
HAL Id: hal-00745208
https://inria.hal.science/hal-00745208

Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the exploration in Upper Confidence Trees
Adrien Couetoux, Hassen Doghmen, Olivier Teytaud

To cite this version:
Adrien Couetoux, Hassen Doghmen, Olivier Teytaud. Improving the exploration in Upper Confidence
Trees. Learning and Intelligent OptimizatioN Conference LION 6, Jan 2012, Paris, France. �hal-
00745208�

https://inria.hal.science/hal-00745208
https://hal.archives-ouvertes.fr


Improving the exploration in Upper Confidence

Trees

Adrien Couëtoux1,2,3, Hassen Doghmen1, and Olivier Teytaud1,2

1 TAO-INRIA, LRI, CNRS UMR 8623,
Université Paris-Sud, Orsay, France

2 OASE Lab, National University of Tainan, Taiwan
3 Artelys, 12 rue du Quatre Septembre Paris, France

Abstract. In the standard version of the UCT algorithm, in the case
of a continuous set of decisions, the exploration of new decisions is done
through blind search. This can lead to very inefficient exploration, par-
ticularly in the case of large dimension problems, which often happens
in energy management problems, for instance. In an attempt to use the
information gathered through past simulations to better explore new de-
cisions, we propose a method named Blind Value (BV). It only requires
the access to a function that randomly draws feasible decisions. We also
implement it and compare it to the original version of continuous UCT.
Our results show that it gives a significant increase in convergence speed,
in dimensions 12 and 80.

1 Introduction and motivation

We consider a high dimensional continuous and stochastic sequential decision
making problem. Both the decision space and state space are continuous. For
the sake of simplicity, both have the same dimension N . There is a finite time
horizon H, after which no further decisions are made. At each time step t < H,
given a current state st, the optimizer has to make a decision d. In this paper,
we will denote the set of feasible decisions from state s as X(s). We will also
denote the set of explored decisions from state s after the nth iteration, n ≥ 1,
as Dn(s).

We consider that the optimizer has at its disposal a model with a transition
function f and a sampling function ϕ. The transition function takes as inputs
a state st and a decision x ∈ X(st). Its outputs are a state st+1 and a re-
ward rt+1 ∈ R. The sampling function takes as input a state st, and its output
is a decision x ∈ X(st). The optimizer has no other knowledge of the model
than these two functions. Both functions can be (and are, in our experiments)
stochastic: f(st, d) and ϕ(st) are two multidimensional real random variables,
their probability distributions being unknown to the optimizer.

The optimizer is given an initial state s0, and its objective is to maximize
the accumulated reward

∑
1≤i≤H r(i).

In this context, UCT like algorithms have been some of the most efficient
methods, like MCTS in the game of Go [6, 4, 7, 8], or continuous MCTS on energy



management problems [5]. This is due, mostly, to the fact that without any
dimension reduction technique (that is application specific), all other well known
methods, like dynamic programming, fail [1, 2].

However, in its current form, continuous MCTS does not use any information
when it explores new decisions. This is not such a dramatic issue in discrete cases,
or in low dimensional continuous cases, as one can just blindly cover most of the
search space. But, in the case of a high dimensional continuous decision space, we
think that the convergence speed could be greatly increased by biasing the way
new decisions are explored. As mentioned before, we consider the case where the
sampling of feasible decisions is ”black box”. This means that the set of feasible
decision, as well as the inside of the sampling function ϕ, are unknown to the
optimizer. This keeps biased sampling methods out of our options. We chose to
consider this case because, to have access to the inside of the sampling function,
one needs to know precisely the constraints of the model, and to implement them.
Not only can this work take enourmous amounts of time (i.e.,hundreds of man
hours), but the resulting feasible space may also be highly non convex, resulting
in even more work to develop sampling functions on these spaces. In short, biased
sampling, in our opinion, should be relevant for very problem-specific methods.

One could also count on an approximate knowledge of the feasible space,
sample on this approximation, and apply a large penality to infeasible decisions.
This is a valid option for many problems, but, in energy management problems
(our main current application of interest), the feasible decisions are extremely
sparse in the convex envelop, making this approach less interesting.

Our approach is focused on using the very limited information of the transi-
tion and sampling functions, in combination with the information progressively
made available during the course of the simulations.

This is inspired by a work on continuous and stochastic bandits problems
[3], which provides a method that ensures that no area of the feasible decisions
set is left unexplored, while focusing on promising areas of this set. However, it
focuses on the theoretical aspect of the problem, and requires some assumptions
that often do not hold in our case. In particular, it requires the knowledge of the
set of feasible decisions. Still, our approach follows the same ideas: explore the
empty areas first, and then to focus on areas where promising decisions are.

We first quickly review the state of the art form of MCTS in a continuous
setting. Then, we introduce its new variant termed MCTS with Blind Value
(MCTS-BV). Then, we show some experimental results on an energy manage-
ment problem, where we compare the two versions, first in a small dimension
setting, then in a larger dimension setting (N = 80). Finally, we present some
experimental results on the tuning of one parameter of MCTS-BV.

2 State of the art of continuous Upper Confidence Trees

The UCT algorithm builds a tree where the nodes represent the reachable states,
and the arcs the feasible decisions. By progressively adding arcs and nodes from
its root (that represents the initial state given to the optimizer), more infor-



mation is gathered. When the algorithm runs out of time, it selects the most
promising decision reachable from the root (usually, the one that has been sim-
ulated the most). Among the crucial mechanisms in this algorithm, there are:
when to add a new decision to the tree or when to exploit a known decision,
and how to select a known decision once we have chosen not to add a new one.
The first part is usually dealt with by using Progressive Widening [5], while
the second is usually dealt with by using an Upper Confidence Bound formula
(UCB).

For more detailed information about the current state of the art form of
MCTS with Double Progressive Widening (MCTS-DPW), please read [5].

3 Blind Value

The principle of Blind Value is to help the exploration of new decisions. One can
want to explore a new decision from any state already in the tree. Although in
our case, the optimizer cannot bias the sampling of new decisions, we propose a
method that does use the information available in the tree. More precisely, we
use the information about the children of the current node. In terms of states
and decisions, it means: when we want to explore a new decision from state s,
we use information about all the decisions explored from this state s in the past
simulations to select a new decision x ∈ X(s) to be explored from state s.

Note that one could use any other information in the tree: brother nodes,
grand children nodes, father node, etc. However, even the exploitation of the
direct children of a node only is computationally costly. And, the more distant
in the tree some information is, the more likely it is to be irrelevant to the node
we are currently in (states might be very different, and this type of problem is
also highly time step dependant). [8] has proposed the use of Rapid Action Value
Estimates (RAVE), which are an interesting other possibility; we will consider
the mixing of blind value with RAVE values in a further work. [8] also proposed
the use of information from related nodes; after preliminary positive results, this
was later removed from the corresponding implementations (for the game of Go)
for correctly tuned implementations.

The idea of BV is to try to explore decisions that are far away from known
decisions during the first simulations, and then to focus on areas that have a
lot of decisions with high UCB values. This is done by sampling a number of
new decisions, and by selecting one of them according to a combination of these
two criterions (explore unknown regions and explore regions with many decisions
with high UCB values in it).

More precisely, we sample a number M ≥ 1 of random decisions, and we
pick the one that is the most interesting to explore. The way we measure the
interest of a decision is through a function from the decision space to R, denoted
BV (.) (Blind Value). This function can be defined in many different ways. In
this paper, at an iteration n, given a state s and a decision x ∈ X(s), we chose to
define BV (x) as the minimum over Dn(s) of the sum of two parts. The first part
is the UCB value of d ∈ Dn(s), the second is the distance between x ∈ X(s)



and d ∈ Dn(s), multiplied by an adaptation coefficient. We use the standard
euclidian distance, but any other distance could be used instead.

More precisely, the Blind Value of x in state s with decisions d ∈ Dn(s)
already explored is

BV (x) = min
d∈Dn(s)

UCB(d) + ρdist(d, y).

What follows is the detailed blind value algorithm:

Exploration of new decisions
Input: a state s, a set D of already explored decisions, an integer M , and a distance
function over the decision space, dist
Output: an unexplored decision x.
Generate M random decisions. Let X be the set composed of these decisions.
Compute a = UnbiasedStandardDeviationd∈D(UCB(d))
Compute b = UnbiasedStandardDeviationx∈X(dist(x, 0)), 0 being the center of
the domain
Compute ρ = a

b

return x = argmaxy∈XBV (y, ρ,D)

Computing BV (Blind Value)
Input: an unexplored decision y, a real number ρ, andD the set of explored decisions
Output: a real number BV (y, ρ,D).
return mind∈D(ρ× dist(d, y) + UCB(d))

4 Experimental comparison

Our test case is an energy management problem. There are N energy stocks,
H time steps, and a thermal power plant with a given maximum capacity and
production cost function. In our experiments, we used a quadratic cost function.
At each time step, each stock also receives an inflow. Each inflow follows its own
independent random distribution.

At each time step, the decision maker has to decide how much to produce
from each stock, and how much to produce from the thermal plant. His goal is
to satisfy a time varying demand at the lowest possible cost.

We ran two algorithms on this problem: the continuous version of MCTS,
as introduced in [5], and the same algorithm with the addition of Blind Value
(MCTS-BV), with the sample size parameter set to 20. This experiment was run
with 12 stocks and 16 time steps. The results are shown in fig 1 (left). In this
experiment, as in the following ones, each point is computed from 10000 runs of
the algorithm on one problem instance. The 95% confidence intervals are plotted
as blue segments around the points, even though their small size can make them
very hard to see in some cases.



-8e+06

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

-3 -2 -1 0 1 2

R
e
w
a
r
d

log10(computation time)

DPW+BV

DPW

-1.22e+10

-1.2e+10

-1.18e+10

-1.16e+10

-1.14e+10

1 1.5 2 2.5 3 3.5 4 4.5 5

R
e
w
a
r
d

log10(number of simulations)

DPW(0.5,0.6)

DPW(0.5,0.6)+BV

Fig. 1. Left: reward, as a function of the computation time. Problem settings: 12 stocks,
16 time steps. MTCS with BV is 10 times faster than MCTS, for budgets up to 10
seconds per decision. Right: reward, as a function of the number of simulations per
decision. Problem settings: 80 stocks, 6 time steps. MTCS with BV is 10 times faster
than MCTS, for all budgets.

This figure shows that even in dimension 12, BV already gives an edge of
magnitude 10 to MCTS, in terms of computation time (to reach a certain level
of performance, MCTS requires 10 times as many simulations as MCTS-BV).
The problem being reasonably easy, we also see that this edge decreases when
the computation time increases (but only for a computation time of about 3
minutes). This is due to the fact that, as the budget gets bigger, both algorithms
get very close to the optimum, in terms of reward.

This is why we made a second experiment, on the same problem, with a
much higher dimension. In this experiment, there are 80 stocks, 6 time steps, and
M = 640. With the information given to the algorithms (just the transition and
the sampling functions), this problem is incredibly difficult, and naturally has
very low reward (the highest average possible reward being around −2.5× 107).
Given its dimension, there is no way of exploring the entire decision space, even
with a very low density. The results are shown in Fig. 1 (right).

This figure shows that BV still gives an edge of magnitude 10 to MCTS
in terms of computation time, even though we were not able to approach the
optimum with our computing capacities. One can also note that in this setting,
the difference seems to be increasing as the budget increases. This leads to
think that on very difficult problems, BV can divide by ten, or even more, the
computing time necessary to reach a certain level of performance.

5 Conclusion and future work

We introduced a new variant of continuous MCTS to better solve high dimen-
sional problems. Our experimental results show that this variant, MCTS-BV,



improves the original algorithm by a factor 10 (it reaches the same level of per-
formance with 10 times less simulations than the original). This result holds for
even relatively small dimension problems (dimension 12). The edge given by BV
seems to be even bigger in very high dimensions, but this could be confirmed by
longer experiments.

We believe that, especially in its simplest form, Blind Value is very easy to
implement, and can significantly increase the convergence speed of MCTS on
continuous and stochastic planning problems.

It could also be coupled with other ways of exploiting information throughout
the tree. One of the promising leads is the use of RAVE values, first introduced
in the game of Go [8], and currently extended to continuous domains. While
Blind Value only uses the decisions at the current level in the tree (horizontal
propagation), RAVE propagates information through the path of each simula-
tion, from child to father node (vertical propagation) enabling the algorithm to
attribute a value to decisions not yet explored from one specific state.

Our future work will focus on setting an adaptive form for the sampling
size parameter, to adapt it to the time budget. We also plan on trying different
variants of the formula used to rank the decisions in the pool, by changing the
distance, for example.

Acknowledgments. We thank Grid5000, that made our experiments possible
(www.grid5000.fr). We also thank the National Science Council of Taiwan for
grants NSC97-2221-E-024-011-MY2 and NSC 99-2923-E-024-003-MY3.

References

1. R. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.
2. D. Bertsekas and J. Tsitsiklis. Neuro-dynamic Programming. Athena Scientific,

1996.
3. S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvri. Online optimization in x-armed

bandits. In In Advances in Neural Information Processing Systems 22, 2008.
4. G. Chaslot, M. Winands, J. Uiterwijk, H. van den Herik, and B. Bouzy. Progressive

Strategies for Monte-Carlo Tree Search. In P. Wang et al., editors, Proceedings of
the 10th Joint Conference on Information Sciences (JCIS 2007), pages 655–661.
World Scientific Publishing Co. Pte. Ltd., 2007.

5. A. Couetoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bonnard. Contin-
uous Upper Confidence Trees. In LION’11: Proceedings of the 5th International
Conference on Learning and Intelligent OptimizatioN, page TBA, Italie, Jan. 2011.

6. R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.
In P. Ciancarini and H. J. van den Herik, editors, Proceedings of the 5th Interna-
tional Conference on Computers and Games, Turin, Italy, pages 72–83, 2006.

7. R. Coulom. Computing elo ratings of move patterns in the game of go. In Computer
Games Workshop, Amsterdam, The Netherlands, 2007.

8. S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In ICML
’07: Proceedings of the 24th international conference on Machine learning, pages
273–280, New York, NY, USA, 2007. ACM Press.


