is no interference between tlmize the cost function called the globatergy in following



the terminology of Gibbs sampler [7] defined below: A global energy which derives from the above potential
1 1 function satisfying the conditio/ (V) = 0 for |V| > 3
&= Z PR = Z SINR. (4) s hence amenable to a distributed optimization using Gibbs
uel w
instead of (3). Note that if one operates in low SINR regime

ueu sampler with thdocal energy at each node defined below:

such that the achievable data rate of a user is proportional Eu=) AVV)uev,vouy, )
to its SINR, then minimizing”' is equivalent to minimizing which by the above definition can be re-written as:

&, which is a surrogate of’. We see that (3) and (4) have

quite similar characteristics. The difference is that —1)! N+ U;J Po(e)i(bo, v, e) Po(eo)l(b, v, c)
increases more significantly tharg! when r,, is low. The Eu = Py (ca)l(ba, 1w, ca) +Z Py(co)l(by, 0,¢0)
overall cost will increase more substantially. Minimizidgy AN vu VATV T

=1/(SINRy)

where the first term is the “selfish” part of the energy functio
which is small if SINR,, is large, while the second term is the
“altruistic” part which is small if the power of interfereac
incurred by all the other users (i.eu, # u) because ofu
compared to the power received from their own BS is small.
Note that the above formulation handles joint power, chan-
nel, and user association optimization. However, it can be
easily adapted to separate optimization and special cases.

thus favors a higher level of bandwidth sharing fairness.
By (1), the global energy¥ in (4) is expressible as:

Nut+ > a,u,c0)Py(cu)l(bo, u, cy)
c— Z veU ,v#u
ucl

Py(cy)l(bu,u, cy)
which can be re-written as:

N,
€= Pty

®)

ucU
Py(c)l(by,u, o) Pu(cy)l(by, v, cy) In t.he following, we describe the distributgd.algprithm dads
{ z}:cu Pu(cu)l(bu,u,cu)+ Py (co)l(bo, v, ) (6) on Gibbs sampler for the network self-optimization.

« Each BS separately triggers a state transition for one of its

where and in the coming presentation for notational sinitglic users picked at random, sayusing a local random timer.

we will omit the notationa(-) unless it should be completed.

The optimization problem is then to find a configuration
of user association, channel selection and power allatatio
which minimizesé&. It is clear that the problem has a high
combinatorial complexity and is in general hard to solve for
large networks. However, if the cost function has the form
given above, the minimization can be conducted by Gibbs
sampler and can be implemented in a fully distributed way.
This explains the choice made in (4).

Ill. NETWORK SELF-OPTIMIZATION

We now describe the network self-optimization scheme. It *
is based on a Gibbs sampler operating ograph G of the
network which can be defined as follows:

« The set ohodesin G is the set of users denoted by U.

« Each node is endowed with state variables belonging fo
to a finite setS. The state of a node is its user association,
channel and the transmit power, denoted(by, c,,, P,,).
Here, we consider that transmit power is discretized.

« The set ofneighbors of a node inG is the set of all users
v # u such that the power of the signal received from
at u is above a specific threshold, sdy Notice thatb,
is then considered as the neighboring base station of

From (6), we see thaf derives from apotential function

E=>Y{V(V)|v Cu}, whereV(-) has the following form:
V) = ~ it V=1{u},

P, (Cu)l(bu7 u, Cu)
Py(cu)l(by,u,cy) | Pu(cy)l(by,v,cy)

It samples the random variablels ¢, P,) and selects a
states with a probability proportional te—%+()/T based

on &,, whereT is a parameter called the temperature.
The dynamics based on these local transitions, called the
Gibbs sampler, will drive the network to a steady state
which is theGibbs distribution associated wittf andT’,

and has the following distribution in steady state:

mr(s,ueld) =c- e €G/T
with ¢ a normalizing constant.
This distribution puts more mass on low energy config-
urations. Wherll" — 0 in a proper way, the distribution
7r(-) will converge to a Dirac mass at the optimal state
of minimal cost if it is unique.

The above state transition consists in selecting a new state
r useru according to the following probability distribution
which in fact only depends on the states of its neighbor nodes

efsu(s)/T
7Tu(s) = 42563 675“'(5)/71 )

8

whereT > 0 is the temperature ang refers to the finite
set of allowable choices. The Gibbs sampler selects a state
of low energy with high probability. As aforementioned, for

practical reason, power level is discretized such tRate
[71 V(V) as follows: for all subsety C U/, we can have {0, Py, 2P;

.y Prax }» whereP,,.x is the maximum transmit

power andP; is the step size. Two BS, sayandb, are called
implicit neighbors if at least one user associated with one BS
receives the signal of the other BS above the threshold.

To determiner, (s) for Gibbs sampler, we need to evaluate

V) =
») Pu(ca)l(bu,u,cu) — Py(co)l(bv, v, cv) &.(s). Some measurement and information exchange between
_'f V= {u,v}, neighboring base stations and users are thus requiredwr~oll
V(y) =0 it V] =>3. ing the explicit definition off, under (7), we consider that for



the evaluation of the first term i, a useru will estimate the system follows a heuristic scheme that channels of a BS

the following data and report to its base statign are assigned to its users simply in a round-robin fashien, i.
1) the receiver noiseV,, sequentially, such that the numbers of users (i.e., the) limad
2) the sum of received interferences in each Chanr@t’ each of its channels will be well balanced and almost equal.
to be selectedy", ., P,(c)l(by, u, ), and _In sim_ulation, we copsider that users are uqiformly dis-
3) the path lossi(b, u,c), for eachc and for each of its tributed in a geographical area df00 meters times650
neighboring BS) to be selected. meters and we adopt the 3GPP-3GPP2 spatial channel model

For the evaluation of the second term, a us&ill estimate [12]. The distance dependent path loss is given by:

the following information and report to its base statign 198)(d) = —(30.18 + 26 1og o (d) + X®)) | 9)

1) the power of its received signaP, (¢, )!(b,, v, ¢, ), and . . . .
2) the path lossl(b, v, c,), for each of its neighbor BS whered is the transmitter-receiver distance afNg refers to
S " log-normal shadowing with zero mean and standard deviation

Note that the measurement of signal power, interference apdig  consider operating temperature 290 Kelvin and band-
path loss/(b, u, c) for each considered channel from either it§ijth 1 MHz. N, is equal t04.0039 x 10~15 W, Vu.

own or neighboring base stations can be retrieved by the usefjorq e consider that there are two fixed macro cell BS and

terminal from the measure_ment Qf RSCP (recei_veql Sig”a' Cog%umber of small cell BS. The latter are randomly located in

power) and/or RSSI (received signal strength indication). e geographical area. The maximum transmit power of macro
By the above information, each B is able to compute 5n4’small cell BS are 40 W and 1 W, respectively. We assume

&u(+). Notice that the neighbor cell communication takes plagg P; = 0.1 W. In the simulation, we consider a simple

between base stations. So, there is no need to transmit épgtem where: = 1 and each user only takes one channel.
information via the wireless medium. We assume that this is

supported by the backhaul network. A. Numerical Example

As aforementioned, the probability law, (s) in (8) favors  Tg pegin with, we illustrate the effectiveness of the algo-
low energies. State transition is conducted to have the globghm by some examples with randomly generated small cell
energy minimization. It is known that the setting of temperazs and users, as shown in Fig. 3-4. To have readable graphical
ture T" will impact the system'’s limiting distribution. It has torepresentation and comparison of the user associationpneha
be chosen by taking a tradeoff between the convergence tig)Rcation and transmission power before and after optimiz
and the strict optimality of the limit distribution. For a &8 tjon, in these examples we consider that the path loss isgimp
environment (i.e., user population, signal attenuatidinyye gistance dependent without log-normal shadowing. So, & use
decreasd’ in a logarithmic scale, the network will be drivenyhg is farther from a BS has a larger path loss due to the
to a state of minimal energy, starting from any arbitraryesta greater distance. A line connecting a BS and a user indicates
Here, we follow this and seéf' = 1/In(1+1), wheret is time.  the user association and its thickness represents theystren
A concrete proof of the convergence to the state of minimgde transmit power. In these examples, we consider thaé ther
& can be done similarly to that of [7, pp. 311-313] based 04ye two orthogonal channels in each BS, which are represente
the notion of weak ergodicity of Markov chains and is thugy different colors and line styles. Results (see Fig. 3rtms
omitted. In Section IV, we will illustrate the convergenasda that the proposed solution significantly outperforms the by
present numerical studies. default configuration in both system throughput (in b/s/Hz)
and power utilization efficiency (in b/s/Hz/W). Note that the
latter has been improved by several orders of magnitude (als

A performance investigation of the proposed solution isecause our representation of the default operation has no
conducted below. We implement the optimization with Gibbsower control mechanism). Notice that due to a lack of space,
sampler and compare its performance with today’s 3GR¥® have to omit the plots of algorithm convergence of the
default operations [9] by simulation. above examples. However, we observed that the algorithm

To start with, by the current standard and 3G implementasually converges within a few hundreds iterations and is
tions, base stations are usually configured with a nominatifixhence practical.
transmission power such that the pilot signal can be redeive
by terminals over the covered area. The DL transmit powBr Average Performance
is often the maximum allowable power as well for a better Secondly, we compare the performance of the proposed
user reception and coverage. The pilot signal is broaddastgptimization with the default operation, with a fixed number
continuously to allow user equipments to perform channef 32 BS (including the two macro BS) but with different
measurements and appropriate tuning. In user associttien,numbers of users (denoted BY), i.e., different user densities,
current practice consists in attaching a user to the BSwedei and different numbers of orthogonal channels (denote&hy
with the strongest signal strength. Note that this couldl ledJsers and small cells are randomly generated in the geograph
to attaching users to a far macro cell BS which has a highieal area. For eacliM, K), data of 500 different topologies
transmission power than that of a nearer small cell BS. Fhisdre obtained and the performance metrics are then averaged
in general sub-optimal. In channel allocation, we consfbat out. Table | shows the result, where the joint optimizatias h

IV. SIMULATION AND COMPARISON
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Example 3: more users than BS. Performance: i) system througdpa i) power efficiency. Two orthogonal channels: satidgenta vs. dashed-black lines.
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Fig. 4. Network after proposed joint optimization. Both tlystem throughput (b/s/Hz) and power utilization efficietlofs/Hz/W) are significantly improved.

substantially enhanced the system throughput and alsorpowienplicity is especially favorable for the target of netWor
efficiency. It is observed that given the sahg K ratio, the autonomic management and self-optimization. Simulaten r
spectrum utilization efficiency after optimization alsgarieases sults have shown its effectiveness in both spectrum andygner
due to a higher degree of resource allocation flexibility &as utilization efficiencies. It has a clear potential in futumacro
increases), which is realized by the joint optimization.tddo and small cell mixed self-organizing networks.
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