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Finite-time output stabilization of the double integrator

Emmanuel Bernuau, Wilfrid Perruquetti, Denis Efimov and Emmanuel Moulay

Abstract— The problem of finite-time output stabilization of
the double integrator is addressed applying the homogeneity ap-
proach. A homogeneous controller and a homogeneous observer
are designed (for different degree of homogeneity) ensuring
the finite-time stabilization. Their combination under mild
conditions is shown to stay homogeneous and finite-time stable
as well. The efficiency of the obtained solution is demonstrated
in computer simulations.

In many applications the nominal models have the double

integrator form (mechanical planar systems, for instance).

Despite of its simplicity this model is rather important in the

control theory since frequently a design method developed

for the double integrator can be extended to a more general

case (via backstepping, for example). Most of the current

techniques for nonlinear feedback stabilization provide an

asymptotic stability: the obtained closed-loop dynamics is

Lipschitzian and the system trajectories settle at the origin

when the time is approaching infinity. Such a rate of con-

vergence is not admissible in many applications, this is why

the Finite-Time Stability (FTS) notion is quickly developing

during the last decades: solutions of a FTS system reach the

equilibrium point in a finite time. For example, the solutions

x(t, x0) of

ẋ = −sign(x)|x|α, x ∈ R, α ∈ (0, 1), (1)

starting from x0 ∈ R at t0 = 0 are for ς = 1− α:

x(t, x0) =

{

sign(x0)[|x0|
ς − ςt]

1

ς if 0 ≤ t ≤ |x0|
ς

ς
,

0 if t >
|x0|

ς

ς
.

(2)

Let us note that the right hand side of the above differential

equation is not Lipschitz. In fact, finite-time convergence

implies non-uniqueness of solutions (in reverse time) which

is not possible in the presence of Lipschitz-continuous dy-

namics, where different maximal trajectories never cross.

Engineers are interested in the FTS because one can man-

age the time for solutions to reach the equilibrium which is

called the settling time. An important issue is the settling time

function regularity at the origin. The problem of finite-time

stability has been developed for continuous systems giving

sufficient and necessary condition (see [1], [2]). In addition,

necessary and sufficient conditions appear for discontinuous
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systems involving uniqueness of solutions in forward time

under continuity of the settling time function at the origin

(see [3], [4]). It was observed in many papers that FTS can

be achieved if the system is locally asymptotically stable

and homogeneous with negative degree [5]. This is why the

homogeneity plays a central role in the FTS system design.

The reader may found additional properties and results on

homogeneity in [6], [7], [8], [9], [10]. The homogeneity

property was used many times to design FTS state controls

[11], [12], [13], [14], [15], [16], FTS observers [17], [18]

and FTS output feedback [19], [20].

Our goal is to develop the techniques of a FTS output

feedback controller design for the double integrator. Since the

double integrator is controllable, open-loop control strategies

can be used to drive the state to the origin in a finite time

(see [21], [22], [23] for a minimum time optimal control).

Based on homogeneity, Bhat and Bernstein in their paper

[11] provide a homogeneous FTS state controller for the

double integrator. Our objective in this work is to relax the

applicability conditions for the control obtained in [24], and

to develop that solution to the FTS output control.

The outline of this work is as follows. Notations, and

introduction of the FTS and the homogeneity concepts are

given in Section 2. The precise problem formulation is

presented in Section 3. The output FTS controller is designed

in Section 4. The results of computer simulations of the

proposed control algorithm are presented in Section 5.

I. PRELIMINARIES

A. Notations

Through the paper the following notations will be used:

• R+ = {x ∈ R : x > 0}, R− = {x ∈ R : x < 0},

where R is the set of real numbers.

• If Q is a symmetric positive definite matrix and x ∈ R
n,

we denote ‖x‖Q = xTQx. When Q = In (Euclidean

norm), it will be simply denoted by ‖.‖.

• For any real number α ≥ 0 and for all real x with α > 0
and x ∈ R define⌈x⌋α = sign(x)|x|α, then we have

d ⌊x⌉α
dx

= α |x|α−1
,

d |x|α
dx

= α ⌊x⌉α−1
. (3)

• A continuous function α : R+ → R+belongs to

the class K if α(0) = 0 and the function is strictly

increasing; the function α : R+ → R+ belongs to the

class K∞ if α ∈ K and it is increasing to infinity.

B. Finite-time stabilization

Let us consider

ẋ = G(x, u),



and the following closed loop system

ẋ = F (x), (4)

where F (x) := G(x, u(x)) for a given feedback u(x). In

the following, Ψt(x) denotes a solution of the system (4)

starting from x at time zero. When F is not Lipschitz but

for example continuous it may happen that any solution goes

to zero in a finite time as it is the case for ẋ = −⌊x⌉α,

α ∈ (0, 1), see (1)–(2). The system (4) is said to have unique

solutions in forward time on a neighborhood U ⊂ R
n if for

any x ∈ U and two right maximally defined solutions of

(4), Ψt
1(x) : [0, T1) → R

n and Ψt
2(x) : [0, T2) → R

n, there

exists 0 < T ≤ min{T1, T2} such that Ψt
1(x) = Ψt

2(x) for

all t ∈ [0, T ). It can be assumed that for each x ∈ U , T is

chosen to be the largest in R+ ∪ {+∞}. Various sufficient

conditions for forward uniqueness can be found in [25].

Let us consider the system (4) where F is continuous on

R
n and where F has unique solutions in forward time. We

recall the definition of finite-time stability [6].

Definition 1: The origin of the system (4) is finite-time

stable (FTS) iff there exists a neighborhood of the origin V
such that:

1) There exists a function T : V \ {0} → R+ where

for all x ∈ V \ {0}, Ψt(x) is defined (and unique)

on [0, T (x)), Ψt(x) ∈ V \ {0} for all t ∈ [0, T (x))
and lim

t→T (x)
Ψt(x) = 0. T is called the settling-time

function of the system (4).

2) For all neighborhoods of the origin U1, there exists a

neighborhood of the origin U2 ⊂ V such that for every

x ∈ U2, Ψt(x) ∈ U1 for all t ∈ [0, T (x)).

The following result gives a sufficient condition for the

system (4) to be FTS (see [26], [27] for ordinary differential

equations, and [28] for differential inclusions):

Theorem 1: [26], [27] Let the origin be an equilibrium

point for the system (4), and let F be continuous on an open

neighborhood V of the origin. If there exists a Lyapunov

function1 V : V → R+ and a function r : R+ → R+ such

that
dV

dt
(x) ≤ −r(V (x)), (5)

along the solutions of (4) and ε > 0 such that

ˆ ε

0

dz

r(z)
< +∞, (6)

then the origin of the system (4) is finite-time stable.

In particular, assuming forward uniqueness of the solution

and the continuity of the settling time function, Bhat and

Bernstein (see [3, Definition 2.2]) showed that FTS of the

origin is equivalent to the existence of a Lyapunov function

satisfying (5) where r(x) = cxa, with a ∈ (0, 1), c > 0. In

order to circumvent the classical Lyapunov function art of

design, one can use homogeneity conditions recalled below.

1
V is a continuously differentiable function defined on V such that V is

positive definite.

C. Homogeneity

Let r = (r1, . . . , rn) be a n−uplet of positive real

numbers, then for any positive number λ

Λrx = (. . . , λrixi, . . . ) (7)

represents a mapping x 7→ Λrx usually called a dilation (see

[8]).

Definition 2: A function h defined on R
n is homogeneous

with degree k ∈ R with respect to dilation Λr if for all

x ∈ R
n we have [8]:

h(Λrx) = λkh(x). (8)

When such a property holds, we write: deg(h) = k.

Definition 3: A vector field F defined on R
n is homoge-

neous with degree m with respect to dilation Λr if for all x ∈
R

n, we have (see [8]): deg(Fi) = m + ri, ∀i ∈ {1, . . . , n},

which could be written as: Λ−1
r F (Λrx) = λmF (x). When

such a property holds the corresponding nonlinear ODE (4)

is said to be homogeneous with degree m with respect to

dilation Λr.

Theorem 2: [5] Let F be a continuous vector field on R
n

homogeneous with degree m < 0 (with respect to dilation

Λr); if the origin is LAS (locally asymptotically stable) then

it is globally FTS.

Let us recall a useful theorem from [24].

Theorem 3: Suppose the vector field F is homogeneous

with respect to the dilation ∆r. If K is a compact subset

of R
n such that Ψt(K) ⊆ K for all t > 0 (K is said to

be strictly positively invariant or SPI), then 0 ∈ K and 0 is

globally asymptotically stable.

By adding the two previous results, we get:

Corollary 1: If F is a homogeneous vector field with

respect to the dilation ∆r, of negative degree, and if there

exists a SPI compact subset of Rn, then 0 is globally FTS.

II. PROBLEM FORMULATION

Our contribution aims at designing a FTS output feedback

based on homogeneity for the following double-integrator

system:





ẋ1 = x2,
ẋ2 = u(x1, x2),
y = x1,

(9)

where x1 and x2 are the states of the system, u is the input

and y is the output. We will proceed in three steps:

1) Design a homogeneous state feedback control ensuring

FTS for the double integrator:

{
ẋ1 = x2,
ẋ2 = u.

(10)

2) Design a homogeneous observer:

{
˙̂x1 = x̂2 − χ1(y − x̂1),
˙̂x2 = −χ2(y − x̂1),

(11)



where χ1 and χ2 are functions to be designed such

that the origin is FTS for the error e = x− x̂ equation:

{
ė1 = e2 + χ1(e1),
ė2 = χ2(e1).

(12)

3) Show a separation principle such that the obtained

observer-based closed loop system is FTS.




ẋ1 = x2,
ẋ2 = u(y, x̂2),
y = x1,

(13)

where x̂2 is obtained from (11).

III. FINITE-TIME OUTPUT FEEDBACK BASED ON

HOMOGENEITY

A. Finite-time control

Let us consider the double integrator (10). It is homo-

geneous with degree m w.r.t. to dilation Λr with weight

r = (r1, r2) as soon as u is homogeneous of degree ru
and the following relations hold:

r1 +m = r2,

r2 +m = ru.

Thus fixing ru = 1 (without loss of generality) a necessary

and sufficient condition for (10) to be homogeneous is

r1 = 2r2 − 1, (14)

m = 1− r2. (15)

To have FTS it is necessary and sufficient that (10) is

LAS and that m < 0. Let us find conditions for which the

following feedback leads to LAS of the origin of the system

(10):

u = k1⌊x1⌉α1 + k2⌊x2⌉α2 , (16)

and m < 0. The feedback (16) is homogeneous of degree

ru iff ru = 1 = riαi. From (14) and (15), setting α := α2,

we get: m = 1 − 1
α , r1 = 2−α

α , r2 = 1
α and α1 = α

2−α .

The condition m < 0 is equivalent to α ∈ (0, 1), which in

turn implies that α1 ∈ (0, 1). In all the sequel, we assume

α ∈ (0, 1).

The system (10) with the feedback (16) takes the form

{
ẋ1 = x2,

ẋ2 = k1⌊x1⌉
α

2−α + k2⌊x2⌉α.
(17)

We would like to find the conditions on the coefficients ki
providing LAS for the system (17) (that due to homogeneity

implies FTS). In the work [24] these conditions have been

obtained for α sufficiently close to one (here we consider

α ∈ (0, 1)).

Consider the following functions:

ϕ : x = (x1, x2)
T 7→ ϕ(x) = (x1, ⌊x2⌉2−α)T ,

V : x 7→ ϕ(x)TPϕ(x), (18)

where P is a symmetric positive definite matrix such that

PA+ATP = −I with A =

(
0 1
k1 k2

)
:

P =

(
k2

2
+k2

1
−k1

2k1k2

−1
2k1

−1
2k1

1−k1

2k1k2

)
. (19)

The functions ϕ and V are homogeneous of degree 1/α1 > 1
and 2/α1 with respect to Λr, then

V̇ = 2ϕ(x)TP

(
x2

(2− α)|x2|1−αu

)

and a direct computation leads to:

V̇ = |x2|1−α

[
(α− 2)|x1|

2

2−α + (α− 2 +
1− α

k1
)x2

2

+
k21 − k1 + (α− 1)k22

k1k2
x1⌊x2⌉α

−(2− α)
k1 − 1

k2
⌊x1⌉

2

2−α ⌊x2⌉2−α

]
.

Let us denote y = ⌊x1⌉
1

2−α and z = x2, then we obtain:

V̇ = |z|1−α

[
(α− 2)(y2 + z2) + (1− α)

z2

k1

+
k21 − k1 + (α− 1)k22

k1k2
⌊y⌉2−α⌊z⌉α

−(2− α)
k1 − 1

k2
⌊z⌉2−α⌊y⌉α

]
.

Lemma 1: Set f(y, z) = ⌊y⌉2−α⌊z⌉α and

M =
(2− α)1−α/2αα/2

2
,

then −M ≤ f ≤ M on the circle S = {y2 + z2 = 1}.

The proofs of lemmas 1–4 and Theorem 4 are excluded due

to space limitations.

Remark 1: Direct computations show that for all α ∈
(0, 1) we have M2(1− α) < 1.

We will be interested in the following condition on k2:

k2 <
M

M2(1− α)− 1
. (C.1)

Remark 2: The condition (C.1) implies k2 < 0 for all

α ∈ (0, 1).
Lemma 2: Set ∆1 = 1+4(1−α)k22 and ∆2 = ((3−α)+

(2−α)k2

M )2 + 4(1 − α)(3 − α)k22 . Under the condition (C.1)

we have the following inequalities:

1

2
+

(2− α)k2
2M(3− α)

−
√
∆2

2(3− α)
<

1−
√
∆1

2
< M(1− α)k2.

Theorem 4: If k2 is chosen in accordance with the condi-

tion (C.1) and k1 belongs to the following interval

k1 ∈
[
1

2
+

(2− α)k2
2M(3− α)

−
√
∆2

2(3− α)
,M(1− α)k2

]
, (C.2)

then the system (17) is FTS.

Remark 3: The theorem 4 proves that the origin of (10)

with the control (16) is FTS for α ∈ (0, 1) under the



conditions (C.1) and (C.2). Notice that when α → 1, the

proposition (8.1) of [24] ensures the FTS for any k1 and k2.

B. Finite-time observer design

A finite-time observer for a canonical observable form was

constructed for the first time in [17]. The proof of finite-

time stability is based on homogeneity property. The class

of considered systems is:
{
ẋ = Ã(a1, . . . , an)x+ f(y, u, u̇, . . . , u(r))

y = Cx
, (20)

where x ∈ R
n and r is a positive integer, and:

Ã(a1, . . . , an) =




a1 1 0 0 0
a2 0 1 0 0
...

...
...

. . .
...

an−1 0 0 0 1
an 0 0 0 0




,

C = (1 0 . . . 0) ,

where ai ∈ R for i = 1, . . . , n. The proposed observer is:



˙̂x1

˙̂x2

...
˙̂xn


 = Ã




y
x̂2

...

x̂n


+ f(.)−




l1⌈y − x̂1⌋β1

l2⌈y − x̂1⌋β2

...

ln⌈y − x̂1⌋βn


 ,

where f(.) = f(y, u, u̇, . . . , u(r)). The powers βi are defined

such that the error dynamics can be written as follows:




ė1 = e2 + l1⌈e1⌋β1 ,
...

ėn = ln⌈e1⌋βn ,

where e = x − x̂ and the right hand side is homogeneous

with a negative degree with respect to the weights ρ =
(ρ1, . . . , ρn). It is homogeneous with degree m w.r.t. to

dilation Λρ as soon as the following relations hold

ρi +m = ρi+1 = ρ1βi, i ∈ {1, . . . , n− 1},
ρn +m = ρ1βn.

Thus a necessary and sufficient condition for (11) to be

homogeneous is

ρi = ρ1 + (i− 1)m,

m = (β1 − 1)ρ1.

Therefore, setting β = β1, the relation ρi+1 = ρ1βi gives

ρi = ρ1[(i− 1)β + 2− i],

βi = iβ + (1− i),

with β ∈ (1− 1
n , 1). The gains li, i = 1, . . . , n, are defined

such that the matrix Ã(l1, . . . , ln) is Hurwitz.

However, in [17] FTS was proved for β ∈ (1 − ε, 1) for

a sufficiently small ε > 0. Here we concentrate on the case

n = 2 and show that the system is FTS for all β ∈ ( 12 , 1) and

all ρ1 > 0. From the previous relations we get: β1 = β ∈

( 12 , 1), β2 = 2β − 1, ρ1 = 1, ρ2 = ρ1β and m = ρ1(β − 1).
The system becomes:

{
ė1 = e2 + l1⌊e1⌉β ,
ė2 = l2⌊e1⌉2β−1.

(21)

Let us denote

Aβ =

(
βl1 β
l2 0

)
.

Let P and Q be symmetric positive definite matrices such

that PAβ + AT
βP = −Q. This equation has a solution if

and only if Aβ is Hurwitz. But the characteristic polynomial

of Aβ is X2 − βl1X − βl2, and this polynomial is Hurwitz

since l1 < 0 and l2 < 0. Consider the following function:

V (e) =

(
⌊e1⌉β
e2

)T

P

(
⌊e1⌉β
e2

)
.

The function V is positive definite, homogeneous of degree

2ρ1β, continuous everywhere and differentiable on the open

set U = {e1 6= 0}. Furthermore, on U we have:

V̇ = 2

(
⌊e1⌉α
e2

)T

P

(
β|e1|β−1(e2 + l1⌊e1⌉β)

l2⌊e1⌉2β−1

)

= |e1|β−1

(
⌊e1⌉β
e2

)T

(PAβ +AT
βP )

(
⌊e1⌉β
e2

)

= −|e1|β−1

∥∥∥∥
(

⌊e1⌉β
e2

)∥∥∥∥
2

Q

< 0.

Since V̇ is strictly negative on U , for all e ∈ U , the function

t 7→ V (Ψt(e)) is strictly decreasing as long as Ψt(e) belongs

to U , where Ψ denotes the semi-flow of the vector field F
given in the right hand side of (21).

Now, let e = (0, e2) 6= 0. We have for t > 0 : Ψt(e) = e+
tF (e)+o(t), thus Ψt(e) = (te2, e2)+o(t), where o(t) is the

Landau notation. Therefore we get that for all e ∈ R
2\{0},

there exists Te > 0 such that for all t ∈ (0, Te), Ψ
t(e) ∈ U .

Set e 6= 0. If e ∈ U , for all s < t ∈ [0, Te), we have

V (Ψs(e)) > V (Ψt(e)). If e /∈ U , for all t ∈ (0, Te), we

have Ψt(e) ∈ U , thus for all s < t ∈ (0, Te) we have

V (Ψs(e)) > V (Ψt(e)). By continuity of t 7→ V (Ψt(e)), we

have V (e) ≥ V (Ψt(e)) for all t ∈ [0, Te). Assume there

exists t ∈ (0, Te) such that V (e) = V (Ψt(e)). Then for

0 < s < t we have V (e) ≥ V (Ψs(e)) > V (Ψt(e)) = V (e)
and this is a contradiction.

A similar proof leads to V (Ψs(e)) > V (Ψt(e)) for all

0 ≤ s < t ≤ Te. Finally, for all e 6= 0, the function t 7→
V (Ψt(e)) is strictly decreasing.

Consider now the compact K = {V ≤ 1}. Since

t 7→ V (Ψt(e)) is strictly decreasing, K is strictly positively

invariant, and thus, by corollary (1), the system is globally

FTS and we have proven the following theorem.

Theorem 5: The observer (11) with χ1(e1) = ⌊e1⌉β ,

χ2(e1) = ⌊e1⌉2β−1 for any β ∈ ( 12 , 1) is globally FTS in

the coordinates (e1, e2).
Thus the observer (11) ensures observation of the state of the

system (9) in a finite time for any initial conditions (without

loosing generality we always may assume that e1(0) = 0).



C. Finite-time stable observer based control

To construct our observer-based control, we will introduce

some restrictions on the observer parameters. We choose β =
1

2−α and ρ1 = 2−α
α , then it follows that β2 = α

2−α . Let us

rewrite the system (13) for the designed FTS control (16) and

the FTS observer (21) (in the estimation error coordinates):





ẋ1 = x2,

ẋ2 = k1⌊x1⌉
α

2−α + k2⌊x2 − e2⌉α,
ė1 = e2 + l1⌊e1⌉

1

2−α ,

ė2 = l2⌊e1⌉
α

2−α .

(22)

Note that x2 − e2 = x̂2, thus the control depends on the

measured output x1 only. To prove the FTS property of this

system we need three auxiliary lemmas.

Lemma 3: With this choice of β and ρ1, the system (22)

is homogeneous w.r.t. the dilation given by:

(x1, x2, e1, e2)
T 7→ (λ

2−α

α x1, λ
1

αx2, λ
2−α

α e1, λ
1

α e2)
T .

Let us denote ∆ = ⌊x2 − e2⌉α2 − ⌊x2⌉α2 .

Lemma 4: For all e2 ∈ R, and all x2 ∈ R we have |∆| ≤
2|e2|α2 .

Consider now the function V defined in (18). Denoting by

u the control defined in (16), we have:

V̇ = dV

(
x2

u+ k2∆

)

= dV

(
x2

u

)
+ dV

(
0

k2∆

)

≤ 2ϕTP

(
0

k2∆(2− α)|x2|1−α

)

≤ ϕTPϕ+ (2− α)2|x2|2−2α∆2P22

≤ V + 4(2− α)2P22|e2|2α2 |x2|2−2α.

Let us denote B(e2) = 4(2 − α)2P22|e2|2α2 . Since the

observer is stable, we easily show that there exists a function

σ ∈ K∞ s.t. B(e2) ≤ σ(||e0||), where e0 = (e1(0), e2(0))
T .

Noting that |x2|2−2α ≤ 1 + |x2|4−2α, we get:

V̇ ≤ V +B(e2)(1 + |x2|4−2α)

≤ V + σ(||e0||)(1 + x2
1 + |x2|4−2α).

Denoting µ > 0 the smallest eigenvalue of the matrix P
defined in (19), we have µ(x2

1 + x4−2α
2 ) = µ‖ϕ(x)‖2 ≤

V (x), e.g. x2
1 + x4−2α

2 ≤ V
µ . Finally we have:

V̇ ≤
(
1 +

σ(||e0||)
µ

)
V + σ(||e0||),

and it follows that for all t ≥ 0:

V ≤ ι(t, V (x(0)), ||e0||),

ι(t, r, s) =

(
r +

σ(s)

1 + σ(s)µ−1

)
exp[(1 + σ(s)µ−1)t].

Lemma 5: The solutions of the system (22) are defined

for all t ≥ 0.

Now we are in position to formulate the main result.

Theorem 6: The system (22) is globally FTS for any α ∈
(0, 1) and β = 1

2−α ∈ (1/2, 1) provided that k1, k2 are

chosen in accordance with (C.1), (C.2) and for any l1 < 0,

l2 < 0.

Proof: Let us denote by T1(resp. T2) : R
2 → R+ the

settling time function of the system (17) (resp. the system

(11)). By lemma 5, the solutions of the system (22) exist

for all t > 0. For t ≥ T2(e0), we have ∆ = 0 and the

system (22) becomes equivalent to the system (17). Thus the

system (22) converges to the origin in a finite-time, namely

T2(e0) + T1(x1(T2(e0)), x2(T2(e0))). Therefore the origin

is a global finite-time equilibrium. Since the system (22)

is homogeneous and attractive, by [24, proposition 6.1] the

system is globally asymptotically stable, and thus globally

FTS.

Remark 4: If the function T2 is locally bounded, the

stability can be proved without the homogeneity of the

system (22).

Remark 5: It is worth to stress that the system (22) is

FTS in coordinates (e1, e2) (see Theorem 5) and it is FTS in

coordinates (x1, x2, e1, e2) (Theorem 6). However, it is not

FTS in the isolated coordinates (x1, x2) since the time of

convergence in these coordinates depends on the convergence

of the observer.

IV. SIMULATIONS

Let us consider two cases α = 0.3 and α = 0.6. Let l1 =
−1 and l2 = −2. The straightforward calculation shows that

the choice k1 = −1 and k2 = −2 also admits the conditions

(C.1), (C.2) for both values of α:

• α = 0.3:

M = 0.655, k2 ≤ −0.937, −1.619 ≤ k1 ≤ −0.917;

• α = 0.6:

M = 0.543, k2 ≤ −0.615, −1.624 ≤ k1 ≤ −0.434.

The results of the system simulation are presented in figures

1, 2. In figures 1.a, 2.a and 1.b, 2.b the examples of transients

in time are given for the system state (x1, x2) and the

estimation error (e1, e2) respectively. As we can conclude

from these figures, the system is converging to zero in a

finite time for both pairs of variables, but for (x1, x2) the

convergence is not monotone (that justifies the theoretical

results obtained above). The fact that the system is FTS in

coordinates (e1, e2) and (x1, x2, e1, e2) (but not in (x1, x2))
becomes more evident from analysis of figures 1.c, 2.c and

1.d, 2.d, where the trajectories are shown for different initial

conditions for (x1, x2) and (e1, e2) respectively. In addition,

as we can observe from these figures, the behavior (the rate of

convergence) of the system trajectories is changed when the

trajectories approach the line x2 = 0, that was also detected

in the theoretical part, where the Lyapunov function becomes

identical zero close to this line (see Theorem 4).

V. CONCLUSION

The problems of finite-time control and estimation for the

double integrator are studied. An extension of applicability

conditions of the homogeneous control algorithm from [11]
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Fig. 1. The results of simulation for α = 0.3
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Fig. 2. The results of simulation for α = 0.6

is obtained. A finite-time output control is designed. The effi-

ciency of the obtained solution is demonstrated by computer

simulations.

Development of the approach to the case of nth-

dimensional differentiator, analysis of robustness with re-

spect to external disturbances and measurement noise, eval-

uation of the settling time function are the possible future

directions of the research.
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