Unsupervised amplitude and texture classification of SAR images with multinomial latent model

Koray Kayabol 1 Josiane Zerubia 2
1 ARIANA - Inverse problems in earth monitoring
CRISAM - Inria Sophia Antipolis - Méditerranée , SIS - Signal, Images et Systèmes
Abstract : We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images for modelbased classification purpose. In a finite mixture model, we bring together the Nakagami densities to model the class amplitudes and a 2D Auto-Regressive texture model with t-distributed regression error to model the textures of the classes. A nonstationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. The Classification Expectation-Maximization (CEM) algorithm is performed to estimate the class parameters and to classify the pixels. We resort to Integrated Classification Likelihood (ICL) criterion to determine the number of classes in the model. We present our results on the classification of the land covers obtained in both supervised and unsupervised cases processing TerraSAR-X, as well as COSMO-SkyMed data.
Type de document :
Article dans une revue
IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2013, 22 (2), pp.561-572. <10.1109/TIP.2012.2219545>
Liste complète des métadonnées


https://hal.inria.fr/hal-00745387
Contributeur : Koray Kayabol <>
Soumis le : jeudi 25 octobre 2012 - 14:22:04
Dernière modification le : mercredi 30 janvier 2013 - 12:34:48
Document(s) archivé(s) le : samedi 26 janvier 2013 - 03:55:08

Fichier

06305477.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Koray Kayabol, Josiane Zerubia. Unsupervised amplitude and texture classification of SAR images with multinomial latent model. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2013, 22 (2), pp.561-572. <10.1109/TIP.2012.2219545>. <hal-00745387>

Partager

Métriques

Consultations de
la notice

415

Téléchargements du document

708