Bayesian estimation of turbulent motion

Patrick Héas 1 Cédric Herzet 1 Etienne Mémin 1 Dominique Heitz 1 Pablo D. Mininni 2
1 FLUMINANCE - Fluid Flow Analysis, Description and Control from Image Sequences
IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture, Inria Rennes – Bretagne Atlantique
Abstract : Based on physical laws describing the multi-scale structure of turbulent flows, this article proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyper-parameters, and to select the most likely physical prior among a set of models. Hyper-parameter and model inference is conducted by posterior maximization, obtained by marginalizing out non-Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state of the art results in fluid flow estimation
Type de document :
Article dans une revue
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2013, 35 (6), pp.1343-1356. 〈10.1109/TPAMI.2012.232〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00745814
Contributeur : Patrick Héas <>
Soumis le : vendredi 26 octobre 2012 - 14:36:14
Dernière modification le : mercredi 1 août 2018 - 15:02:03
Document(s) archivé(s) le : samedi 17 décembre 2016 - 05:33:11

Fichier

TPAMI-2010-12-0966-mainPlusApp...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Patrick Héas, Cédric Herzet, Etienne Mémin, Dominique Heitz, Pablo D. Mininni. Bayesian estimation of turbulent motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2013, 35 (6), pp.1343-1356. 〈10.1109/TPAMI.2012.232〉. 〈hal-00745814〉

Partager

Métriques

Consultations de la notice

707

Téléchargements de fichiers

286