Learning linear classifiers with ternary weights from Metagenomic Data

Abstract : Motivated by recent researches in metagenomic classification tasks, this paper investigates the problem of finding interpretable concepts from training data in which the number of features is larger than the number of samples. In this setting, the classification problem is modeled as a combinatorial optimization problem, in which the aim of the learner is to find a {−1, 0, +1}-weighted linear threshold function that minimizes the hinge loss induced from the training data. Two methods are analyzed and experimented: convex optimization that applies randomized rounding to the optimum in the convex hull of the concept class, and supermodular minimization that performs a local search in the concept class, with a guarantee on the approximate solution for the subclass of {0, 1}-weighted threshold functions.
Type de document :
Communication dans un congrès
Laurent Bougrain. Conférence Francophone sur l'Apprentissage Automatique - CAp 2012, May 2012, Nancy, France. 16 p., 2012, Actes de la Conférence Francophone sur l'Apprentissage Automatique - CAp 2012
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00745449
Contributeur : Laurent Bougrain <>
Soumis le : jeudi 25 octobre 2012 - 15:10:34
Dernière modification le : vendredi 16 novembre 2018 - 02:10:35
Document(s) archivé(s) le : lundi 28 janvier 2013 - 13:40:51

Fichier

cap2012_submission_24.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00745449, version 1

Citation

Yann Chevaleyre, Frédéric Koriche, Jean-Daniel Zucker. Learning linear classifiers with ternary weights from Metagenomic Data. Laurent Bougrain. Conférence Francophone sur l'Apprentissage Automatique - CAp 2012, May 2012, Nancy, France. 16 p., 2012, Actes de la Conférence Francophone sur l'Apprentissage Automatique - CAp 2012. 〈hal-00745449〉

Partager

Métriques

Consultations de la notice

698

Téléchargements de fichiers

198